Applying the surface formalism for (d,p) reactions to bound and resonance states

TORUS Collaboration Meeting 2013

LVOC, LLNL, Livermore, CA

June 11-12, 2013

Lawrence Livermore National Laboratory

Jutta Escher, Ian Thompson (LLNL) [w/Akram Mukhamedzhanov (Texas A&M)] TORUS Collaboration

LLNL-PRES-638999

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. Support was provided by the DOE through the topical collaboration TORUS.

Present theories provide valuable information on angular momentabut have serious limitations in resonance cases

• Problem: present theories rely heavily on onebody overlap function of A and A+1 systems

$$I_A^F(r) = \langle \phi_A | \phi_F \rangle$$

carries structure information
 not well-known in nuclear interior
 typically approximated by single-particle function

- Calculations converge very slowly
- Not appropriate for describing reactions involving wide resonances
- Desired resonance properties (energies and widths) cannot be reliably obtained

Mukhamedzhanov's suggestion: Extend R-matrix description to transfer reactions

➔ Surface Formalism

Example: ²⁰O(d,p)²¹O inverse-kinematics experiment - Intepreted the traditional way

Reminder: (d,p) formalism

The surface formalism – DWBA and CDCC approximations

Transition matrix element M:

- · Connects initial to final wave function
- Cross section σ ~ M^2

Some details of the surface formalism

Study: testing the claims

The surface formalism: a closer look

Features:

- Model dependence contained in interior term
- Surface term can be written in terms of reduced widths, the surface radius, and derivatives of known functions.
- Exterior term vanishes in CDCC implementation

Questions:

- Is the surface term dominant? Where?
- Do we get reduced dependence on model for interior?
 Under which circumstances?
- Can we extract useful spectroscopic quantities from comparison to experiment?

Surface formulation $M = M^{(post)}(0,a) + M_{surf}(a) + M^{(prior)}(a,\infty)$ model dependence asymptotic quantities $M_{surf}(a) = f(a, C_A^{F}, B_{nA})$ $B_{nA} = log derivative of I_A^{F} at surface radius a$ ANC: C_A^{F} defined through: $I_A^{F}(r_{nA}) \rightarrow C_A^{F} W(kr_{nA})$

related to reduced width amplitude $C_A^F \sim \gamma_{nA}$

Tests completed:

- ⁹⁰Zr(d,p) for E_d=11 MeV
 ⁹¹Zr gs, 1st excited state, 2f_{7/2} resonance
- ⁴⁸Ca(d,p) for E_d=13, 19.3, 56 MeV
 ⁴⁹Ca gs, 1st excited state
- ²⁰O(d,p) for E_d=21 MeV
 - 21 O gs, 1st excited state, **1d**_{3/2} and **1f**_{7/2} resonances
- Akram:
 - ¹²C(d,p) for E_d=30 MeV
 - $\,^{40}\text{Ca}(d,p)$ for E_d=34.4 MeV
 - ²⁰⁹Pb(d,p) for E_d=52 MeV

Internal, surface, external contributions – ⁹⁰Zr(d,p) at E_d=11 MeV

$$M = M^{(post)}(0,a) + M_{(surf)}(a) + M^{(prior)}(a,\infty)$$

model dependence asymptotic quantities

Observations

- Surface term dominant at 6-8 fm
- Small interior contributions
- Small exterior contributions
- Surface term does not produce the whole cross section

The surface term is dominant, but contributions from the interior and exterior terms remain.

The surface contribution $- {}^{90}Zr(d,p)$ at $E_d = 11 \text{ MeV}$

Effect of varying the beam energy $- {}^{48}Ca(d,p)$ at $E_d = 13$, 19.3, 56 MeV

The oxygen case - ^{20}O at E_d=21 MeV

Resonances – ⁹⁰Zr at E_d=11 MeV

- Results similar to bound-state cases
- Surface term dominant at larger radii
- Interior/exterior terms still contribute

Resonances - ²⁰O at E_d=21 MeV

11

Lessons so far...

- Varying the surface radius changes the relative contributions from interior, surface, exterior terms.
- The surface term is dominant in the surface region, but contributions from the interior and/or exterior terms are present at all radii.
- The surface term can provide a rough approximation to the (d,p) cross section. The approximation deteriorates for higher beam energies.
- The findings are similar for all mass regions considered.
- Results for resonances are similar to those for bound states.
- Achieving convergence for resonances is difficult, but expected to be simpler in the fully-implemented method.

Maximizing the surface term...

- Motivation: The surface term can be written in terms of reduced widths, the surface radius, and derivatives of known functions.
- The calculations suggest: using a slightly smaller radius and the CDCC implementation (which eliminates the ext-prior contribution) → lan's talk
- AMM: Vary the core-core potential to simultaneously minimize the 2nd-order contributions and the interiorpost term → Not a solution (formally or practically)!

$$\begin{split} \mathsf{M}^{(\mathsf{post})} &= < \Phi_\mathsf{f}^{(-)} \mid \Delta \mathsf{V}_\mathsf{pF} \mid \Psi_\mathsf{i}^{(+)} > \\ \Delta \mathsf{V}_\mathsf{pF} &= \mathsf{V}_\mathsf{pA} + \mathsf{V}_\mathsf{pn} - \mathsf{U}_\mathsf{pF} \end{split}$$

Lessons for moving forward...

To make the surface approach into a useful tool, we need to:

- Implement the formalism in its CDCC form, to incorporate breakup and eliminate the exterior-prior contributions → lan's talk
- Minimize the interior-post contributions by finding an optimal radius (corrections may still be necessary)
- Test the approach for bound and resonance states

The surface contribution – ⁹⁰Zr(d,p) at E_d=11 MeV

The surface formalism: a closer look - II

$$M = M^{(\text{post})}(0,a) + M_{(\text{surf})}(a) + M^{(\text{prior})}(a,\infty)$$

model dependence asymptotic quantities

$$\mathsf{M}_{(\mathsf{surf})}(\mathsf{a}) = \sqrt{\frac{\mathfrak{R}_{nA}}{2\mu_{nA}}} \sum_{j_{nA}m_{j_{nA}}m_{l_{nA}}} \langle J_{A}M_{A}j_{nA}m_{j_{nA}} | J_{F}M_{F} \rangle \langle J_{n}M_{n}l_{nA}m_{l_{nA}} | j_{nA}m_{j_{nA}} \rangle \langle J_{p}M_{p}J_{n}M_{n} | J_{d}M_{d} \rangle \langle \gamma_{nAj_{nA}}l_{nA} \rangle } \\ \times \int \mathrm{d}\mathbf{r}_{pF} \chi^{(+)}_{-\mathbf{k}_{pF}}(\mathbf{r}_{pF}) \int \mathrm{d}\Omega_{\mathbf{r}_{nA}} Y^{*}_{l_{nA}m_{l_{nA}}}(\hat{\mathbf{r}}_{nA}) \left[\varphi_{d}(\mathbf{r}_{pn})\chi^{(+)}_{\mathbf{k}_{dA}}(\mathbf{r}_{dA}) \langle \mathcal{B}_{nA} - 1 \rangle - \langle \mathcal{R}_{nA} \frac{\partial \varphi_{d}(\mathbf{r}_{pn})\chi^{(+)}_{\mathbf{k}_{dA}}(\mathbf{r}_{dA})}{\partial r_{nA}} \right] \Big|_{r_{nA} = \Re_{nA}}$$

From: Mukhamedzhanov, PRC 84, 044616 (2011)

Extension of the formalism to include breakup

· Successfully used for describing data

Fadeev

· Currently revisited via comparison with

- Simultaneous calculation of breakup and transfer cross sections
- Exterior term included in breakup, convergence issues removed
- More peripheral, reduce interior contribution
- Surface term dominant