Report at annual TORUS Collaboration meeting

Vasily Eremenko ${ }^{1}$

${ }^{1}$ Ohio University, Dept. of Physics \& Astronomy
Livermore, CA
2013-06-11

Introduction

The "formalism article"
A. M. Mukhamedzhanov et al. // Phys. Rev. C 86, 034001 (2012).

Introduction

The "formalism article"
A. M. Mukhamedzhanov et al. // Phys. Rev. C 86, 034001 (2012).

The first step
is to compute the (separable) nuclear potential matrix elements in Coulomb basis.

$$
\begin{align*}
& \left\langle p^{C}\right| V\left|p_{\alpha}^{C}\right\rangle=Z^{S C}\left(p^{C}, p_{\alpha}^{C}\right) \\
& \quad=\frac{1}{(2 \pi)^{4}}\left[\int d k k^{2}\left(\psi_{l p}^{C}(k)\right)^{*} h_{l p}(k)\right] \lambda\left[\int d \kappa \kappa^{2} h_{l p_{\alpha}}^{*}(\kappa) \psi_{l p_{\alpha}}^{C}(\kappa)\right] . \tag{1}
\end{align*}
$$

Computing matrix element...

It requires:

- Form-factors $h_{l p_{\alpha}}(k)$ (Yamaguchi-style \longrightarrow the EST potentials).
- Coulomb wave function in momentum space $\psi_{l p}^{C}(k)$.
- Subroutines to compute ${ }_{2} F_{1}(a, b ; c ; z)$ and $\Gamma(z)$ for a complex arguments.
- $\psi_{l p_{\alpha}}^{C}(k)$ has a singularity $S\left(k-p_{\alpha}\right)=\left(k-p_{\alpha}\right)^{-1-i \eta}$ at $k=p_{\alpha}$. \Longrightarrow Integration algorithm (with regularization, proofs, etc.).

Coulomb wave function $\psi_{l p_{\alpha}}^{C}(k)$

Special functions
Now we have the tested, reliable and fast enough implementations of

- $\Gamma(x), \Gamma(z)$,
- ${ }_{2} F_{1}(a, b ; c ; \xi)$,
for $a, b, c, z \in \mathbb{C}$ and $\xi, x \in \mathbb{R}$.

Coulomb wave function $\psi_{l p_{\alpha}}^{C}(k)$

Special functions
Now we have the tested, reliable and fast enough implementations of

- $\Gamma(x), \Gamma(z)$,
- ${ }_{2} F_{1}(a, b ; c ; \xi)$,
for $a, b, c, z \in \mathbb{C}$ and $\xi, x \in \mathbb{R}$.

Hypergeometric function is well-defined, if $|\xi|<1$ (other requirements are omited).

Coulomb wave function $\psi_{l p_{\alpha}}^{C}(k)$ (cont.)

Representations
There are two representations of $\psi_{l p_{\alpha}}^{C}(k)$

- the 'pole' representation (works well near the pole $k=p_{\alpha}$),
- and the 'non-pole' one.

Coulomb wave function $\psi_{l p_{\alpha}}^{C}(k)$ (cont.)

Representations
There are two representations of $\psi_{l p_{\alpha}}^{C}(k)$

- the 'pole' representation (works well near the pole $k=p_{\alpha}$),
- and the 'non-pole' one.

The differences are mostly at the 4 -th argument of hypergeometric function

Coulomb wave function $\psi_{l p_{\alpha}}^{C}(k)$ (cont.)

Switching between representations

The previously shown 4 -th arguments

- are equal one another at the points

$$
\begin{equation*}
\mathrm{pMin}=0.3 p_{\alpha} ; \quad \quad \mathrm{pMax}=3 p_{\alpha} ; \tag{2}
\end{equation*}
$$

- and both are about 0.3 at pMin and pMax.

Coulomb wave function $\psi_{l p_{\alpha}}^{C}(k)$ (cont.)

Switching between representations

The previously shown 4 -th arguments

- are equal one another at the points

$$
\begin{equation*}
\mathrm{pMin}=0.3 p_{\alpha} ; \quad \quad \mathrm{pMax}=3 p_{\alpha} \tag{2}
\end{equation*}
$$

- and both are about 0.3 at pMin and pMax.

Suggestion

If $\mathrm{pMin}<k<\mathrm{pMax}, \Rightarrow$ use 'pole' representation of $\psi_{l p_{\alpha}}^{C}(k)$;
and 'none-pole' representation otherwise.
In this case we shall be at the well-defined region for any reasonable k and p_{α}. The choice will be done very fast (very simple formulas to compute).

