Coulomb distorted nuclear matrix elements in momentum space. II. Computational aspects

V. Eremenko^{1,5} L. Hlophe¹ N. J. Upadhyay² Ch. Elster¹ F. M. Nunes² G. Arbanas³ J. E. Escher⁴ I. J. Thompson⁴ **TORUS** Collaboration[†] (http://reactiontheory.org)

¹Institute of Nuclear & Particle Physics and Dept. of Physics & Astronomy, Ohio University ²NSCL, Michigan State University ³Oak Ridge National Laboratory ⁴Lawrence Livermore National Laboratory ⁵Moscow State University, Moscow, Russia [†]Supported by U.S. Department of Energy

Jefferson Lab., Newport News, VA $\therefore 2013-10-25$

V. Eremenko, L. Hlophe, N. J. Upadh

DNP Meeting'13

2013-10-25 1 / 13

- Faddeev equations \Rightarrow preferrably solved in momentum space.
- (d, p) reaction with nucleus excitation \Rightarrow Separable Optical Short Range Potential.
- Coulomb interaction \Rightarrow switching to Coulomb distorted basis.

Required: Computational implementation of Separable Optical Potential in Coulomb distorted basis in momentum space.

 \parallel

Phenomenological optical potentials are usually in Woods-Saxon form in coordinate space.

Example: CH89 (central part)

$$U_{nucl}(r) = V(r) + i \big(W(r) + W_s(r) \big)$$

Separabilization: generalized Ernst-Shakin-Thaler scheme for complex optical potentials.

Now the form factors are not the arbitrary functions, but half-shell t-matrices.

$$U = \sum_{ij} u |\Psi_i^{(+)}\rangle \lambda \langle \Psi_j^{(-)} | u \rangle$$

Hint: In/Out states are necessary to fulfill reciprocity theorem.

イロト イヨト イヨト イヨト

Quality of Separable Optical Potential: l = 0, S-matrix

V. Eremenko, L. Hlophe, N. J. Upadł

DNP Meeting'13

2013-10-25 4 / 13

Half-shell t-martix in Coulomb basis

For complex potentials, Coulomb distorted half-shell t-matrices (form factors) are not the complex conjugate of one another:

$$u_{li}^{(C,1)}(p_{\alpha}) = \frac{1}{2\pi^2} \int dp \, p^2 u_{li}(p) \psi_{p_{\alpha}l}^C(p);$$

$$u_{li}^{(C,2)}(p_{\alpha}) = \frac{1}{2\pi^2} \int dp \, p^2 u_{li}(p) [\psi_{p_{\alpha}l}^C(p)]^*;$$

 $\psi_{p_{\alpha}l}^C(p)$ is the half-shell Coulomb scattering wave function for the asymptotic momentum p_{α} :

$$|\psi_{p_{\alpha}l}^{C}(p)\rangle = [1 + G_0(p_{\alpha})T^{C}]|p\rangle.$$

- Special functions of complex arguments.
- Different representations for pole and non-pole regions.
- Gel'fand-Shilov regularization to deal with oscillatory singularity.

DNP Meeting'13

2013-10-25 5 / 13

Results

 $\left\{ u_{li}^{(C,1)}(p_{\alpha}) = \frac{1}{2\pi^{2}} \int dp \, p^{2} u_{li}(p) \psi_{lp_{\alpha}}^{C}(p) \right\}$

6 / 13

Results

 $\left\{u_{li}^{(C,1)}(p_{\alpha}) = \frac{1}{2\pi^2} \int dp \, p^2 u_{li}(p) \psi_{lp_{\alpha}}^{C}(p)\right\}$

V. Eremenko, L. Hlophe, N. J. Upadł

DNP Meeting'13

2013-10-25 7 / 13

Summary & Outlook

Faddeev-AGS framework in Coulomb basis passed the first test!

- Momentum space nuclear form-factors (half-shell T-matrices) obtained in a Coulomb distorted basis for high charges for the first time.
- Ernst-Shakin-Thaler separabilization procedure successfully generalized for the case of complex optical potentials in momentum space. Realistic Separable (Generalized EST-type) Optical Potentials obtained for $n + {}^{12}C$, ${}^{48}Ca$, ${}^{123}Sn$, and ${}^{208}Pb$ cases.
- Algorithms to compute $\psi_{p_{\alpha}l}^{C}(p)$ and the overlap integral successfully implemented for Generalized EST-type optical potentials. "Oscillatory singularity" of $\psi_{p_{\alpha}l}^{C}(p)$ at $p = p_{\alpha}$ successfully regularized.

Near Future

Implementation of Faddeev-AGS equations in Coulomb basis to compute observables for (d, p) reactions.

