Report at annual TORUS Collaboration meeting

Vasily Eremenko¹

¹Ohio University, Dept. of Physics & Astronomy

Livermore, CA 2013-06-11

Vasily Eremenko (OU)

Report @ TORUS ann. meeting

2013-06-11 1 / 14

A D N A B N A B N

Introduction

The "formalism article"

Vasily Eremenko (OU)

A. M. Mukhamedzhanov et al. // Phys. Rev. C 86, 034001 (2012).

Report @ TORUS ann. meeting

イロト イヨト イヨト イヨ

Introduction

The "formalism article"

A. M. Mukhamedzhanov et al. // Phys. Rev. C 86, 034001 (2012).

The first step

is to compute the (separable) nuclear potential matrix elements in Coulomb basis.

$$\langle p^C | V | p_{\alpha}^C \rangle = Z^{SC}(p^C, p_{\alpha}^C)$$

$$= \frac{1}{(2\pi)^4} \left[\int dk \; k^2 (\psi_{lp}^C(k))^* h_{lp}(k) \right] \lambda \left[\int d\kappa \; \kappa^2 h_{lp_{\alpha}}^*(\kappa) \psi_{lp_{\alpha}}^C(\kappa) \right].$$
(1)

Computing matrix element...

It requires:

- Form-factors $h_{lp_{\alpha}}(k)$ (Yamaguchi-style \longrightarrow the EST potentials).
- Coulomb wave function in momentum space $\psi_{lp}^{C}(k)$.
 - Subroutines to compute $_2F_1(a,b;c;z)$ and $\Gamma(z)$ for a complex arguments.
- $\psi_{lp_{\alpha}}^{C}(k)$ has a singularity $S(k p_{\alpha}) = (k p_{\alpha})^{-1 i\eta}$ at $k = p_{\alpha}$. \implies Integration algorithm (with regularization, proofs, etc.).

• • • • • • • • • • • •

Special functions

Now we have the tested, reliable and fast enough implementations of

- $\Gamma(x), \Gamma(z),$
- $_2F_1(a,b;c;\xi),$
- for $a, b, c, z \in \mathbb{C}$ and $\xi, x \in \mathbb{R}$.

Special functions

Now we have the tested, reliable and fast enough implementations of

- $\Gamma(x), \Gamma(z),$
- $_2F_1(a,b;c;\xi),$
- for $a, b, c, z \in \mathbb{C}$ and $\xi, x \in \mathbb{R}$.

Hypergeometric function

is well-defined, if $|\xi|<1$ (other requirements are omited).

Coulomb wave function $\psi_{lp_{\alpha}}^{C}(k)$ (cont.) Representations

There are two representations of $\psi_{lp_{\alpha}}^{C}(k)$

- the 'pole' representation (works well near the pole $k = p_{\alpha}$),
- and the 'non-pole' one.

Coulomb wave function $\psi_{lp_{\alpha}}^{C}(k)$ (cont.) Representations

There are two representations of $\psi_{lp_{\alpha}}^{C}(k)$

- the 'pole' representation (works well near the pole $k = p_{\alpha}$),
- and the 'non-pole' one.

The differences are mostly at the 4-th argument of hypergeometric function

Coulomb wave function $\psi_{lp_{\alpha}}^{C}(k)$ (cont.) Switching between representations

The previously shown 4-th arguments

• are equal one another at the points

$$pMin = 0.3p_{\alpha}; \qquad pMax = 3p_{\alpha}; \qquad (2$$

6 / 14

• and both are about 0.3 at pMin and pMax.

Coulomb wave function $\psi^{C}_{lp_{\alpha}}(k)$ (cont.) Switching between representations

The previously shown 4-th arguments

• are equal one another at the points

$$pMin = 0.3p_{\alpha}; \qquad pMax = 3p_{\alpha}; \qquad (2)$$

• and both are about 0.3 at pMin and pMax.

Suggestion

If pMin < k < pMax, \Rightarrow use 'pole' representation of $\psi_{lp\alpha}^{C}(k)$; and 'none-pole' representation otherwise.

In this case we shall be at the well-defined region for any reasonable k and p_{α} . The choice will be done very fast (very simple formulas to compute).

