The Surface Operator for Transfers

TORUS Annual Meeting, LLNL
June 12, 2013

Ian Thompson

Outline

- Aim
- Splitting the Transfer Matrix Element
- Definition of Surface Operator
- Calculation in a partial-wave basis
- Implementation
- R-matrix fits (surface, interior, exterior)
- Role in transfer calculations

Role in transfer calculations

- Aim is to fit resonances in (d,p) cross sections in a region of the continuum.
- We see many wide and narrow resonances, often overlapping.
- Want to find neutron pole energies and partial widths, in entrance channel for (n, γ)

Splitting the Transfer Matrix Element

- Define $T_{\text {post }}(a, b) \& T_{\text {prior }}(a, b)$ with $a<r^{\prime}<b$ limits Mukhamedzhanov (PRC 84, 044616, 2011) showed for any ρ :

$$
\begin{aligned}
& \mathrm{T}=\mathrm{T}_{\text {post }}(0, \rho)+\mathrm{T}_{\text {surf }}(\rho)+\mathrm{T}_{\text {prior }}(\rho, \infty) \\
& \quad \text { where } \mathrm{T}_{\text {surf }}(\rho)=\left\langle\mathrm{f}_{\mathrm{p}}^{(-)} \phi_{\mathrm{n}}\right|[\overleftarrow{T}-\vec{T}] \mid \phi_{\mathrm{d}} \mathrm{f}_{\mathrm{d}}^{(+)>\rangle_{(n)}} \text {) }
\end{aligned}
$$

- Evaluate:

$$
\begin{aligned}
& \int_{r \leqslant R} \mathrm{~d} \mathbf{r} f(\mathbf{r})[\overleftarrow{T}-\vec{T}] g(\mathbf{r}) \\
& \quad=-\frac{1}{2 \mu} \oint_{r=R} \mathrm{~d} \mathbf{S}\left[g(\mathbf{r}) \nabla_{\mathbf{r}} f(\mathbf{r})-f(\mathbf{r}) \nabla_{\mathbf{r}} g(\mathbf{r})\right] \\
& \quad=-\frac{1}{2 \mu} R^{2} \int \mathrm{~d} \Omega_{\mathbf{r}}\left[g(\mathbf{r}) \frac{\partial f(\mathbf{r})}{\partial r}-f(\mathbf{r}) \frac{\partial g(\mathbf{r})}{\partial r}\right]_{r=R}
\end{aligned}
$$

Choice of boundary ρ : see in Jutta's talk

Definition of Surface Operator

- Normal post-form source term:

$$
S_{\beta}^{\mathrm{CDCC}: \text { post }}\left(R^{\prime}\right)=\left\langle\phi_{\beta}\left(r^{\prime}\right) Y_{\beta}\left(\hat{R}^{\prime}, \hat{r}^{\prime}\right)\right| \nu_{\text {post }}\left|\psi_{\mathrm{CDCC}}^{J M}(\mathbf{R}, \mathbf{r})\right\rangle
$$

- To use in transfer exit-channel eqn:

$$
\left[H_{\beta}\left(R^{\prime}\right)-E_{\beta}\right] u_{\beta}\left(R^{\prime}\right)+S_{\beta \alpha}^{\text {surf }}\left(R^{\prime}\right)=0 .
$$

- Surface form of source term:

$$
=-\frac{\hbar^{2} \rho^{2}}{2 \mu_{n}}\left[\frac{\partial \phi_{\beta}\left(r^{\prime}\right)}{\partial r^{\prime}}-\phi_{\beta}\left(r^{\prime}\right) \frac{\partial}{\partial r^{\prime}}\right]\left\langle Y_{\beta}\left(\hat{R}^{\prime}, \hat{r}^{\prime}\right) \mid \psi_{\mathrm{CDCC}}(\mathbf{R}, \mathbf{r})\right\rangle_{r^{\prime}=\rho}
$$

- depends on bound state and its derivative only at $r^{\prime}=\rho$

Calculation in a partial-wave basis

- In a partial wave basis with channel α, the derivative terms (wrt r^{\prime}) are:

$$
\hat{\mathcal{S}}_{\beta \alpha}^{D}=-\frac{\hbar^{2} \rho^{2}}{2 \mu_{n}} \phi_{\beta}(\rho)\left\langle Y_{\beta}\left(\hat{R}^{\prime}, \hat{r}^{\prime}\right) \delta\left(r^{\prime}-\rho\right)\right| \frac{\partial}{\partial r^{\prime}}\left\langle\hat{R}, \hat{r} \left\lvert\, \alpha \frac{1}{r R} \varphi_{\alpha}(r) u_{\alpha}(R)\right.\right\rangle
$$