The TORUS Collaboration*:

Few-Body Group:

- Ch. Elster, V. Eremenko^{†‡}, and L. Hlophe[†]: Institute of Nuclear and Particle Physics, and Department of Physics and Astronomy, Ohio University, Athens, OH 45701.
- F. M. Nunes and N. J. Upadhyay[†]: National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824.
- G. Arbanas: Nuclear Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
- J. E. Escher and I. J. Thompson: Lawrence Livermore National Laboratory, L-414, Livermore, CA 94551.
- * Funding provided by U. S. Department of Energy.
- [†] Post-Docs or Grad Students.
- ‡ M. V. Lomonosov Moscow State University, Moscow, 149991, Russia. $_{\equiv}$

V. Eremenko, L. Hlophe, N. J. Upadh

DNP Meeting'13

2013-10-25 9 / 13

Results

Half-shell t-matrix: Difficulties to be addressed

$$\begin{split} \psi_{p_{\alpha}l}^{C}(p) &= -\frac{4\pi}{p} e^{-\pi\eta/2} \Gamma(1+i\eta) e^{i\alpha_{l}} \left[\frac{(p+p_{\alpha})^{2}}{4pp_{\alpha}} \right]^{l} \\ \times \text{ Im } \left[e^{-i\alpha_{l}} \frac{(p+p_{\alpha}+i0)^{-1+i\eta}}{(p-p_{\alpha}+i0)^{1+i\eta}} {}_{2}F_{1} \left(-l, -l-i\eta; 1-i\eta; \frac{(p-p_{\alpha})^{2}}{(p+p_{\alpha})^{2}} \right) \right]; \\ \eta &= Z_{1} Z_{2} e^{2} \mu/p_{\alpha}. \end{split}$$

- Computing special functions of complex arguments.
- Two different representations for pole and non-pole regions are required due to $_2F_1(a, b; c; z)$.
- ψ^C_{p_αl}(p) has 'oscillatory singularity' at p = p_α.
 → Gel'fand-Shilov regularization (reduce integrand around the pole, subtracting 2 terms of Taylor expansion).

◆ロト ◆□ ▶ ◆ヨ ▶ ◆ヨ ▶ ● ● ● ● ●

Two representations of $\psi_{p_{\alpha}l}^C(p)$

Switching point: $\zeta = \chi \approx 0.34$. $\eta = Z_1 Z_2 e^2 \mu / p_{\alpha}$.

$$\begin{array}{ll} \underline{\text{Non-Pole:}} & \psi_{p_{\alpha}l}^{C}(p) = -\frac{4\pi\eta e^{-\pi\eta/2}p_{\alpha}(pp_{\alpha})^{2}}{(p^{2}+p_{\alpha}^{2})^{l+1+i\eta}} \left[\frac{\Gamma(l+1+i\eta)\Gamma(1/2)}{\Gamma(l+3/2)} \right] \\ \times [p^{2} - (p_{\alpha}+i0)^{2}]^{-1+i\eta}{}_{2}F_{1}\left(\frac{l+2+i\eta}{2}, \frac{l+1+i\eta}{2}; l+\frac{3}{2}; \chi \equiv \frac{4p^{2}p_{\alpha}^{2}}{(p^{2}+p_{\alpha}^{2})^{2}} \right) \\ \end{array}$$

$$\begin{array}{l} \text{Eremenko, L, Hopke, N. J. Upadt} & \text{DNP Meeting 13} \end{array}$$

Regularization

Gel'fand-Shilov regularization is the generalization of the Principal value regularization. The idea is to reduce the integrand S(x) near the singularity^{1,2}:

¹This formula is significantly simplified.

²I. M. Gel'fand and G. E. Shilov. "Generalized Functions". Vol. 1. "Properties and Operations". Academic Press, New York and London. 1964.

<u>V. Eremenko,</u> L. Hlophe, N. J. Upadh

DNP Meeting'13

2013-10-25 12 / 13

Pinch singularity and avoiding it

Pinch

 $\psi_{lp_{\alpha}}^{C}(k)$ has a singularity at $k = p_{\alpha}$. In general case of nuclear potential $V(p, p_{\alpha})$,

$$(\psi_{lp}^{C}(k))^{*} \xrightarrow{k=p} V_{lpp_{\alpha}}(k,\kappa) \xleftarrow{\kappa=p} \psi_{lp_{\alpha}}^{C}(\kappa).$$
(1)

G. Cattappan et al. suggestion:

in case of separable potential, double integration procedure split onto two independent integrals, allowing to deal with this singularities separately, avoiding pinch^a.

^aG. Cattappan et al. // Nucl. Phys. **A241** (1975) 204–218.