

Transfer reaction experiments with fission fragment beams

Jolie A. Cizewski Rutgers University

TORUS Collaboration Meeting Michigan State University, June 2014

RUTGERS Neutron transfer reactions with neutron-rich nuclei

Measure (d,p) reactions with neutron-rich beams

- Measure Q-values, single-neutron excitations
 + spectroscopic strengths with (d,p)
- Measure particle-gamma coincidences to improve energy resolution and populate more states
- Provide data to understand (n,γ) in explosive environments and inform applications

Z=50

RUTGERS Neutron transfer reactions with neutron-rich nuclei

A≈130 (d,p) Collaborations

Rutgers University: J.A.C., T. Baugher*, S. Burcher*, <u>Brett Manning</u>, R. Hatarik, M.E. Howard, P.D. O' Malley, A. Ratkiewicz**

ORNL:G. Arbanas, D.W. Bardayan, J.F. Liang, C.D. Nesaraja, <u>Steve D.</u> <u>Pain</u>**, D. Shapira, M.S. Smith

Univ. Tennessee: S. Ahn, A. Bey, G. Cerizza*, K.Y. Chae, R. Kapler, <u>Kate L.</u> Jones*, B.H. Moazen, S.T. Pittman, K.T. Schmitt

Tennessee Tech: <u>Ray L. Kozub</u>

Michigan State Univ: Filomena Nunes ORAU: W. A. Peters

Louisiana State University: J.C. Blackmon, M. Matos

Univ. of Surrey: S. Hardy*, C. Shand*, T.P. Swan, J.S. Thomas, G.L. Wilson

Colorado School of Mines: K.A. Chipps, L. Erikson, R. Livesay

Ohio University: A.S. Adekola U. WI-Lacrosse: I. Marsh* Funded in part by the

U.S. DOE Office of Science & NNSA/SSAA & National Science Foundation *GODDESS

Near ¹³²Sn Z=50, N=82

Nuclear reaction & structure studies

Neutron transfer A(d,p)A+1 reactions Neutron transfer A(d,t)A-1 Neutron transfer + gamma A(⁹Be,⁸Be_γ)A-1

RUTGERS

Identified $2f_{7/2}$, $3p_{3/2}$, $(3p_{1/2})$, $2f_{5/2}$ neutron strength in ¹³³Sn

K.L. Jones et al. Nature, **465**,454 (2010) Phys. Rev. C **84**, 034601 (2011)

	E _x (keV)	Jπ	Config SF (DWBA)		SF (FR-ADWA)	C ² (fm ⁻¹)
	0	7/2-	2f _{7/2}	0.86(14)	1.00(8)	0.64(10)
	854	3/2-	3p _{3/2}	0.92(14)	0.92(7)	5.6(9)
	1363(31)	(1/2-)	3p _{1/2}	1.1(3)	1.2(2)	2.6(4)
TORUS	2005	(5/2-)	2f _{5/2}	1.1(2)	1.2(3)	9(2)x10 ⁻⁴

RUTGERS

TORUS Jun

¹³²Sn(d,p) FR-ADWA-CH calculations

K.L. Jones, F. Nunes et al. Phys. Rev. C **84**, 034601 (2011)

Finite-Range Adiabatic Wave Approximation

- Includes d breakup and finite range
- •d from nucleon optical models
- •CH (modern, global) optical model parameters

	E _x (keV)	Jπ	SF (DWBA)	C ² (fm ⁻¹)	SF (FR-ADWA)	C ² (fm ⁻¹)
	0	7/2-	0.86(14)	0.64(10)	1.00(8)	0.82(7)
	854	3/2-	0.92(14)	5.6(9)	0.92(7)	6.5(5)
	1363(31)	(1/2⁻)	1.1(3)	2.6(4)	1.2(2)	2.9(6)
20	2005	(5/2-)	1.1(2)	9(2)x10 ⁻⁴	1.2(3)	1.2(3)x10 ⁻⁴

UTGERS ¹³⁰Sn(d,p) and direct-semi-direct neutron capture

TORUS Jun 2014 R.L. Kozub, G. Arbanas et al. PRL **109**, 172501 (2012)

FOR STEWARDSHIP SCIENCE

RUTGERS Direct-semi-direct neutron capture calculations

Direct semi-direct direct capture with CUPIDO

- Semi-direct capture via GDR
 - Add GDR to s.p. EM operator
- Incident channel: Koning Delaroche potential
- Bound state: Bear Hodgson potential
- Used measured SF and Ex to constrain
- Uncertainties ≈ 20%

CENTER OF EXCELLENCE FOR RADIOACTIVE ION BEAM STUDIES FOR STEWARDSHIP SCIENCE

TORUS Jun 2014

B. Manning, in preparation

!!! Preliminary !!!