- Need derivatives of spherical harmonics $Y_{\ell}(\hat{\mathbf{r}})$ when $\mathbf{r}=p \mathbf{r}^{\prime}+q \mathbf{R}^{\prime}$

$$
\frac{\partial}{\partial r^{\prime}} Y_{\ell}^{m}(\hat{\mathbf{r}})=-\frac{p \ell}{r} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime} Y_{\ell^{m}(\hat{\mathbf{r}})}+p \sqrt{\frac{4 \pi \ell(2 \ell+1)}{3}} \frac{1}{r} \sum_{\lambda=-1}^{1} Y_{\ell-1}^{m-\lambda}(\hat{\mathbf{r}}) Y_{1}^{\lambda}\left(\hat{\mathbf{r}^{\prime}}\right)\langle\ell-1 m-\lambda, 1 \lambda \mid \ell m\rangle
$$

$=\frac{p}{r}\left\{\sqrt{\frac{4 \pi \ell(2 \ell+1)}{3}} \frac{\varphi_{\alpha}(r)}{r} \sum_{\lambda=-1}^{1}\langle\ell-1 m-\lambda, 1 \lambda \mid \ell m\rangle Y_{\ell-1}^{m-\lambda}(\hat{\mathbf{r}}) Y_{1}^{\lambda}\left(\hat{\mathbf{r}}^{\prime}\right)+Y_{\ell}^{m}(\hat{\mathbf{r}}) \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime}\left[\varphi_{\alpha}^{\prime}(r)-\frac{\ell+1}{r} \varphi_{\alpha}(r)\right]\right\}$

Derivatives of products of 2 wfns

$$
\begin{aligned}
& \frac{\partial}{\partial r^{\prime}}\langle\hat{R}, \hat{r} \mid \alpha\rangle \frac{1}{r R} \varphi_{\alpha}(r) u_{\alpha}(R)=\frac{1}{r R} \sum_{M_{L} m_{\ell}} C_{\alpha}^{M_{L} m_{\ell}: M} \\
& \left(Y _ { L } ^ { M _ { L } } (\hat { \mathbf { R } }) u _ { \alpha } (R) \frac { p } { r } \left\{\sqrt{\frac{4 \pi \ell(2 \ell+1)}{3}} \sum_{\lambda=-1}^{1}\langle\ell-1 m-\lambda, 1 \lambda \mid \ell m\rangle Y_{\ell-1}^{m-\lambda}(\hat{\mathbf{r}}) Y_{1}^{\lambda}\left(\hat{\mathbf{r}^{\prime}}\right) \frac{\varphi_{\alpha}(r)}{r}\right.\right. \\
& \left.\quad+Y_{\ell}^{m}(\hat{\mathbf{r}}) \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime}\left[\varphi_{\alpha}^{\prime}(r)-\frac{\ell+1}{r} \varphi_{\alpha}(r)\right]\right\} \\
& \quad+Y_{\ell}^{m_{\ell}}(\hat{\mathbf{r}}) \varphi_{\alpha}(r) \frac{P}{R}\left\{\sqrt{\frac{4 \pi L(2 L+1)}{3}} \sum_{\Lambda=-1}^{1}\left\langle L-1 M_{L}-\Lambda, 1 \Lambda \mid L M_{L}\right\rangle Y_{L-1}^{M_{L}-\Lambda}(\hat{\mathbf{R}}) Y_{1}^{\Lambda}\left(\hat{\mathbf{r}^{\prime}}\right) \frac{u_{\alpha}(R)}{R}\right. \\
& \left.\left.\quad+Y_{L}^{M_{L}}(\hat{\mathbf{R}}) \hat{\mathbf{R}} \cdot \hat{\mathbf{r}}^{\prime}\left[u_{\alpha}^{\prime}(R)-\frac{L+1}{R} u_{\alpha}(R)\right]\right\}\right) \\
& \mathbf{r}=p \mathbf{r}^{\prime}+q \mathbf{R}^{\prime} \\
& \mathbf{R}=P \mathbf{r}^{\prime}+Q \mathbf{R}^{\prime}
\end{aligned}
$$

Source term complete for r,R wfns

$$
\begin{aligned}
& S_{\beta \alpha}^{\text {surf }}\left(R^{\prime}\right)=-\frac{\hbar^{2} \rho^{2}}{2 \mu_{n}} \sum_{M_{L}^{\prime} m_{\ell}^{\prime} M_{L} m_{\ell}} F_{\beta}^{M_{L}^{\prime} m_{\ell}^{\prime}: M *} C_{\alpha}^{M_{L} m_{\ell}: M}\left\langle\left. Y_{L^{\prime}}^{M_{L}^{\prime}}\left(\hat{\mathbf{R}}^{\prime}\right) Y_{\ell^{\prime}}^{m_{\ell}^{\prime}}\left(\hat{\mathbf{r}}^{\prime}\right)\right|_{r^{\prime}=\rho} \frac{1}{r R}\right. \\
& {\left[\phi_{\beta}^{\prime}(\rho) Y_{\ell}^{m_{\ell}}(\hat{\mathbf{r}}) Y_{L}^{M_{L}}(\hat{\mathbf{R}}) \quad \varphi_{\alpha}(r) u_{\alpha}(R)\right.} \\
& -\phi_{\beta}(\rho)\left(Y _ { L } ^ { M _ { L } } (\hat { \mathbf { R } }) u _ { \alpha } (R) \frac { p } { r } \left\{\sqrt{\frac{4 \pi \ell(2 \ell+1)}{3}} \sum_{\lambda=-1}^{1}\langle\ell-1 m-\lambda, 1 \lambda \mid \ell m\rangle Y_{\ell-1}^{m-\lambda}(\hat{\mathbf{r}}) Y_{1}^{\lambda}\left(\hat{\mathbf{r}}^{\prime}\right) \frac{\varphi_{\alpha}(r)}{r}\right.\right. \\
& \left.+Y_{\ell}^{m}(\hat{\mathbf{r}}) \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime}\left[\varphi_{\alpha}^{\prime}(r)-\frac{\ell+1}{r} \varphi_{\alpha}(r)\right]\right\} \\
& +Y_{\ell}^{m_{\ell}}(\hat{\mathbf{r}}) \varphi_{\alpha}(r) \frac{P}{R}\left\{\sqrt{\frac{4 \pi L(2 L+1)}{3}} \sum_{\Lambda=-1}^{1}\left\langle L-1 M_{L}-\Lambda, 1 \Lambda \mid L M_{L}\right\rangle Y_{L-1}^{M_{L}-\Lambda}(\hat{\mathbf{R}}) Y_{1}^{\Lambda}\left(\hat{\mathbf{r}^{\prime}}\right) \frac{u_{\alpha}(R)}{R}\right. \\
& \left.\left.\left.+Y_{L}^{M_{L}}(\hat{\mathbf{R}}) \hat{\mathbf{R}} \cdot \hat{\mathbf{r}}^{\prime}\left[u_{\alpha}^{\prime}(R)-\frac{L+1}{R} u_{\alpha}(R)\right]\right\}\right)\right] .
\end{aligned}
$$

The $F_{\beta}^{M_{L}^{\prime} m_{\ell}^{\prime}: M *} C_{\alpha}^{M_{L} m_{\ell}: M}$ are the channel-defining Clebsch-Gordon coefs.

Racah-algebra or m-state evaluation?

Two methods:

1. Convert all $\hat{\mathbf{R}} \cdot \hat{\mathbf{r}^{\prime}}$ dot-products and all sphericalharmonic products, to sums of single harmonics.
2. Evaluate m-sums directly in suitable coordinate frame. Follow Tamura \& Udagawa (1979):
Choose z-axis parallel to R , and x-axis in plane with R and R^{\prime}.
Then: r and r ' also in this plane. Remaining numerical variable is $\cos \theta=\hat{\mathbf{R}} \cdot \hat{\mathbf{R}}^{\prime}$

Evaluation in Tamura frame

- Integral operators, for given $\mathbf{R}^{\prime}, \mathbf{r}^{\prime}$:

$$
\int d \hat{\mathbf{R}}^{\prime} \int d \hat{\mathbf{r}^{\prime}} \delta\left(r^{\prime}-\rho\right)=\left.\frac{8 \pi^{2} \rho}{2 a b R R^{\prime}}\right|_{u=\left(\rho^{2}-a^{\prime 2} R^{2}+b^{\prime 2} R^{\prime 2}\right) /\left(2 a b R R^{\prime}\right)}
$$

- No u integral needed.

All spherical harmonics in the x-z plane $(\phi=0)$.

$$
\begin{aligned}
Y_{L}^{M_{L}}(\hat{\mathbf{R}}) & =\delta_{M_{L}, 0} \sqrt{\frac{4 \pi}{2 L+1}} \\
r & \left.=\sqrt{(} a^{2} R^{2}+b^{2} R^{\prime 2}+2 a b R R^{\prime} u\right) \\
\cos \left(\theta_{R^{\prime}}\right) & =u \\
\cos \left(\theta_{r^{\prime}}\right) & =\left(a^{\prime} R+b^{\prime} R^{\prime} u\right) / r^{\prime} \quad \text { from } \mathbf{r}^{\prime}=a^{\prime} \mathbf{R}+b^{\prime} \mathbf{R}^{\prime} \\
\cos \left(\theta_{r}\right) & =\left(a R+b R^{\prime} u\right) / r \\
\hat{\mathbf{R}} \cdot \hat{\mathbf{r}^{\prime}} & =\hat{\mathbf{r}^{\prime}}{ }_{z}=\cos \left(\theta_{r^{\prime}}\right) .
\end{aligned}
$$

Implementation

- As $\mathbf{R}^{\prime} \neq \mathbf{R}^{\prime}$, transfer couplings are still non-local
- With A, B, C as non-local operators, the transferchannel exit equation is

$$
\left[H_{\beta}-E_{\beta}\right] u_{\beta}+\phi_{\beta}^{\prime}(\rho) \mathrm{A}_{\beta \alpha} u_{\alpha}+\phi_{\beta}(\rho) \mathrm{B}_{\beta \alpha} u_{\alpha}+\phi_{\beta}(\rho) \mathrm{C}_{\beta \alpha}\left[u_{\alpha}^{\prime}-\frac{L_{\alpha}+1}{R} u_{\alpha}\right]=0
$$

- More complicated than standard transfers, because of derivative $u_{\alpha}^{\prime}(R)$

R-matrix continuum parameterisation

- Definition $R\left(e_{\beta}\right)=\frac{1}{\rho} \frac{\phi\left(\rho ; e_{\beta}\right)}{\phi^{\prime}\left(\rho ; e_{\beta}\right)}$
- Parameterization: $\mathrm{R}\left(e_{\beta}\right)=\sum_{p=1}^{N} \frac{\gamma_{p}^{2}}{\varepsilon_{p}-e_{\beta}}$ (N-pole case)
- From $\mathrm{R}\left(e_{\beta}\right)$, get S-matrix $\mathrm{S}\left(e_{\beta}\right)$ and wf $\phi_{\beta}\left(\rho ; e_{\beta}\right)$ by usual theory, for every energy $e_{\beta}=E_{\text {tot }}-E_{\beta}$
- Then exit channel eqn, for continuous E_{β} is

$$
\left[H_{\beta}-E_{\beta}\right] u_{\beta}+\phi_{\beta}\left(\rho ; e_{\beta}\right)\left\{\frac{1}{\rho R_{\beta}\left(e_{\beta}\right)} \mathrm{A}_{\beta \alpha} u_{\alpha}+\mathrm{B}_{\beta \alpha} u_{\alpha}+\mathrm{C}_{\beta \alpha}\left[u_{\alpha}^{\prime}-\frac{L_{\alpha}+1}{R} u_{\alpha}\right]\right\}=0
$$

Note that $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and u_{α} are independent of exit energy E_{β}.

Exterior-Prior Contributions in R fits

- Jutta shows that these are often needed.
- Even in CDCC, because of energy dependence of the neutron optical potential.
- If ρ is outside the neutron binding potential, then the continuum wfn is just asymptotic form for given S-matrices $\mathrm{S}\left(e_{\beta}\right)$:

$$
\phi_{\beta}\left(r^{\prime} ; e_{\beta}\right)=\frac{i}{2}\left[H^{-}\left(k_{\beta} r^{\prime}\right)-\mathrm{S}\left(e_{\beta}\right) H^{\prime-}\left(k_{\beta} r^{\prime}\right)\right]
$$

- So, fortunately, these do depend just on the R pole and reduced width parameters via $\mathrm{S}\left(e_{\beta}\right)$

Interior-Post Contributions in R fit

- Jutta shows that these are often needed
- This contribution may be small sometimes, but does depend on the interior neutron wfns.
- Hence depends on the Spectroscopic Factor (the interior square norm of the wfn).
- Can imagine a method where ANC is main observable, and the SF is subsidiary result with larger uncertainties.

Calculating the Interior-Post in R fits

- This depend on wfs $w_{p}\left(r^{\prime}\right)$ that are eigenfunctions of interior Hamiltonian at the R-matrix pole energies ε_{p}, and normalized to unity over radial interval $[0, \rho]$.
- Given these, the scattering wf at any energy e_{β} is

$$
\phi_{\beta}\left(r^{\prime}\right)=\sum_{p=1}^{N} \frac{\hbar^{2}}{2 \mu \rho} \frac{w_{p}(\rho)}{\varepsilon_{p}-e_{\beta}} \phi_{\beta}^{\prime}(\rho) w_{p}\left(r^{\prime}\right)
$$

- Note that $\gamma_{p}=\sqrt{\frac{\hbar^{2}}{2 \mu \rho}} w_{p}(\rho)$, so only shape of $w_{p}\left(r^{\prime}\right)$ is needed, as long as normalized correctly, \& at ε_{p}

Role in transfer calculations

- Aim is to fit neutron pole energies and partial widths to (d,p) cross sections across a resonance.
- We see many wide and narrow resonances, often overlapping.
- Can be generalized to multichannel exit wfs $\phi_{\beta}\left(\rho ; e_{\beta}\right)$

LL Lawrence Livermore

