Contributions to Captures

I.J. Thompson, LLNL G. Arbanas, ORNL

Year 1 Review MSU, East Lansing, MI, 06/24/2011

Main Contributions to captures

- Direct capture (D) (i.e. one-step)
 - Important at low energies on light, or neutron rich nuclei
 - Potential model needs ANC from a (d,p) reaction
- Semidirect (SD) capture (i.e. two-step)
 - Via GDR, GQR or other doorway states
 - Dominates at, and around, $E_b + E_{GDR}$
 - D + SD contributions interfere; their amplitudes add
- Compound capture (i.e. many-step)
 - Via (complex) compound nuclear states
 - Competes with the above at all energies, and dominates for low-energy gammas

¹³⁰Sn(n,g) important for nucleosynthesis

- Relative contribution of DSD vs. compound capture varies
 - Hauser-Feshbach models indicate DSD >> compound above shell closure

3 Managed by UT-Battelle for the U.S. Department of Energy S. Chiba et al. Phys. Rev. C 77, 015809 (2008)

Integrating Direct and Compound-Nucleus Reactions

- Implemented E1 DSD capture via GDR into <u>bound</u> states (yr 1)
 - These processes are unaffected by compound resonances
 - Compute for a few select targets
 - Extend to other doorway states, like pygmy resonances and isobar analogue states in Year 2
- Implement E1 DSD capture via GDR into <u>continuum</u> (years 3-5)

Implementation Strategy

- Compare Fresco and Cupido DSD results
- Cupido:
 - 1st order perturbation DSD capture code (F. Dietrich, LLNL)
 - Uses one pole approximation for inelastic neutron Green's function
- Fresco:
 - Coupled channels code
 - DWBA implementation of DSD for comparison with Cupido
 - Should be more accurate away from GDR peaks.
- Two test cases (so far):
 - ${}^{60}Ni(n,g){}^{61}Ni_{g.s.}$
 - ¹³⁰Sn(n,g)¹³¹Sn
- Agreement near GDR peaks, but different treatment of Green's ⁵ Managed full-Battion leads to some differences away from peaks

DWBA Implementation of DSD

6

$$\begin{split} T_{if}^{(\lambda)} &= \langle \Psi_{i} | O_{\lambda} | u_{f} \psi_{0} \rangle \qquad H = H_{0} + H_{n} + V_{coll} \\ |\Psi_{i}\rangle &= |\chi_{i}\psi_{0}\rangle + \frac{1}{E - H_{0} - H_{n}} V_{coll} |\chi_{i}\psi_{0}\rangle \\ T_{if}^{(\lambda)} &= T_{D} + T_{SD} \\ T_{D} &= \langle \chi_{i} | O_{\lambda} | u_{f} \rangle \\ T_{SD} &= \langle \chi_{i}\psi_{0} | V_{coll} \frac{1}{E - H_{0} - H_{n}} O_{\lambda} | u_{f}\psi_{0} \rangle \\ \end{split}$$
Fresco:
$$T_{SD} = \langle \chi_{i}\psi_{0} | V_{coll} | \psi_{D} \rangle \frac{1}{E - E_{D} - H_{n}} \langle \psi_{D} | O_{\lambda} | u_{f}\psi_{0} \rangle \\ \underset{\text{transformed by U}}{\overset{1}{E - E_{D} - E_{D}} - E_{D} - E_{D}} \langle u_{f}\psi_{D} | O_{\lambda} | u_{f}\psi_{0} \rangle \end{split}$$

Test Case 2: ⁶⁰Ni(n,g) ⁶¹Ni_{G.S.(3p3/2)}

Outlook

- Further investigation of GDR Green's functions and coupling form factors to understand all differences
- Future versions will include coupled channels effects beyond 2nd order DWBA
- Selected set of nuclides will provide a systematic study, in addition to nuclei of current experimental interest

Direct-Semidirect Capture in Coupled Ch.

- T-matrix: a coherent sum of *direct* and *semidirect* parts $T_{\rm fi}(E, E_{\gamma}) = \langle \Psi_{\rm f}(E, E_{\gamma}) | O_{\lambda}^{\rm n} + O_{\lambda}^{\rm c} | \Psi_{\rm i}(E) \rangle$
 - Incoming and outgoing wave functions

Dominant terr

$$\Psi_{\mathbf{i}}(E) = \chi_{\mathbf{n}}^{E}(r_{\mathbf{n}})\phi_{\mathrm{gs}}(\xi) + \chi_{\mathrm{d}}^{E-E_{\mathrm{d}}}(r_{\mathbf{n}})\phi_{\mathrm{d}}(\xi)$$

$$\Psi_{\mathbf{f}}(E, E_{\gamma}) = [\chi_{\mathrm{b}}^{E-E_{\gamma}}(r_{\mathbf{n}})\phi_{\mathrm{gs}}(\xi) + \chi_{\mathrm{e}}^{E-E_{\mathrm{d}}-E_{\gamma}}(r_{\mathbf{n}})\phi_{\mathrm{d}}(\xi)]\zeta_{\gamma}(r_{\gamma})$$

Inserting yields four terms

 $T_{\rm fi} = \langle \chi_{\rm b} | O_{\lambda}^{\rm n} | \chi_{\rm n} \rangle + \langle \chi_{\rm e} | O_{\lambda}^{\rm n} | \chi_{\rm d} \rangle + \langle \chi_{\rm b} | \chi_{\rm d} \rangle \langle \phi_{\rm gs} | O_{\lambda}^{\rm c} | \phi_{\rm d} \rangle + \langle \chi_{\rm e} | \chi_{\rm n} \rangle \langle \phi_{\rm d} | O_{\lambda}^{\rm c} | \phi_{\rm gs} \rangle$

