Towards proton-nucleus

formfactors

L. Hlophe \& Ch. Elster
V. Eremenko
(The TORUS Collaboration)

OHIO

partial wave S-matrix $S_{L+1 / 2}$, for the p $+{ }^{48} \mathrm{Ca} @ 38 \mathrm{MeV}$

For higher partial waves r-space and p-space agree For lower they do not.

First: understand this calculation

Reminder: Ernst-Shakin-Thaler (EST)

partial wave t-matrix :

$$
\begin{array}{lc}
\left\langle p^{\prime}\right| t(E)|p\rangle=\frac{\left\langle p^{\prime}\right| V\left|\Psi_{k_{E}}^{(+)}\right\rangle\left\langle\Psi_{k_{E}}^{(+)}\right| V|p\rangle}{\left\langle\Psi_{k_{E}}^{(+)}\right| V-V g_{0}(E) V\left|\Psi_{k_{E}}^{(+)}\right\rangle} & \text {Reminder: } \\
& V\left|\Psi_{k_{E}}^{(+)}\right\rangle:=t\left|k_{E}\right\rangle
\end{array}
$$

The EST construction guarantees:
At a given scattering energy E_{kE} the scattering wave functions obtained with the original potential V and the separable potential V are identical. $\boldsymbol{\rightarrow}$ the half-shell t -matrices are identical

EST construction carried out in plane wave basis
The derivation uses that one has a complete set of states.

Reminder: Technical details of generalized EST

Let $\left|f l_{, k E}\right\rangle$ be a radial wave function and $\quad K_{0}\left|f l_{, k E}\right\rangle=\left|f^{*}{ }_{l, k E}\right\rangle$
Rank-1 separable t-matrix: $\quad\left\langle p^{\prime}\right| t(E)|p\rangle=\frac{\left\langle p^{\prime}\right| u\left|f_{l, k_{E}}\right\rangle\left\langle f_{l, k_{E}}^{*}\right| u|p\rangle}{\left\langle f_{l, k_{E}}^{*}\right| u-u g_{0}(E) u\left|f_{l, k_{E}}\right\rangle}$
With $\quad t\left(p^{\prime}, k_{E}, E_{k_{E}}\right)=\left\langle f_{l, k_{E}}^{*}\right| u\left|p^{\prime}\right\rangle \quad$ and $\quad t\left(p, k_{E}, E_{k_{E}}\right)=\langle p| u\left|f_{l, k_{E}}\right\rangle$

$$
\left\langle p^{\prime}\right| t(E)|p\rangle=\frac{t\left(p^{\prime}, k_{E}, E_{k_{E}}\right) t\left(p, k_{E}, E_{k_{E}}\right)}{\left\langle f_{l, k_{E}}^{*}\right| u\left(1-g_{0}(E) u\right)\left|f_{l, k_{E}}\right\rangle} \equiv t\left(p^{\prime}, k_{E}, E\right) \tau(E) t\left(p, k_{E}, E\right)
$$

and

$$
\begin{aligned}
& \tau(E)^{-1}=t\left(k_{E}, k_{E}, E_{k_{E}}\right) \\
& +2 \mu\left[\mathcal{P} \int d p p^{2} \frac{\left.t p, k_{E}, E_{k_{E}}\right) t\left(p, k_{E}, E_{k_{E}}\right)}{k_{E}^{2}-p^{2}}-\mathcal{P} \int d p p^{2} \frac{t\left(p, k_{E}, E_{k_{E}}\right) t\left(p, k_{E}, E_{k_{E}}\right)}{k_{0}^{2}-p^{2}}\right] \\
& +i \pi \mu\left[k_{0} t\left(k_{0}, k_{E}, E_{k_{E}}\right) t\left(k_{0}, k_{E}, E_{k_{E}}\right)-k_{E} t\left(k_{E}, k_{E}, E_{k_{E}}\right) t\left(k_{E}, k_{E}, E_{k_{E}}\right)\right] .
\end{aligned}
$$

EST construction based on:

- solve the scattering problem in complete basis
- require that for a set energies E_{i} the wave functions (half-shell t-matrices) obtained with the original and separable potential coincide.
\rightarrow EST construction can be performed in the Coulomb basis

$$
\begin{aligned}
& t_{l}^{C N}(E)=\sum_{i, j} u\left|f_{l, k_{E_{i}}}\right\rangle \tau_{i j}^{C}(E)\left\langle f_{l, k_{E_{j}}}^{*}\right| u \\
& \sum_{j} \tau_{i j}^{C}(E)\left\langle f_{l, k_{E_{j}}}^{*}\right| u-u g_{C}(E) u\left|f_{l, k_{E_{k}}}\right\rangle=\delta_{i k} \\
& \hat{g}_{C}\left(E_{p_{0}}\right)=\left(E-\hat{H}^{C}+i \varepsilon\right)^{-1} \quad \hat{H}^{C}=H_{0}+\hat{V}^{C}
\end{aligned}
$$