Computing matrix element. . . (cont.)

$$
\begin{align*}
& \left\langle p^{C}\right| V\left|p_{\alpha}^{C}\right\rangle=Z^{S C}\left(p^{C}, p_{\alpha}^{C}\right) \\
& \quad=\frac{1}{(2 \pi)^{4}}\left[\int d k k^{2}\left(\psi_{l p}^{C}(k)\right)^{*} h_{l p}(k)\right] \lambda\left[\int d \kappa \kappa^{2} h_{l p_{\alpha}}^{*}(\kappa) \psi_{l p_{\alpha}}^{C}(\kappa)\right] . \tag{3}
\end{align*}
$$

Coulomb distorted potential matrix element requires:

- Form-factors $h_{l p_{\alpha}}(k)$ (Yamaguchi-style \longrightarrow the EST potentials).
- Coulomb wave function in momentum space $\psi_{l p}^{C}(k)$.
- Subroutines to compute ${ }_{2} F_{1}(a, b ; c ; z)$ and $\Gamma(z)$ for a complex arguments.
- $\psi_{l p_{\alpha}}^{C}(k)$ has a singularity $S\left(k-p_{\alpha}\right)=\left(k-p_{\alpha}\right)^{-1-i \eta}$ at $k=p_{\alpha}$. \Longrightarrow Integration algorithm (with regularization, proofs, etc.).

Integration algorithm

‘Colored’ regions

Basing on the behavior of the $\psi_{l p_{\alpha}}^{C}(p)$ (oscillations of leading singularity)

"Yellow"	"Blue"	"Red"	"Mirrored Blue"	"Green"		
I_{y}		I_{b}	I_{r}	$I_{m b}$	I_{g}	
0	x_{b}		x_{r}	p_{α}	y_{r}	

Integration algorithm

‘Colored' regions

Basing on the behavior of the $\psi_{l p_{\alpha}}^{C}(p)$ (oscillations of leading singularity)

"Yellow"	"Blue"	"Red"	"Mirrored Blue"	"Green"			
	I_{y}	I_{b}	I_{r}	$I_{m b}$	I_{g}		
0					$\Delta_{b}=\Delta_{m b}$		
0	x_{b}		x_{r}	p_{α}	y_{r}	y_{b}	

Estimations for the borders are

$$
\begin{align*}
& x_{b}=p_{\alpha}-0.1 /\left[1-\exp \left(-2 \pi / \eta_{\alpha}\right)\right] \sim p_{\alpha}-0.1 \mathrm{fm}^{-1} \tag{4}\\
& x_{r}=p_{\alpha}-10^{-6} /\left[1-\exp \left(-2 \pi / \eta_{\alpha}\right)\right] \sim p_{\alpha}-10^{-6} \mathrm{fm}^{-1} \tag{5}
\end{align*}
$$

and y_{r} and y_{b} are symmetric to corresponding x_{i}.

Integration algorithm (cont.)

Suitable tools to be used

Just to be in sight

"Yellow"	"Blue"	"Red"	"Mirrored Blue"	"Green"			
	I_{y}	I_{b}		I_{r}	$I_{m b}$		I_{g}
0					$\Delta_{b}=\Delta_{m b}$		
0		x_{b}		x_{r}	p_{α}	y_{r}	y_{b}

Gauss Quagratures
at the 'yellow' and 'green' regions.

Integration algorithm (cont.)

Suitable tools to be used

Just to be in sight

"Yellow"	"Blue"	"Red"	"Mirrored Blue"	"Green"		
	I_{y}		I_{b}	I_{r}	$I_{m b}$	I_{g}
0				0_{b}		$\Delta_{b}=\Delta_{m b}$
		x_{b}		p_{α}	y_{r}	p

Gauss Quagratures
at the 'yellow' and 'green' regions.
Simpson rule
at the 'blue' and 'mirrored blue' regions.

Integration algorithm (cont.)

Suitable tools to be used

Just to be in sight

Gauss Quagratures
at the 'yellow' and 'green' regions.
Simpson rule
at the 'blue' and 'mirrored blue' regions.

Regularization + analytical approximations at the 'red' region.

Integration algorithm (cont.)

Suitable tools to be used (cont.)

The outcome:
we are able to compute all the integral alone the positive real axis of momentum. No terra incognita.

Integration algorithm (cont.)

Integration over the 'red' region

Regularization
Well-known 'principal value' regularization is not enough. Gel'fand-Shilov regularization is required.

$$
\mathrm{x}\left[\mathrm{fm}^{-1}\right]
$$

Integration algorithm (cont.)