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Computing matrix element...(cont.)

$$\langle p^C | V | p_{\alpha}^C \rangle = Z^{SC}(p^C, p_{\alpha}^C)$$

= $\frac{1}{(2\pi)^4} \left[\int dk \; k^2 (\psi_{lp}^C(k))^* h_{lp}(k) \right] \lambda \left[\int d\kappa \; \kappa^2 h_{lp_{\alpha}}^*(\kappa) \psi_{lp_{\alpha}}^C(\kappa) \right].$ (3)

Coulomb distorted potential matrix element requires:

- Form-factors $h_{lp_{\alpha}}(k)$ (Yamaguchi-style \longrightarrow the EST potentials).
- Coulomb wave function in momentum space $\psi_{lp}^C(k)$.
 - Subroutines to compute $_2F_1(a,b;c;z)$ and $\Gamma(z)$ for a complex arguments.

• $\psi_{lp_{\alpha}}^{C}(k)$ has a singularity $S(k - p_{\alpha}) = (k - p_{\alpha})^{-1 - i\eta}$ at $k = p_{\alpha}$. \implies Integration algorithm (with regularization, proofs, etc.).

2013-06-11 7 / 14

イロト イヨト イヨト イヨト 三日

Integration algorithm 'Colored' regions

Basing on the behavior of the $\psi^{C}_{lp\alpha}(p)$ (oscillations of leading singularity)

1	"Yellow"	"Blue"		"Red"	"Mi	rrored Blue"	"Green"	
	I_y	I_b		I_r		I_{mb}	I_g	
					4	$\Delta_b = \Delta_{mb}$		
Ō	x	b	x_r	p_{lpha}	y_r	y	b	p

Integration algorithm 'Colored' regions

Basing on the behavior of the $\psi_{lp\alpha}^{C}(p)$ (oscillations of leading singularity)

÷	"Yellow"	"Blue"	"Red	" "Mirrored Blue"	"Green"
	I_y	I_b	I_r	I_{mb}	I_g
				$\Delta_b = \Delta_{mb}$	
Ō	x	ib a	$r_r \qquad p_{\alpha}$	y_r	y_b p

Estimations for the borders are

$$x_b = p_\alpha - 0.1/[1 - \exp(-2\pi/\eta_\alpha)] \sim p_\alpha - 0.1 \text{ fm}^{-1};$$
(4)

$$x_r = p_\alpha - 10^{-6} / [1 - \exp(-2\pi/\eta_\alpha)] \sim p_\alpha - 10^{-6} \text{ fm}^{-1};$$

and y_r and y_b are symmetric to corresponding x_i .

Vasily Eremenko (OU)

2013-06-11 8 / 14

(5)

Integration algorithm (cont.)

Suitable tools to be used

Just to be in sight

	"Yellow"	"Blue"	"Red	1"	"Mirrored Blue"	"Green"
	I_y	I_b	I_r	1	I_{mb}	I_g
					$\Delta_b = \Delta_{mb}$	
0	x	ъ з	$r_r p_c$	$_{\star}$ y_r	. y	b p

Gauss Quagratures

at the 'yellow' and 'green' regions.

A D N A B N A B

Integration algorithm (cont.)

Suitable tools to be used

Just to be in sight

	"Yellow"	"Blue"	"Red	"	"Mirrored Blue"	"Green"
	I_y	I_b	I_r		I_{mb}	I_g
			-		$\Delta_b = \Delta_{mb}$	
0	x	ib a	$x_r \qquad p_{\alpha}$	y_i	r Y	lb p

Gauss Quagratures

at the 'yellow' and 'green' regions.

Simpson rule

at the 'blue' and 'mirrored blue' regions.

Vasily Eremenko (OU)

2013-06-11 9 / 14

A D N A B N A B

Integration algorithm (cont.)

Suitable tools to be used

Just to be in sight

	"Yellow"	"Blue"	"Red	1"	"Mirrored Blue"	"Green"
	I_y	I_b	I_r	1	I_{mb}	I_g
					$\Delta_b = \Delta_{mb}$	
0	x	ъ з	$r_r p_c$	$_{\star}$ y_r	. y	b p

Gauss Quagratures

at the 'yellow' and 'green' regions.

Simpson rule

at the 'blue' and 'mirrored blue' regions.

Regularization + analytical approximations

at the 'red' region.

Integration algorithm (cont.) Suitable tools to be used (cont.)

The outcome:

we are able to compute all the integral alone the positive real axis of momentum. No *terra incognita*.

A D N A D N A D N

2013-06-11

10 / 14

Vasily Eremenko (OU) Report @ TORUS ann. meeting

Integration algorithm (cont.) Integration over the 'red' region

Regularization

Well-known 'principal value' regularization is not enough. Gel'fand-Shilov regularization is required.