Coulomb Green's function

$$
t_{l}^{C N}(E)=\sum_{i, j} u\left|f_{l, k_{E_{i}}}\right\rangle \tau_{i j}^{C}(E)\left\langle f_{l, k_{E_{j}}}^{*}\right| u
$$

Multiply from left and right with a Coulomb state:

$$
\begin{aligned}
&\left\langle\psi_{l, k_{E}}^{C}\right| u\left|f_{l, k_{E}}\right\rangle=\int_{0}^{\infty} \frac{d p p^{2}}{2 \pi^{2}} u_{l}(p)\left(\psi_{l, k_{E}}^{C}\right)^{\star}(p) \equiv u_{l}^{C}\left(k_{E}\right) \\
&\left\langle f_{l, k_{E}}^{*}\right| u\left|\psi_{l, k_{E}}^{C}\left(k_{E}\right)\right\rangle=\int_{0}^{\infty} \frac{d p p^{2}}{2 \pi^{2}} u_{l}(p) \psi_{l, k_{E}}^{C}(p) \equiv\left(u_{l}^{C}\right)^{\dagger}\left(k_{E}\right) \\
& \text { Graphs in PRC paper }
\end{aligned}
$$

However: Not a consistent EST construction.

We used the n-A t-matrix calculated in a plane wave basis as input.
\rightarrow Wave functions obtained with original and separable potential are not the same at the support points if calculated in different bases.

Why do the higher partial waves agree?
General: the higher I and the higher E for given charge Z : the closer Coulomb functions resemble plane waves

For the higher l's the $n+A$ t-matrices probably are already very close to the $\mathrm{p}+\mathrm{A}$ t-matrices.

We need the p+A half-shell t-matrices for a charged particle EST generalization
 Non-trivial (due to "pinch singularity")

Use approach by Elster, Liu, Thaler, JPG 19, 2123 (1993)

Solve Lippmann-Schwinger equation in Coulomb distorted basis:

$$
\left\langle k^{\prime}\right| \tau_{l}(E)|k\rangle=\left\langle k^{\prime}\right| U_{l}|k\rangle+\int\left\langle k^{\prime}\right| U_{l}\left|k^{\prime \prime}\right\rangle \frac{4 \pi k^{\prime \prime} 2 \mathrm{~d} k^{\prime \prime}}{E-E^{\prime \prime}+\mathrm{i} \varepsilon}\left\langle k^{\prime \prime}\right| \tau_{l}(E)|k\rangle
$$

Looks like a regular LS equation if potential element

$$
\begin{aligned}
& \left\langle k^{\prime}\right| U_{l}|k\rangle=\left\langle\left(\phi_{l}^{\mathrm{C}}\right)^{(+)}\left(k^{\prime}\right)\right| V^{\mathrm{S}}\left|\left(\phi_{l}^{\mathrm{C}}\right)^{(+)}(k)\right\rangle \\
& \text { This is the hard part! }
\end{aligned}
$$

$$
\left\langle k^{\prime}\right| U_{l}|k\rangle=\left\langle\left(\phi_{l}^{\mathrm{C}}\right)^{(+1)}\left(k^{\prime}\right)\right| V^{\mathrm{s}}\left|\left(\phi_{l}^{\mathrm{C}}\right)^{(+)}(k)\right\rangle
$$

Matrix elements exist and are well defined if V^{s} is finite-ranged
We solved this as:

$$
\begin{aligned}
& \left\langle k^{\prime}\right| U_{I}|k\rangle=\int\left\langle\phi_{i}^{\mathrm{C}}\left(k^{\prime}\right) \mid r^{\prime}\right\rangle r^{\prime 2} \mathrm{~d} r^{\prime}\left\langle r^{\prime}\right| V_{l}^{\mathrm{s}}\left|r^{\prime \prime}\right\rangle r^{\prime \prime 2} \mathrm{~d} r^{\prime \prime}\left\langle r^{\prime \prime} \mid \phi_{l}^{\mathrm{C}}(k)\right\rangle \\
& \text { Linda has this already } \\
& \left\langle r^{\prime}\right| V_{I}^{\mathrm{s}}|r\rangle=\frac{2}{\pi} \int j\left(k^{\prime \prime} r^{\prime}\right) k^{\prime \prime 2} \mathrm{~d} k^{\prime \prime}\left\langle k^{\prime \prime}\right| V_{l}^{\mathrm{s}}\left|k^{\prime \prime \prime}\right\rangle k^{\prime \prime 2} \mathrm{~d} k^{\prime \prime \prime} j\left(k^{\prime \prime \prime} r\right)
\end{aligned}
$$