Integration over the 'red' region (cont.)
Ron Johnson's suggestion
Because $h_{l p_{\alpha}}(k)$ is slowly variable function at the 'red' region, and $\psi_{l p_{\alpha}}^{C}(p)$ is oscillating wildly, mean-value theorem could be applied:

$$
\begin{equation*}
\int_{r e d} d k k^{2} \psi_{l p_{\alpha}}^{C}(k) h_{l p_{\alpha}}^{*}(k)=h_{l p_{\alpha}}^{*}\left(p_{\alpha}\right) \int_{r e d} d k k^{2} \psi_{l p_{\alpha}}^{C}(k) \tag{6}
\end{equation*}
$$

Integration algorithm (cont.)

Integration over the 'red' region (cont.)

Ron Johnson's suggestion
Because $h_{l p_{\alpha}}(k)$ is slowly variable function at the 'red' region, and $\psi_{l p_{\alpha}}^{C}(p)$ is oscillating wildly, mean-value theorem could be applied:

$$
\begin{equation*}
\int_{r e d} d k k^{2} \psi_{l p_{\alpha}}^{C}(k) h_{l p_{\alpha}}^{*}(k)=h_{l p_{\alpha}}^{*}\left(p_{\alpha}\right) \int_{r e d} d k k^{2} \psi_{l p_{\alpha}}^{C}(k) . \tag{6}
\end{equation*}
$$

Now regularizing the rest
After applying the regularization, in case of small $\Delta_{r e d}$,

$$
\begin{equation*}
I_{r} \approx \frac{h_{l p_{\alpha}}^{*} e^{\pi \eta_{\alpha}} \phi^{\prime \prime}\left(p_{\alpha}\right)}{2\left(2-i \eta_{\alpha}\right)} \Delta_{r e d}^{2-i \eta_{\alpha}} \tag{7}
\end{equation*}
$$

where $\phi(k)$ is the rest of $k^{2} \psi_{l p_{\alpha}}^{C}(k)$ after pulling out the leading singularity $S\left(k-p_{\alpha}\right)=\left(k-p_{\alpha}\right)^{-1-i \eta}$.

Integration algorithm (cont.)

Relative contributions of the regions

Using Mathematica
In case of $p+{ }^{40} \mathrm{Ca} @ E_{c m} \approx 10 \mathrm{MeV}\left(\eta=1, p_{\alpha}=0.67 \mathrm{fm}^{-1}\right)$ with Yamaguchi-style potential $\left(\kappa=2.7 \mathrm{fm}^{-1}\right)$.

$$
\begin{align*}
\Delta_{\text {blue }} & =\left|p_{\alpha}-x_{b}\right|=\left|p_{\alpha}-y_{b}\right|=0.1 \mathrm{fm}^{-1} \tag{8}\\
\Delta_{\text {red }} & =\left|p_{\alpha}-x_{r}\right|=\left|p_{\alpha}-y_{r}\right|=1 \cdot 10^{-6} \mathrm{fm}^{-1} \tag{9}
\end{align*}
$$

Integration algorithm (cont.)

Relative contributions of the regions

Using Mathematica
In case of $p+{ }^{40} \mathrm{Ca} @ E_{c m} \approx 10 \mathrm{MeV}\left(\eta=1, p_{\alpha}=0.67 \mathrm{fm}^{-1}\right)$ with Yamaguchi-style potential $\left(\kappa=2.7 \mathrm{fm}^{-1}\right)$.

$$
\begin{align*}
\Delta_{\text {blue }} & =\left|p_{\alpha}-x_{b}\right|=\left|p_{\alpha}-y_{b}\right|=0.1 \mathrm{fm}^{-1} ; \tag{8}\\
\Delta_{\text {red }} & =\left|p_{\alpha}-x_{r}\right|=\left|p_{\alpha}-y_{r}\right|=1 \cdot 10^{-6} \mathrm{fm}^{-1} . \tag{9}
\end{align*}
$$

Integral	relative contribution
I_{y}	-3.11885
I_{b}	2.31924
I_{r}	$2.4 \cdot 10^{-8}$ (near negligible)
$I_{m b}$	-0.115053
I_{g}	0.355378
Result:	-0.559282

Summary (was done + To-Do)

- The theory is ready to compute $\psi_{l p}^{C}(k)$ and Coulomb distorted EST potential matrix element $\left\langle p^{C}\right| V\left|p_{\alpha}^{C}\right\rangle$.
- Fortran implementation of the discussed algorithms is on the way.
- Specifically, the following is still waiting to be implemented:
- 'intelligent' $\psi_{l p}^{C}(k)$,
- integration algorithm to compute $\left\langle p^{C}\right| V\left|p_{\alpha}^{C}\right\rangle$.
- Using the obtained code, compute $\psi_{l p}^{C}(k)$ and $\left\langle p^{C}\right| V\left|p_{\alpha}^{C}\right\rangle$ for different cases.
- Publish it.