	2f _{7/2}		3p _{3/2}		3p _{1/2}	
	E _x (MeV)	SF	E _x (MeV)	SF	E _x (MeV)	SF
¹³² Sn(d,p)	0.00	1.00	0.854	0.92	1.36	1.3
¹³⁰ Sn(d,p)	2.63	0.95	3.40	0.55	3.99	0.85
¹²⁸ Sn(d,p)	2.67	0.68	3.29	0.26	3.84	0.42
¹²⁶ Sn(d,p)	2.65	0.54	3.30	0.27	3.89	0.49
¹²⁴ Sn(d,p)	2.76	0.39	3.39	0.29	4.10	0.42

Uncertainties $\approx 30\%$ for all spectroscopic factors

Same reaction theory & Optical Model:

- Finite-Range Adiabatic Wave Approximation
- Chapel Hill 89 Optical Model Parameters

B. Manning, in preparation

132,130,128,126,124**Sn DSD (n,γ)**

Rutgers

Summary of previous studies

- Measured (d,p) with Sn beams
 - Extracted E_x, spectroscopic factors, ANCs, DSD (n,γ)
 - "state of the art" FR-ADWA reaction model with global optical model parameters
 - CUPIDO to extract direct-semi-direct neutron capture cross sections
 - Incident channel: Koning Delaroche potential
 - Bound state: Bear Hodgson potential
 - Experimental SF and E_x constrained the model
 - Questions for theorists
 - How robust are reaction model(s)?
 - How robust are optical model parameterization (especially when weakly bound)?
 - How robust are DSD calculations?
 - How model fragmentation of s.p. strength?
- Next steps for experiment
 - Beyond ¹³²Sn
 - Surrogate for compound nucleus (n,γ)

Near ¹³²Sn Z=50, N=82

Nuclear reaction & structure studies

Neutron transfer A(d,p)A+1 reactions Neutron transfer A(d,t)A-1 Neutron transfer + gamma A(⁹Be,⁸Be_γ)A-1

¹³⁴Te(d,p) to N=83 ¹³⁵Te

S.D. Pain et al.

Considerable fragmentation of strength E_x >1.8 MeV

RUTGERS Particle-gamma coincidence studies are powerful

Improved energy resolution

- Use particle-gamma gating techniques to improve energy resolution of excitations
- Gamma-ray energy resolution 6-10 keV at 1 MeV (after Doppler correction)
- Additional spectroscopy
 - Levels populated in gamma decay not directly populated in (d,p)
- Surrogate (n,γ) reactions require gamma-ray measurements in coincidence with reaction particles
- (Lifetime measurements backed targets)

Particle-gamma coincidences

With Gammasphere and ORRUBA

Development of (d,pγ) in inverse kinematics (with RIBs)
 Coupling Si strip detector array ORRUBA + endcaps to Gammasphere

JTGERS GODDESS: Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies

Rutgers

Experiments with GODDESS

Future ATLAS beams & ORRUBA + Gammasphere

- Heavy and light ²⁵²Cf fission fragments
 - ¹³⁴Te(d,pγ) N=82 fragmentation of s.p. strength approved
 - 137 Te(d,p γ) to test (n, γ) rates for r-process nucleosynthesis
 - ¹⁴²⁻¹⁴⁴Ba(d,pγ) to study microscopic components of octupole collectivity
 - ¹⁰⁴⁻¹⁰⁶Mo(d,pγ) to study microscopic components of non-axial collectivity

Experiments with GODDESS

Future ATLAS beams & ORRUBA + Gammasphere

- Nuclear structure studies with noble gas beams
 - ¹²⁴⁻¹²⁸Xe(d,pγ) nature of collectivity in transitional nuclei

IGERS

132,130,128,126,124**Sn (n,γ)?**

RUTGERS Validating (d,py) as (n,y) surrogate

- Chose nucleus where $\sigma(n,\gamma)$ is known to $E_n \approx 200 \text{ keV}$
 - Odd-N, even-Z => final is even-even & collective (but not deformed)
- Validating surrogate method for $\sigma(n,\gamma)$ on ⁹⁵Mo
 - σ(n,γ) measured by Musgrove et al., NPA **270**, 109 (1976)
- Understand ⁹⁵Mo(d,p) reaction mechanism: (d,p) to low-lying excitations
- Intensity of discrete ⁹⁶Mo lines vs E_n to deduce surrogate cross sections
 - Measure (n,γ) analysis in progress
 - Measure (d,pγ) normal kinematics analysis in progress
 - Measure (d,pγ) inverse kinematics experiment approved
- Calculate $\sigma(n,\gamma)$ from (n,γ) and $(d,p\gamma)$ surrogate studies
- Multiplicity of γ transitions OR statistical γ's in ⁹⁶Mo vs E_n
 - DANCE 95 Mo(n, γ) archival data analysis in progress
 - Gammasphere w/out hevimet collimators (d,pγ)
 - Calculate $\sigma(n,\gamma)$ using multiplicity?
 - Calculate $\sigma(n,\gamma)$ from pattern of statistical transitions?

RUTGERS

⁹⁵Mo(d,p_γ) - preliminary results

JTGERS

$95Mo(n,\gamma)$ - preliminary results

Absolute yields

CENTER OF EXCELLENCE FOR RADIOACTIVE ION BEAM STUDIES FOR STEWARDSHIP SCIENCE

Rutgers

Future ATLAS beams & ORRUBA + Gammasphere

- Validating (d,pγ) as surrogate for (n,γ)
 - ${}^{95}Mo(d,p\gamma)$ inverse kinematics & compared to actual 95Mo(n, γ)
- Future: any (d,pγ) measurement w/ GODDESS will provide surrogate for (n,γ)

RUTGERS Summary of (d,p) future studies

Extracting spectroscopic factors

- Requires state of the art nuclear reaction theory
 - Deuteron breakup
 - Optical model parameters
- Measuring elastic scattering as well as transfer
- Constrains direct-semi-direct capture cross sections

Surrogate for (n,γ)

- Complete validation
 - Discrete, statistical, multiplicity γ
- (n,γ) cross sections
 - r-process nucleosynthesis
 - Nuclear energy applications
 - National security applications

Nuclear structure studies

- Near closed shells
- Transitional nuclei
- Triaxial nuclei
- Octupole collectivity

Transfer reaction experiments with fission fragment beams THANK YOU

Supported by U.S. Department of Energy NNSA and Office of Nuclear Physics and National Science Foundation

Extra Slides

Rutgers

- Reducing ambiguities in spectroscopic factors
 - ⁸⁶Kr(d,p) at 35 MeV/u complete
 - ⁸⁶Kr(d,p) at 5.5 MeV/u extracting ANCs from published data
 - Propose to study ⁸⁴Se(d,p) at 35 MeV/u
 - ⁸⁴Se(d,p) at 4 MeV published and ANCs extracted
- Neutron detection studies near the Coulomb barrier
 - ⁷Be(d,n) @ Notre Dame (Jones) May 2014
 - ¹⁷F(d,n) @ Notre Dame (Bardayan) May 2014
 - ¹⁹F(α,n) @ Notre Dame (Peters)
 - ¹⁹F(α,n) @ ORNL (Peters) Summer 2014
 - ¹⁶C(p,n) @ NSCL (Zegers) Summer 2014
- ⁵⁶Ni(d,n) with fast beams (Peters)
- (α,p), (³He,d) studies with JENSA and ReA3 beams

RUTGERS Probing nuclear structure with (d,p) reactions

Peripheral reaction: only probe tail of WF Shape of asymptotic part of WF determined by binding energy (through k)

$$\varphi_{\ell}(r) \rightarrow b_{\ell j} k h_{\ell}(ikr)$$

Change in geometry is change in $b_{\ell j}$ Asymptotically:

$$I^{B}_{An} \rightarrow C_{\ell j} k h_{\ell}(ikr) = S^{1/2}_{\ell j} b_{\ell j} k h_{\ell}(ikr)$$
$$C^{2}_{\ell j} = S_{\ell j} b^{2}_{\ell j}$$

- Use peripheral reactions at low beam energy to accurately determine asymptotic normalization coefficient (ANC), Clj – archival data
- Use higher energies to probe deeper into the nucleus and combine with low energy measurements (Clj) to provide constraints on single particle ANC, blj – under analysis
- Extract spectroscopic factor with uncertainties dominated by cross-section uncertainties from experimental statistics rather than uncertainties in the bound state wave function

Preliminary Data

GERS

- Gap in data caused by shadowing
- Alpha contamination from the ²³³U source used for calibration

Data from a single strip of an ORRUBA detector at **forward** angles

Position

GERS

131,130Sn(n γ)

A. Bey, private communication

TORUS Jun 2014

l=0 capture

1/2⁺ states in ¹³¹Sn above E_x=7.69 MeV

1/2⁻,3/2⁻ states in ¹³¹Sn; E_x ≈ 4.0 and 3.4 MeV

DSD via 3p_{3/2} and 3p_{1/2}

RUTGERS N<82 (d,p) what should expect to see?

RUTGERS

GODDESS is powerful

RUTGERS

r-process abundances

Peaks of r-process abundances near "magic numbers", nuclear shell closures

BUT, different astrophysics models predict different abundances ⇒ Change in nuclear structure far from stability OR astrophysics OR ??