Integration algorithm (cont.) Integration over the 'red' region (cont.)

Ron Johnson's suggestion

Because $h_{lp_{\alpha}}(k)$ is slowly variable function at the 'red' region, and $\psi_{lp_{\alpha}}^{C}(p)$ is oscillating wildly, mean-value theorem could be applied:

$$\int_{red} dk \; k^2 \psi_{lp_{\alpha}}^C(k) h_{lp_{\alpha}}^*(k) = h_{lp_{\alpha}}^*(p_{\alpha}) \int_{red} dk \; k^2 \psi_{lp_{\alpha}}^C(k). \tag{6}$$

12 / 14

Integration algorithm (cont.) Integration over the 'red' region (cont.)

Ron Johnson's suggestion

Because $h_{lp_{\alpha}}(k)$ is slowly variable function at the 'red' region, and $\psi_{lp_{\alpha}}^{C}(p)$ is oscillating wildly, mean-value theorem could be applied:

$$\int_{red} dk \; k^2 \psi_{lp_{\alpha}}^C(k) h_{lp_{\alpha}}^*(k) = h_{lp_{\alpha}}^*(p_{\alpha}) \int_{red} dk \; k^2 \psi_{lp_{\alpha}}^C(k). \tag{6}$$

Now regularizing the rest

After applying the regularization, in case of small Δ_{red} ,

$$I_r \approx \frac{h_{lp\alpha}^* e^{\pi\eta_\alpha} \phi''(p_\alpha)}{2(2-i\eta_\alpha)} \Delta_{red}^{2-i\eta_\alpha},\tag{7}$$

where $\phi(k)$ is the rest of $k^2 \psi_{lp_{\alpha}}^C(k)$ after pulling out the leading singularity $S(k - p_{\alpha}) = (k - p_{\alpha})^{-1 - i\eta}$.

Vasily Eremenko (OU)

2013-06-11 12 / 14

Integration algorithm (cont.) Relative contributions of the regions

Using Mathematica

In case of $p + {}^{40}\text{Ca} @ E_{cm} \approx 10 \text{ MeV} (\eta = 1, p_{\alpha} = 0.67 \text{ fm}^{-1})$ with Yamaguchi-style potential ($\kappa = 2.7 \text{ fm}^{-1}$).

$$\Delta_{blue} = |p_{\alpha} - x_b| = |p_{\alpha} - y_b| = 0.1 \text{ fm}^{-1};$$

$$\Delta_{red} = |p_{\alpha} - x_r| = |p_{\alpha} - y_r| = 1 \cdot 10^{-6} \text{ fm}^{-1}.$$
(8)
(9)

Integration algorithm (cont.) Relative contributions of the regions

Using Mathematica

In case of $p + {}^{40}\text{Ca} @ E_{cm} \approx 10 \text{ MeV} (\eta = 1, p_{\alpha} = 0.67 \text{ fm}^{-1})$ with Yamaguchi-style potential ($\kappa = 2.7 \text{ fm}^{-1}$).

$$\Delta_{blue} = |p_{\alpha} - x_b| = |p_{\alpha} - y_b| = 0.1 \text{ fm}^{-1};$$

$$\Delta_{red} = |p_{\alpha} - x_r| = |p_{\alpha} - y_r| = 1 \cdot 10^{-6} \text{ fm}^{-1}.$$
(8)
(9)

Integral	relative contribution
I_y	-3.11885
I_b	2.31924
I_r	$2.4 \cdot 10^{-8}$ (near negligible)
I_{mb}	-0.115053
I_g	0.355378
Result:	-0.559282

Vasily Eremenko (OU)

2013-06-11 13 / 14

Summary (was done + To-Do)

- The theory is ready to compute $\psi_{lp}^C(k)$ and Coulomb distorted EST potential matrix element $\langle p^C | V | p_{\alpha}^C \rangle$.
- Fortran implementation of the discussed algorithms is on the way.
- Specifically, the following is still waiting to be implemented:
 - 'intelligent' $\psi_{lp}^C(k)$,
 - integration algorithm to compute $\langle p^C | V | p_{\alpha}^C \rangle$.
- Using the obtained code, compute $\psi_{lp}^C(k)$ and $\langle p^C|V|p_{\alpha}^C\rangle$ for different cases.
- Publish it.

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへの