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§  Aim 
§  Splitting the Transfer Matrix Element  
§  Definition of Surface Operator 
§  Calculation in a partial-wave basis 
§  Implementation 
§  R-matrix fits (surface, interior, exterior) 
§  Role in transfer calculations 

Outline 
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§  Aim is to fit resonances in 
(d,p) cross sections in a 
region of the continuum. 

§  We see many wide and 
narrow resonances, often 
overlapping. 

§  Want to find neutron pole 
energies and partial widths, in 
entrance channel for (n,γ) 

Role in transfer calculations 
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Figs. la-d. Spectra of  protons from ~SN(d, p)~6N (unbound) in comparison with the total neutron 8) cross section of  ~SN. The error bars indicate 
a uniform error of  10 % attributed to the scanning procedure.  The 0L = 15 ° data were taken from ref. 7). Note  that the energy scales o f  (n, n) and 

(d, p) do not  coincide exactly. 
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§  Define Tpost(a,b) & Tprior(a,b) with a < r’ < b limits 
Mukhamedzhanov (PRC 84, 044616, 2011) showed for any ρ: 
  T = Tpost(0,ρ) + Tsurf(ρ) + Tprior(ρ,∞) 
                where Tsurf(ρ) = <fp(-) φn |              | φd fd(+)>(in) 

§  Evaluate:  

Splitting the Transfer Matrix Element 

THEORY OF DEUTERON STRIPPING: FROM SURFACE . . . PHYSICAL REVIEW C 84, 044616 (2011)

The overlap function is given by

IF
A (rnA) =

∑

jnAmjnA
mlnA

〈JAMAjnAmjnA
|JF MF 〉

× 〈JnMnlnAmlnA
|jnAmjnA

〉
×YlnAmlnA

(r̂nA)IAjnAlnA
(rnA). (18)

Here 〈j1m1j2m2|j3m3〉 is the Clebsch-Gordan coefficient, lnA

(mlnA
) is the orbital angular momentum (its projection) of the

relative motion of n and A, jnA (mjnA
) is the total angular

momentum (its projection) of n in the bound state F = (nA),
Ji(Mi) is the spin (its projection) of nucleus i, IF

AjnAlnA
(rnA) is

the radial overlap function, which is a real function [23], Ylm(r̂)
is the spherical harmonics, and r̂ = r/r is the unit vector. We
assume that only one value of lnA contributes to expansion
(18). If the channel radius is taken larger than the range of the
nuclear interaction, the radial overlap function can be replaced
by its asymptotic term,

IF
AjnAlnA

(RnA)
rnA>RnA≈ CF

AjnAlnA
ilnA+1κnAh

(1)
lnA

(iκnArnA), (19)

where h
(1)
lnA

(iκnArnA) is the spherical Hankel function of the
first order, CF

AjnAlnA
is the ANC of the overlap function, and

κnA =
√

2µnAεnA is the bound-state wave number.
It is also useful to introduce the reduced-width amplitude

used in the R-matrix approach, which can be expressed in
terms of the ANC [25]:

γnAjnAlnA
=

√
RnA

2µnA

IF
AjnAlnA

(RnA)

=

√
RnA

2µnA

ilnA+1κnACF
AjnAlnA

h
(1)
lnA

(iκnARnA). (20)

Correspondingly, the reduced width is

γ 2
nAjnAlnA

= RnA

2µnA

[
IF
AjnAlnA

(RnA)
]2

= RnA

2µnA

(−1)lnA+1κ2
nA

[
CF

A jnAlnA
h

(1)
lnA

(iκnARnA)
]2

.

(21)

It is worth mentioning that, owing to the presence of the
channel radius RnA, the reduced width, in contrast to the ANC,
is model-dependent. The dependence on the channel radius
becomes crucial with increasing binding energy. We use also
the boundary condition, which is the logarithmic derivative of
the overlap function at rnA = RnA:

BnA = 1

h
(1)
lnA

(iκnARnA)

d
[
rnAh

(1)
lnA

(iκnArnA)
]

dr

∣∣∣∣
rnA=RnA

. (22)

Owing to Eq. (19), the amplitude M
DW(prior)
ext can be

parametrized in terms of the ANC. We note that this amplitude
is also small. In the external region, rnA > RnA, the nuclear
n-A interaction can be neglected. Besides, in this region the
overlap function exponentially fades away. Also, if the proton
absorption is strong in the internal region of A, the dominant
contribution comes from rpA > RA, where RA is the radius
of nucleus A. If the adopted radius channel RnA is larger

than the n-A nuclear interaction radius we can neglect n-A
nuclear interaction in the external region. In this region each
nuclear potential UN

pA and UN
dA and their difference UpA − UdA

are small. The Coulomb part UC
pA − UC

dA ≈ ZAe2Rd/(2R2
dA),

where Rd is the deuteron size and ZAe is the charge of nucleus
A, is also too small compared to the nuclear potential. Thus, the
dominant contribution to the post DWBA amplitude M

DW(post)
ext

[Eq. (14)] and, hence, to the total post form DWBA amplitude
MDW(post), comes from the surface integral MDW

S . Here and in
what follows all the amplitudes with the transition operator
←−
T − −→

T are assigned the subscript S, which is abbreviation
of “surface,” because the volume matrix elements of these
amplitudes can be transformed into the surface ones in the
subspace over variable rnA, while over the second Jacobian
variable rpF we always keep the volume integral.

Now we express MDW
S in terms of the surface integral

over variable rnA and the same technique is used throughout
the paper. The kinetic energy operator can be written as
T = TpF + TnA. TpF is a Hermitian operator in the subspace
spanned by the bra and ket states in Eq. (16). It can be proved
if we take into account that at rpF → ∞ the integrand in this
equation vanishes exponentially owing to the presence of the
bound state wave function ϕd (rpn) and the overlap function
IF
A (rnA). Hence, integrating by parts twice the integral over

rpF we obtain
〈
χ

(−)
pF IF

A

∣∣←−T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

=
〈
χ

(−)
pF IF

A

∣∣−→T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

= 0. (23)

Then MDW
S reduces to

MDW
S (kpF , kdA) =

〈
χ

(−)
pF IF

A

∣∣←−T nA − −→
T nA

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

.

(24)

We apply now Green’s theorem to transform the volume
integral into the surface one, which encircles the inner volume
over the coordinate r:

∫

r!R

drf (r)[←−T − −→
T ]g(r)

= − 1
2µ

∮

r=R

dS[g(r)∇rf (r) − f (r)∇rg(r)]

= − 1
2µ

R2
∫

d&r

[
g(r)

∂f (r)
∂r

− f (r)
∂g(r)
∂r

]

r=R

. (25)

Here dS = R2d&rr̂, where &r is the solid angle. Note that
the unit vector r̂ is the normal vector to the sphere directed
outside of the restricted by the surface volume. The integration
in Eq. (24) over rnA is taken over the external volume restricted
by two spherical surfaces: the inner surface with the radius RnA

and the external surface with the radius R
′

nA → ∞; that is,

MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA) + MDW

S∞
(kpF , kdA).

(26)

The first term in this equation is the surface integral
encircling the inner surface of the external volume at
rnA = RnA, while the second term is the surface integral taken
at rnA = R

′

nA → ∞. A negative sign in front of the first term
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Choice of boundary ρ: see in Jutta’s talk 
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§  Normal post-form source term: 

§  To use in transfer exit-channel eqn: 

§  Surface form of source term: 

      - depends on bound state and its derivative 
 only at  r’ = ρ 

 

Definition of Surface Operator 

Let one of the functions �
�

(r0) be the transfer bound state B = A + v, say �
1

(r0). The angular
functions of Eq. (8) are

hR̂, r̂ |�i =
X

MLm`

Y ML
L

(R̂0) Y m`
`

(r̂0) FMLm`:M

�

(10)

3.3 Post-form transfer matrix element

Let us use the CDCC wave function in the entrance channel (summed over all ↵), and calculate the
transfer to a specific transfer channel �. The exact matrix element, using the exact system wave
function  JM (R, r), is

Mpost

�

= hY
�

(R̂0, r̂0)u
�

(R0)�
�

(r0)|V
post

| JM (R, r)i (11)

Alternatively, we can use the source term for the � transfer channel with coordinate R0:

Spost

�

(R0) = hY
�

(R̂0, r̂0)�
�

(r0)|V
post

| JM (R, r)i (12)

The CDCC method approximates the exact wave function by  JM

CDCC

(R, r), where the sum over ↵
includes only a finite set of '

↵

(r), so

SCDCC:post

�

(R0) = h�
�

(r0)Y
�

(R̂0, r̂0)|V
post

| JM

CDCC

(R, r)i (13)

We henceforth omit the JM labels.

4 Surface Operator

We now use the decomposition of the transfer matrix element into interior-post, surface, and
exterior-prior terms. The surface term at distance r0 = ⇢ is

Ssurf

�

(R0) = hY
�

(R̂0, r̂0)�
�

(r0)| �T ��!T | 
CDCC

(R, r)i
r

0
>⇢

(14)

= hY
�

(R̂0, r̂0)�
�

(r0)| ��T
vA

���!T
vA

| 
CDCC

(R, r)i
r

0
>⇢

(15)

Transforming this matrix element into a surface integral, we have

Ssurf

�

(R0) = �~2⇢2
2µ

n

⌧
Y
�

(R̂0, r̂0)
���

 
CDCC

(R, r)
@�

�

(r0)

@r0
� �

�

(r0)
@ 

CDCC

(R, r)

@r0

��

r

0
=⇢

(16)

= �~2⇢2
2µ

n

⌧
Y
�

(R̂0, r̂0)
���

@�

�

(r0)

@r0
� �

�

(r0)
@

@r0

� ��� 
CDCC

(R, r)

�

r

0
=⇢

(17)

= �~2⇢2
2µ

n


@�

�

(r0)

@r0
� �

�

(r0)
@

@r0

�D
Y
�

(R̂0, r̂0)
��� 

CDCC

(R, r)
E

r

0
=⇢

(18)

Let us consider each term ↵ of the CDCC sum, for which we must calculate

Ssurf

�↵

(R0) = �~2⇢2
2µ

n

*
Y
�

(R̂0, r̂0)

����

"
hR̂, r̂ |↵i 1

rR
'
↵

(r)u
↵

(R)
@�

�

(r0)

@r0
� �

�

(r0)
@hR̂, r̂ |↵ i 1

rR

'
↵

(r)u
↵

(R)

@r0

#+

r

0
=⇢

(19)
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3

This source term is to be used in the radial (R0) coupling equation

[H
�

(R0)� E
�

]u
�

(R0) + Ssurf

�↵

(R0) = 0 . (20)

We may rewrite the source term as a sum of operators on the initial wave functions u
↵

(R), and its
derivatives, as

[H
�

(R0)� E
�

]u
�

(R0) +

Z 1

0

dR X
�↵

(R0, R)u
↵

(R) +

Z 1

0

dR Y
�↵

(R0, R)


u0
↵

(R)� L
↵

+1

R
u
↵

(R)

�
= 0

(21)

The coupling operators X, Y have non-local kernels, depending on both R and R0.

5 Transfer Kernels: Nonderivative terms

In standard finite-range transfer kernels, we calculate the multipole expansions for each Legendre
order T of

qT
l� l↵

(R0, R) =
1

2

Z
+1

�1

�
l�
(r0)

r0l�+1

'
l↵(r)

rl↵+1

P
T

(u)du (22)

where here u is the cosine of the angle between R and R

0 so r02 = a02R2 + b02R02 + 2abRR0u.

If, now, part of the e↵ective final particle state �
l�
(r0) contains a radial delta function �(r0�⇢),

then the integral over u can be eliminated. (The derivatives will be considered later).

Let us evaluate this transfer kernel using �
l�
(r0) = �(r0 � ⇢) ⌘ �(g(u)) defining g(u). Then we

use �(g(u)) = �(u� u
0

)/g0(u
0

) where g(u
0

) = 0. Since here

g(u) =
p

a02R2 + b02R02 + 2abRR0u� ⇢ , (23)

we have g0(u) = (a02R2 + b02R02 + 2abRR0u)�1/2 ⇥ 2abRR0 = 2abRR0/r0. (24)

The delta function at u = u
0

gives

⇢2 = a02R2 + b02R02 + 2abRR0u
0

(25)

or u
0

= (⇢2 � a02R2 + b02R02)/(2abRR0) ⌘ u
0

(R,R0) , (26)

defining the new function u
0

(R,R0) for the surface.

This leads to a simplified form for the above transfer kernel, without an integral:

qT
l� l↵

(R0, R) =
1

2⇢l�
1

2abRR0
'
l↵(r)

rl↵+1

P
T

(u
0

(R,R0)) (27)

where r = r(R,R0, u
0

(R,R0)) from r2 = a2R2 + b2R02 + 2abRR0u
0

(R,R0).

Our surface operators do not require evaluating multipoles like those in Eq. (22), but they still
have integrals over u. The transformations will be similar.
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§  In a partial wave basis with channel α, the 
derivative terms (wrt r’) are: 

§  Need derivatives of spherical harmonics 
when 

§  So                     is 

Calculation in a partial-wave basis 
7 Transfer Kernels: Derivative terms

The derivative terms from Eq. (19) are

ŜD
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hR̂, r̂ |↵i 1

rR
'
↵

(r)u
↵

(R)

�
(35)

The partial derivative @/@r0 here is keeping R

0 and b
r

0 constant. As r0 varies, we must note that
not only do the magnitudes r,R change, but also their angles r̂, R̂ since

r = pr0 + qR0 and R = Pr

0 +QR

0 (36)

from eq. (28). This implies that the spherical harmonics Y
L

(R̂)Y
`

(r̂) will be coupled to adjacent
quantum numbers L± 1 and/or `± 1.

To evaluate these changes in angular momentum, we use the solid harmonic expansion

Y m

`

(\a+ b) =
p
4⇡

`X

n=0

nX

�=�n

c(`, n)
a`�nbn

|a+ b|`Y
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`�n

(â)Y �

n

(b̂)h`�n m��, n�|`mi, (37)

where c(`, n) =
⇣

(2`+1)!

(2n+1)!(2(`�n)+1)!

⌘
1/2

. We use this formula to evaluate the derivative
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Y m

`

( br
0

) = lim
e!0

1

e
[Y m

`

(r
0

+ epr̂0)� Y m

`

(r̂
0

)] (38)

where r
0

⌘ pr0+ qR0 is the place whereat the derivative is to be evaluated. For this, only the n = 0
and 1 terms in eq. (37) contribute. We find (with a = r

0

and b = epr̂0), that the n = 1 term is

D
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( br
0

) =
p
4⇡
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(so D
1

(br) = p

r
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⇣
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(r̂)Y
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(r̂0)
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(41)

using coupled operators in the notation of Bohr & Mottelson, Vol. 1, section 1A-5c).

The n = 0 term is derived starting with eq. (37):

D
0

( br
0
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Y m
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(r
0

+ per̂0)
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e=0

=
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0
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0

+ per̂0|`Y
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0

) (42)

= �` r�1

0

p r̂

0

· r̂0 Y m

`

(r̂
0

) (43)
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8 M-dependent evaluations

Tamura and Udagawa1 evaluate normal transfer matrix elements in a way that avoids the solid
harmonics expansion of Eq. (37), in favour of a suitable choice of axes to render it practical to
calculate m-dependent form factors directly. If the z axis is not (as usual) parallel to the incident
momentum, but set parallel to R, and the x

0 axis set in the plane determined by R and R

0, then
the r and r

0 vectors are also in this plane. The radial kernels may then be calculated as a sum
of m-dependent integrals over cos ✓ = R̂ · R̂0, as before the cosine of the angle between R and
R

0. This method is implemented in Fresco as an optional technique. Although there are a larger
number of m-dependent radial integrals to be performed, there are no large cancellations between
the separate terms as occurs when using Eq. (37), and there is no limit on the size of the transferred
angular momentum.

For our surface operator, the m-dependent method is fast again, since there is no angular
integration because of the �(r0 � ⇢) surface factor.

The derivative of a spherical harmonic of Eq. (48), D
0

+D
1

, is

@

@r0
Y m

`

(br) = �p`

r
r̂ · r̂0 Y m

`

(r̂) + p

r
4⇡`(2`+1)

3

1

r

1X

�=�1

Y m��

`�1

(r̂)Y �

1

(r̂0)h`�1 m��, 1�|`mi (54)

The derivative of a spherical harmonic with a wave function

@

@r0
Y m

`

(r̂)
'
↵

(r)

r
=

'
↵

(r)

r

@

@r0
Y m

`

(r̂) + Y m

`

(r̂)
@

@r0
'
↵

(r)

r
. (55)

The radial derivatives like @

@r

0
u↵(r)

r

depend on @r/@r0 from Eq. (34) as

@

@r0
'
↵

(r)

r
=

@r

@r0
d

dr

'
↵

(r)

r
=

@r

@r0
1

r


'0
↵

(r)� '
↵

(r)

r

�
. (56)

So the complete derivative of Eq. (55) is
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r


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↵
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↵

(r)
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�
(57)
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p
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3
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↵
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(58)

This expression has been tested numerically for random vectors r and r

0, and L, |M |  5.

1T. Tamura, T. Udagawa, K.E. Wood and H. Amakawa, Comput. Phys. Commun. 18 (1979) 63; T. Tamura, T.
Udagawa and M.C. Mermaz, Phys. Reports 65 (1980) 345.
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This expression has been tested numerically for random vectors r and r

0, and L, |M |  5.

1T. Tamura, T. Udagawa, K.E. Wood and H. Amakawa, Comput. Phys. Commun. 18 (1979) 63; T. Tamura, T.
Udagawa and M.C. Mermaz, Phys. Reports 65 (1980) 345.
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This expression has been tested numerically for random vectors r and r

0, and L, |M |  5.

1T. Tamura, T. Udagawa, K.E. Wood and H. Amakawa, Comput. Phys. Commun. 18 (1979) 63; T. Tamura, T.
Udagawa and M.C. Mermaz, Phys. Reports 65 (1980) 345.
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Derivatives of products of 2 wfns 
So
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10 Transfer source term and operators

The transfer source term of Eq. (19) is
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7 Transfer Kernels: Derivative terms

The derivative terms from Eq. (19) are
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The partial derivative @/@r0 here is keeping R

0 and b
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0 constant. As r0 varies, we must note that
not only do the magnitudes r,R change, but also their angles r̂, R̂ since
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Source term complete for r,R wfns  
Using Eq. (66), this is
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For the evaluation of this source term as in Eq. (21), I need to calculate the non-local kernels
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The term with Y
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The are the channel-defining Clebsch-Gordon coefs. 
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Two methods: 
1. Convert all         dot-products and all spherical-
harmonic products, to sums of single harmonics. 
2. Evaluate m-sums directly in suitable coordinate 
frame. Follow Tamura & Udagawa (1979): 
Choose z-axis parallel to R,  
       and x-axis in plane with R and R’.  
Then: r and r’ also in this plane.  
Remaining numerical variable is  
 

Racah-algebra or m-state evaluation?  
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The projection of this onto the angular parts of the exit channels of Eq. (10) gives
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10 Transfer source term and operators

The transfer source term of Eq. (19) is
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8 M-dependent evaluations

Tamura and Udagawa1 evaluate normal transfer matrix elements in a way that avoids the solid
harmonics expansion of Eq. (37), in favour of a suitable choice of axes to render it practical to
calculate m-dependent form factors directly. If the z axis is not (as usual) parallel to the incident
momentum, but set parallel to R, and the x

0 axis set in the plane determined by R and R

0, then
the r and r

0 vectors are also in this plane. The radial kernels may then be calculated as a sum
of m-dependent integrals over cos ✓ = R̂ · R̂0, as before the cosine of the angle between R and
R

0. This method is implemented in Fresco as an optional technique. Although there are a larger
number of m-dependent radial integrals to be performed, there are no large cancellations between
the separate terms as occurs when using Eq. (37), and there is no limit on the size of the transferred
angular momentum.

For our surface operator, the m-dependent method is fast again, since there is no angular
integration because of the �(r0 � ⇢) surface factor.

The derivative of a spherical harmonic of Eq. (48), D
0

+D
1

, is

@

@r0
Y m

`

(br) = �p`

r
r̂ · r̂0 Y m

`

(r̂) + p

r
4⇡`(2`+1)

3

1

r

1X

�=�1

Y m��

`�1

(r̂)Y �

1

(r̂0)h`�1 m��, 1�|`mi (54)

The derivative of a spherical harmonic with a wave function

@

@r0
Y m

`

(r̂)
'
↵

(r)

r
=

'
↵

(r)

r

@

@r0
Y m

`

(r̂) + Y m

`

(r̂)
@

@r0
'
↵

(r)

r
. (55)

The radial derivatives like @

@r

0
u↵(r)

r

depend on @r/@r0 from Eq. (34) as

@

@r0
'
↵

(r)

r
=

@r

@r0
d

dr

'
↵

(r)

r
=

@r

@r0
1

r


'0
↵

(r)� '
↵

(r)

r

�
. (56)

So the complete derivative of Eq. (55) is

@

@r0
Y m

`

(r̂)
'
↵

(r)

r

=
'
↵

(r)

r

"
�p`

r
r̂ · r̂0 Y m

`

(r̂) + p

r
4⇡`(2`+1)

3

1

r

1X

�=�1

Y m��

`�1

(r̂)Y �

1

(r̂0)h`�1 m��, 1�|`mi
#

+ Y m

`

(r̂)p r̂ · r̂0 1

r


'0
↵

(r)� '
↵

(r)

r

�
(57)

=
p

r

(r
4⇡`(2`+1)

3

'
↵

(r)

r

1X

�=�1

h`�1 m��, 1�|`miY m��

`�1

(r̂)Y �

1

(r̂0) + Y m

`

(r̂)r̂ · r̂0

'0
↵

(r)� `+1

r
'
↵

(r)

�)

(58)

This expression has been tested numerically for random vectors r and r

0, and L, |M |  5.

1T. Tamura, T. Udagawa, K.E. Wood and H. Amakawa, Comput. Phys. Commun. 18 (1979) 63; T. Tamura, T.
Udagawa and M.C. Mermaz, Phys. Reports 65 (1980) 345.
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§  Integral operators, for given           : 

§  No u integral needed.  
All spherical harmonics in the x-z plane (        ). 

Evaluation in Tamura frame 

Ssurf

�

(R0) = �~2⇢2
2µ

n


@�

�

(r0)

@r0
� �

�

(r0)
@

@r0

�D
Y
�

(R̂0, r̂0)
��� 

CDCC

(R, r)
E

r

0
=⇢

Z
dR̂0

Z
dr̂0 �(r0 � ⇢) =

8⇡2⇢

2abRR0

�����
u=(⇢

2�a

02
R

2
+b

02
R

02
)/(2abRR

0
)

R

0, r

0

15

Ssurf

�

(R0) = �~2⇢2
2µ

n


@�

�

(r0)

@r0
� �

�

(r0)
@

@r0

�D
Y
�

(R̂0, r̂0)
��� 

CDCC

(R, r)
E

r

0
=⇢

Z
dR̂0

Z
dr̂0 �(r0�⇢) = 8⇡2⇢

2abRR0

�����
u=(⇢

2�a

02
R

2
+b

02
R

02
)/(2abRR

0
)

R

0, r

0

15

The X operator, similarly, is

X
�↵

(R0, R) = �8⇡2J
~2⇢2
2µ

n

⇢

2abRR0

X

M

0
Lm

0
`MLm`

F
M

0
Lm

0
`:M⇤

�

CMLm`:M
↵

Y
M

0
L

L

0 (R̂0) Y
m

0
`

`

0 (r̂0)
RR0

r

"
�0
�

(⇢) Y m`
`

(r̂) Y ML
L

(R̂) '
↵

(r)

� �
�

(⇢)

 
Y ML
L

(R̂)
p

r

(r
4⇡`(2`+1)

3

1X

�=�1

h`�1 m��, 1�|`miY m��

`�1

(r̂)Y �

1

(r̂0)
'
↵

(r)

r

+ Y m

`

(r̂) r̂ · r̂0

'0
↵

(r)� `+1

r
'
↵

(r)

�)

+ Y m`
`

(r̂)'
↵

(r)
P

R

r
4⇡L(2L+1)

3

1X

⇤=�1

hL�1 M
L

�⇤, 1⇤|LM
L

iY ML�⇤

L�1

(R̂)Y ⇤

1

(r̂0)
1

R

!#

(82)

where equations (75) . . (81) are implied. The dot product r̂ · r̂0 must be calculated numerically
from coordinates. The x coordinates of these vectors are found, since R

x

= 0, by r0
x

= b0R0
x

=
b0R0p1� u2 (for example). Their y coordinates are zero.

If the initial wave functions are stored as �
↵

(r) where '
↵

(r) ⌘ r`+1�
↵

(r), then

'0
↵

(r)� `+1

r
'
↵

(r) ⌘ r`+1�0
↵

(r) . (83)

Spherical harmonics are

Y m

`

(r) =

s
4⇡

2`+ 1

(`� |m|)!
(`+ |m|)! (�1)m+|m|P

|m|
`

(cos ✓)eim� (84)

⌘ Y
C

(`,m)P |m|
`

(cos ✓)eim� (85)

When the arguments are in the x� z plane, � = 0 and so all the required spherical harmonics may

be evaluated as the real-valued Y m

`

(r) = Y
C

(`,m)P |m|
`

(cos ✓) using Eqs. (78-80). Only the Y
L

(R)
is simpler.

All the factors in Eqs. (74) and (82) can then be numerically evaluated as they stand. For
real-valued initial and final channel wave functions '

↵

and '
�

, both X and Y will be real-valued.

13

where J = b03 is the Jacobian for the coordinate transformation from integrating over {r0,R0} to
{R,R0}. The R2 factors in the new

R
R2dR integral are included in the X and Y expressions.

11 Calculating the X and Y kernels

For both the X and Y kernels, we are given R and R0 and r0 = ⇢, and have to integrate over the
angles R̂0 and r̂

0. Given all those coordinates, we can determine R and r, and hence the integrand.

In the M-dependent method, we choose a local coordinate frame for each {R,R0} pair. We
choose a ẑ axis in the direction of R, and a x̂ axis such that R0 is in the x� z plane. Then r and
r

0 are also in this plane, and all the azimuthal angles are zero.

The integral
R
dR̂0 = 2⇡

R
1

�1

du, where u = R̂

0 ·R̂, since the result is independent of the rotation

of R0 about R. The integral
R
dr̂0 = 4⇡ simply, because varying r̂

0 only changes the coordinate

system of the integral, and not the result. So
R
dR̂0

R
dr̂0 = 8⇡2

R
1

�1

du.

Now r

0 = a0R+b0R0, so integral over u may be eliminated, as in Section 5, by the surface factor
�(r0�⇢). In the R,R0 and u coordinate system, this delta function become �(g(u)) = �(u�u

0

)/g0(u)
where g(u

0

) = 0. According to Section 5, this gives u
0

= (⇢2�a02R2+b02R02)/(2abRR0) ⌘ u
0

(R,R0)
and

�(r0 � ⇢) =
⇢

2abRR0 �(u� u
0

(R,R0)) (73)

The integral operators
R
dR̂0

R
dr̂0�(r0 � ⇢) are then 8⇡2⇢/(2abRR0)|

u=u0(R,R

0
)

.

The Y operator, therefore, is

Y
�↵

(R0, R) = 8⇡2JRR0~2⇢2
2µ

n

P

R
�
�

(⇢)
⇢

2abRR0

⇥
X

M

0
Lm

0
`MLm`

F
M

0
Lm

0
`:M⇤

�

CMLm`:M
↵

Y
M

0
L

L

0 (R̂0)⇤ Y
m

0
`

`

0 (r̂0)⇤ R̂ · r̂0 Y m`
`

(r̂)Y ML
L

(R̂) '
↵

(r)/r (74)

In our coordinate system,

u = u
0

(R,R0) ⌘ (⇢2 � a02R2 + b02R02)/(2abRR0) (75)

Y ML
L

(R̂) = �
ML,0

r
4⇡

2L+ 1
(76)

r =
p
(a2R2 + b2R02 + 2abRR0u) (77)

cos(✓
R

0) = u (78)

cos(✓
r

0) = (a0R+ b0R0u)/r0 from r

0 = a0R+ b0R0 (79)

cos(✓
r

) = (aR+ bR0u)/r (80)

R̂ · r̂0 = r̂

0
z

= cos(✓
r

0). (81)

All the spherical harmonics have arguments � = 0, and hence depend only on the cos ✓
i

.

12
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§  As           , transfer couplings are still non-local 
§  With A, B, C as non-local operators, the transfer-

channel exit equation is  

§  More complicated than standard transfers, 
because of derivative  

Implementation 

Ssurf

�

(R0) = �~2⇢2
2µ

n


@�

�

(r0)

@r0
� �

�

(r0)
@

@r0

�D
Y
�

(R̂0, r̂0)
��� 

CDCC

(R, r)
E

r

0
=⇢

Z
dR̂0

Z
dr̂0 �(r0�⇢) = 8⇡2⇢

2abRR0

�����
u=(⇢

2�a

02
R

2
+b

02
R

02
)/(2abRR

0
)

R

0, r

0

R

0 6= R

0

15

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)
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Ssurf
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�
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@
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�D
Y
�
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��� 
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(R, r)
E

r

0
=⇢

Z
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Z
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2abRR0

�����
u=(⇢
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02
R

2
+b

02
R
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0
)

R
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0

R

0 6= R

0
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↵

(R)
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§  Definition   
§  Parameterization:                         (N-pole case) 

§  From          , get S-matrix          and wf 
by usual theory, for every energy 

§  Then exit channel eqn, for continuous     is 

R-matrix continuum parameterisation 

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as
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� E
�
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u
↵
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�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The one-pole expansion, for pole p, is

R(e
�

) =
�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)
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and then the scattering wave function
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(⇢; e
�

) =
i

2
[H�(k
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⇢)� S(e
�

)H 0�(k
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⇢)] . (92)

Note that the A, B and C kernels, as well as incident-channel wfn u
↵

, are independent of exit energy
E

�

.
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§  Jutta shows that these are often needed. 
§  Even in CDCC, because of energy dependence 

of the neutron optical potential. 
§  If     is outside the neutron binding potential, then 

the continuum wfn is just asymptotic form for 
given S-matrices          : 

§  So, fortunately, these do depend just on the R 
pole and reduced width parameters via  

Exterior-Prior Contributions in R fits 

12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
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The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
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For transfers to bound states, B
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will be the local wave number k
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v

(e
�

� v
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)/~2, and
the �
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will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
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, as
�
�

(⇢) = C
�

W (k
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⇢).

For transfers to unbound states, we use scattering solutions �
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(⇢; e
�

) for v +A scattering
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�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2
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where J = b03 is the Jacobian for the coordinate transformation from integrating over {r0,R0} to
{R,R0}. The R2 factors in the new

R
R2dR integral are included in the X and Y expressions.

11 Calculating the X and Y kernels

For both the X and Y kernels, we are given R and R0 and r0 = ⇢, and have to integrate over the
angles R̂0 and r̂

0. Given all those coordinates, we can determine R and r, and hence the integrand.

In the M-dependent method, we choose a local coordinate frame for each {R,R0} pair. We
choose a ẑ axis in the direction of R, and a x̂ axis such that R0 is in the x� z plane. Then r and
r

0 are also in this plane, and all the azimuthal angles are zero.

The integral
R
dR̂0 = 2⇡

R
1

�1

du, where u = R̂

0 ·R̂, since the result is independent of the rotation

of R0 about R. The integral
R
dr̂0 = 4⇡ simply, because varying r̂

0 only changes the coordinate

system of the integral, and not the result. So
R
dR̂0

R
dr̂0 = 8⇡2

R
1

�1

du.

Now r

0 = a0R+b0R0, so integral over u may be eliminated, as in Section 5, by the surface factor
�(r0�⇢). In the R,R0 and u coordinate system, this delta function become �(g(u)) = �(u�u

0

)/g0(u)
where g(u

0

) = 0. According to Section 5, this gives u
0

= (⇢2�a02R2+b02R02)/(2abRR0) ⌘ u
0

(R,R0)
and

�(r0 � ⇢) =
⇢

2abRR0 �(u� u
0

(R,R0)) (73)

The integral operators
R
dR̂0

R
dr̂0�(r0 � ⇢) are then 8⇡2⇢/(2abRR0)|

u=u0(R,R

0
)

.

The Y operator, therefore, is

Y
�↵

(R0, R) = 8⇡2JRR0~2⇢2
2µ

n

P

R
�
�

(⇢)
⇢

2abRR0

⇥
X

M

0
Lm

0
`MLm`

F
M

0
Lm

0
`:M⇤

�

CMLm`:M
↵

Y
M

0
L

L

0 (R̂0)⇤ Y
m

0
`

`

0 (r̂0)⇤ R̂ · r̂0 Y m`
`

(r̂)Y ML
L

(R̂) '
↵

(r)/r (74)

In our coordinate system,

u = u
0

(R,R0) ⌘ (⇢2 � a02R2 + b02R02)/(2abRR0) (75)

Y ML
L

(R̂) = �
ML,0

r
4⇡

2L+ 1
(76)

r =
p
(a2R2 + b2R02 + 2abRR0u) (77)

cos(✓
R

0) = u (78)

cos(✓
r

0) = (a0R+ b0R0u)/r0 from r

0 = a0R+ b0R0 (79)

cos(✓
r

) = (aR+ bR0u)/r (80)

R̂ · r̂0 = r̂

0
z

= cos(✓
r

0). (81)

All the spherical harmonics have arguments � = 0, and hence depend only on the cos ✓
i

.

12



Lawrence Livermore National Laboratory LLNL-PRES-638703 
14 

§  Jutta shows that these are often needed 
§  This contribution may be small sometimes,  

but does depend on the interior neutron wfns. 
§  Hence depends on the Spectroscopic Factor 

(the interior square norm of the wfn). 

§  Can imagine a method where ANC is main 
observable, and the SF is subsidiary result with 
larger uncertainties. 

Interior-Post Contributions in R fit 
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§  This depend on wfs             that are 
eigenfunctions of interior Hamiltonian  
at the R-matrix pole energies     ,  
and normalized to unity over radial interval        . 

§  Given these, the scattering wf at any energy      is 

§  Note that                            , so only shape of 
is needed, as long as normalized correctly, & at  

Calculating the Interior-Post in R fits 
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§  Aim is to fit neutron pole 
energies and partial widths to 
(d,p) cross sections across a 
resonance. 

§  We see many wide and 
narrow resonances, often 
overlapping. 

§  Can be generalized to 
multichannel exit wfs  

Role in transfer calculations 
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(d, p) do not  coincide exactly. 
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12 Calculating the A, B and C kernels

Instead of splitting the kernels according to Eq. (21), we could also split according to the factors
�
�

(⇢) and �0
�

(⇢). We can define A, B and C kernels, for example in operator form, as

[H
�

� E
�

]u
�

+ �0
�

(⇢) A
�↵

u
↵

+ �
�

(⇢) B
�↵

u
↵

+ �
�

(⇢) C
�↵


u0
↵

� L
↵

+1

R
u
↵

�
= 0 . (86)

The C
�↵

is defined by Y
�↵

= �
�

(⇢)C
�↵

and Eq. (74).
The A, B are can be similarly extracted from Eq. (82).

If the final valence wave function at r0 = ⇢ has logarithmic derivative B
�

such that �0
�

(⇢) =
B
�

�
�

(⇢), then

[H
�

� E
�

]u
�

+ �
�

(⇢)

⇢
B
�

A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (87)

For transfers to bound states, B
�

will be the local wave number k
�

= 2µ
v

(e
�

� v
�

)/~2, and
the �

�

will be parameterized in terms of the asymptotic normalization coe�cient (ANC), C
�

, as
�
�

(⇢) = C
�

W (k
�

⇢).

For transfers to unbound states, we use scattering solutions �
�

(⇢; e
�

) for v +A scattering
in channel � at relative energy e

�

. We define the R-matrix for the wave function �
�

(r0; e
�

);

R(e
�

) =
1

⇢

�(⇢; e
�

)

�0(⇢; e
�

)
(88)

so

[H
�

� E
�

]u
�

+ �
�

(⇢; e
�

)

⇢
1

⇢R
�

(e
�

)
A
�↵

u
↵

+ B
�↵

u
↵

+ C
�↵


u0
↵

� L
↵

+1

R
u
↵

��
= 0 (89)

Here, we need to know �
�

(⇢; e
�

) and R
�

(e
�

) at every energy e
�

= E
tot

� E
�

. We parameterize in
terms of reduced widths �2

p

and pole energies "
p

. The N -pole expansion is

R(e
�

) =
NX

p=1

�2
p

"
p

� e
�

(90)

from which we obtain the S-matrix

S(e
�

) =
H�(k

�

⇢)� ⇢R(e
�

)H 0�(k
�

⇢)

H+(k
�

⇢)� ⇢R(e
�

)H 0+(k
�

⇢)
, (91)

and then the scattering wave function

�
�

(⇢; e
�

) =
i

2
[H�(k

�

⇢)� S(e
�

)H 0�(k
�

⇢)] . (92)

Note that the A, B and C kernels, as well as incident-channel wfn u
↵

, are independent of exit energy
E

�

.
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Data from Hewka et al, NP 88, 561 (1966) 




