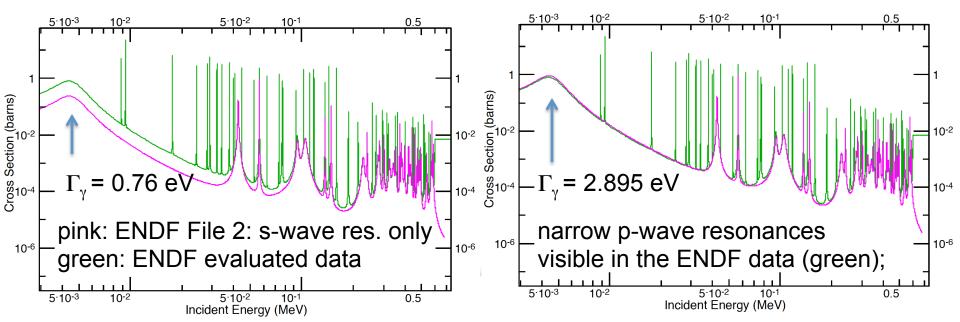

#### Aspects of Low-Energy Neutron Radiative Capture

Goran Arbanas ORNL Ian Thompson LLNL Frank Dietrich LLNL




ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERG

TORUS Annual Meeting, LLNL, June 11-12, 2013



# <sup>62</sup>Ni(n,γ)<sup>63</sup>Ni: Direct vs. Resonant capture

- Direct Capture (DC) issues:
  - 3s1/2 zero-energy "resonance" of real (e.g. Woods-Saxon) pot. for A~55-60
  - May yield unrealistic (too large) DC cross section (Frank's talk)
- Resonant capture (RC) issues:
  - $-\gamma$ -ray width of the 4.6 keV resonance underestimated:
    - (0.76 vs. 2.895) eV (plotted below) → 30 keV MACS: (5.2 vs. 14.2) mb; 9 mb too small!
  - p-wave resonances were omitted from MACS: another 10 mb missing!



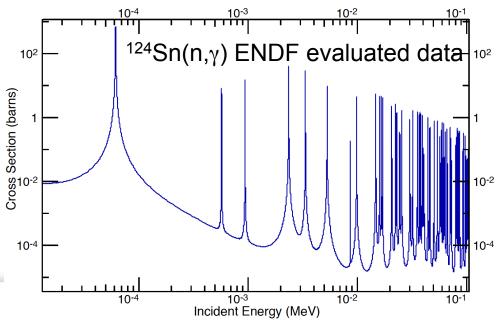
# <sup>62</sup>Ni(n,γ)<sup>63</sup>Ni: Direct vs. Resonant capture

| \ MACS 30 keV | Rauscher [mb] | This work   | Measured                 |
|---------------|---------------|-------------|--------------------------|
| Resonant (RC) | 5.2 ± (5%)    | 24.2 ± (5%) | n/a                      |
| Direct (DC)   | 5.5 ± 0.8     | 0.4 ± (20%) | n/a                      |
| Total         | 10.5 ± 0.8    | 24.8± (>5%) | 25.8±1.8(stat) ±1.9(sys) |

- DC in this work computed by CUPIDO (Dietrich, LLNL):
  - for the real part of the Koning-Delaroche optical potential
    - Its s-wave "resonance" occurs near A~55, so possibly safer than Rauscher's potential
  - Analogous computation of MACS on 58,60Ni supported by high-res. data
    - Guber et al., Phys. Rev. C 82, 057601 (2010) (DC computation by Arbanas/CUPIDO)
    - A decreasing trend of DC for {58,60,62}Ni {1.36, 0.54 0.4} mb observed:
      - Expected from a general formula for E1 s-wave neutron capture:
      - $-SF^*(BE+E_n)^3 \leftarrow$  both SF and BE slowly decreasing as neutron number increases
    - The above may boost confidence into our DC computations.
- RC in this work: corrected  $\Gamma_{\gamma}$  of 4.6 keV res. + p-wave resonances



## **Estimating errors of Hauser-Feshbach (HF)**


- HF uses optical potential transmission coefficients
  - Yields energy-averaged cross-sections (gross structure)
    - Energy-averaging interval is on the order of 1 MeV
- What if we had an *intermediate* structure theory?
  - s.t. yields energy-averaged cross sections averaged over ~0.1 MeV
    - Corresponding to the width of nominal doorway states; e.g. 2p-1h states
- Performed a numerical estimate by energy-averaging  $^{62}Ni(n,\gamma)$  data
  - Followed by Maxwellian averging for KT= 30 keV; cf. TALYS HF MACS

| E-avg. interval [MeV] | MACS [mb] kT=30 keV | TALYS $\Gamma_{\gamma}$ -strength | renormalized | unrenor. |
|-----------------------|---------------------|-----------------------------------|--------------|----------|
| 0.0                   | 24.2                | Kopecky-Uhl Lorentz.              | 31           | 8        |
| 0.1                   | 24.7                | Brink-Axel Lorentzian             | 29           | 35       |
| 0.2                   | 20.3                | Hartree-Fock BCS                  | n/a          | 13       |
| 0.5                   | 8.8                 | Hartree-Fock-Bogol.               | n/a          | 13       |
| 1.0 💎                 | 7.0                 | Goriely's hybrid model            | 30           | 12       |

4 Presentation have improvement in accuracy may be appreciable in this case of the U.S. Department of Energy

### **DC vs RC near closed shell nuclei**

- Motivated by our computation of  $^{130,132}$ Sn(n, $\gamma$ ) Direct Capture (DC)
  - $^{132}Sn(n,\gamma)$ : DC >> RC is generally accepted
  - <sup>130</sup>Sn(n, $\gamma$ ): DC << RC is estimated by Hauser-Feshbach models
    - But not confirmed experimentally
    - For <sup>48</sup>Ca and <sup>208</sup>Pb data suggest DC >> RC (in support of 132Sn DC >> RC above)
    - For <sup>46</sup>Ca and <sup>206</sup>Pb data suggest DC << RC; does this imply <sup>130</sup>Sn(n, $\gamma$ ) DC<<RC too?
    - <sup>124</sup>Sn(n,γ) (the heaviest stable tin) plotted; shows many compound resonances
      - Its kT=30keV MACS is ~10 mb
      - consistent with some HF models
      - but still inconclusive Re:  $^{130}$ Sn(n, $\gamma$ )
  - Could an intermediate structure model give answer?
    - Arthur's new model?

