Faddeev techniques as a theoretical tool to study exotic nuclei

Vasily Eremenko

Seminar at the Institute of Nuclear & Particle Physics and Dept. of Physics & Astronomy, Ohio University

2015-02-17 \cdot Athens, OH

TORUS Collaboration (http://reactiontheory.org)

INPP OU Seminar

2015 - 02 - 17

1 / 27

Scientific questions

Where to look for the elements heavier than iron?

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Scientific questions

Where to look for the elements heavier than iron?

How the distributions of the elements were formed?

イロト イロト イヨト

Scientific questions

Where to look for the elements heavier than iron?

How the distributions of the elements were formed?

How the elements (nuclei) were produced in the Universe?

Vasily Eremenko (Seminar at the Inst

INPP OU Seminar

2015-02-17 2 / 27

Introduction

From the Nucleosynthesis to the Nuclear Physics

Need models of the neutron-rich nuclei and (n, γ) reactions!

3 / 27

 Introduction

Separation of time scales in (n, γ) reaction

- Neutron capture is driven by the strong interaction ('fast' $\sim 10^{-21}$ sec.).
- Photon emission is the electromagnetic process ('slow' $\gtrsim 10^{-12}$ sec.).

Deuteron as 'Trojan horse'

The way to study the neutron capture process via (d, p) reactions.

• • • • • • • • • • •

Introduction

(d, p) reactions as three-body problem

- First approximation: internal degrees of freedom of the nucleus are not resolved.
- Later, take into account some core nucleus' degrees of freedom:
 - collective core excitations,
 - nucleon-level core's internal dynamics.

DWBA for A(d, p)B reaction

Simple ansatz: use only two-body scattering.

2015-02-17 7 / 27

▲ロト ▲圖ト ▲画ト ▲画ト 三国 - のQの

DWBA results for ${}^{40}Ca(d, p)$ reaction at $E_d = 7$ MeV

- Only peripheral direct reactions.
- $E_{beam} > B_d$.
- No 3-body dynamics of npA system.

イロト イヨト イヨト イヨト

* Lee et. al. // Phys. Rev. 136B, 971 (1964).

Apn system

Channels (configurations):

Faddeev formalism treats all channels on the same footing.

・ロト ・回ト ・ヨト ・

CDCC method (shortcut)

Continuum-Discretised Coupled Channel method * Austern *et al.* // Physics Reports **154**, No. 3, 125–204 (1987).

- Pick one channel and expand it in some basis.
- Other channels are expressed in this basis.
- Convergence in other three-body channels.

Introduction

CDCC results for breakup ${}^{12}C(d, pn){}^{12}C$ vs. FAGS

• CDCC fails for low energy.

* Upadhyay et. al. // Phys. Rev. C 85, 054621 (2012).

Coulomb interaction in momentum space

- Due to the boundary conditions, momentum space is preferrable for 3-body problem.
- Coulomb interaction has infinite range and have to be treated with great care.

Early work

* Vincent and Phatak. // Phys. Rev. C 10, 391 (1974).

•
$$\pi^{\pm} + {}^{16}\text{O}$$
 at $E_{\pi(lab)} = 30$ MeV,

• got the momentum-space results by using the two-potential formula (textbook):

$$f(\theta) = f_C(\theta) + f_n^C(\theta),$$

• plus boundary matching.

dp scattering with screened Coulomb interaction

The screening factor:

$$V_C = \frac{Z_1 Z_2 \alpha^2}{r} \quad \rightarrow \quad \widetilde{V}_C = \frac{Z_1 Z_2 \alpha^2}{r} \exp(-\mu r).$$

Alt et al. // Phys. Rev. Lett. 37, 1537 (1976)

- Screening technique works for the *pd* scattering.
- Various strong amplitude corrections required.

dp scattering with screened Coulomb interaction (continued)

Deltuva // Phys. Rev. C 80, 064002 (2009)

- pd at $E_{p(lab)} = 9$ MeV
- The most advanced screening techniques to the date.
- AV18 and AN18+UIX potentials.

ヘロト ヘヨト ヘヨト

2015-02-17 14 / 27

A(d, p)B reaction with screened Coulomb interaction

By using more complicated techniques, screening procedure extended to the nuclei up to ${}^{48}_{20}$ Ca (Deltuva).

* Deltuva. // Phys. Rev. C 80, 064002 (2009).

* Upadhyay, Deltuva, Nunes. // Phys. Rev. C 85, 054621 (2012).

Hitting the 'charge wall' ¹²C(d,p)¹³C 132Sn(d,p)133Sn 48Ca(d,p)49Ca 80 E. = 19.3 MeV -- CDCC 60 60 - FAGSI 40 E, = 9.5 MeV E_ = 12 MeV -20 20 Lun herritant 0 E_ = 20 MeV E. = 56 MeV 15 6 CDCC 10 E, = 56 MeV 2 5 40 80 120 20 40 60 80 0 80 40 60 θ (degrees) θ (degrees) θ (degrees)

Courtesy: F.M. Nunes

Towards highly-charged nuclei

Task

Treat all (d, p) reactions on the same footage for all the nuclei from ¹₁H up to ²⁰⁸₈₂Pb.

Towards highly-charged nuclei

Task

Treat all (d, p) reactions on the same footage for all the nuclei from ¹₁H up to ²⁰⁸₈₂Pb.

Suggestion

Switch to the basis of Coulomb functions, i.e. include Coulomb potential in the Green's function.

Problems to be solved

- Calculation of Coulomb function in momentum space.
- Calculation of the two-body t-matrices and other quantities in Coulomb basis in momentum space.

Coulomb function in momentum space

- 3D: Guth and Mullin. // Phys. Rev. 83, 667 (1951).
- In partial waves: Dolinskii and Mukhamedzhanov. // Sov. Journ. of Nucl. Phys., vol. 3, No. 2, p. 180 (1966).

$$\psi^{C}_{l,q,\eta}(p) \propto \lim_{\gamma o +0} rac{d}{d\gamma} \left[\cdots Q^{i\eta}_{l}(\zeta)
ight],$$

 $\eta = Z_1 Z_2 \alpha^2 \mu / q;$ $\zeta = (q^2 + p^2 + \gamma^2) / 2qp.$

Coulomb function in momentum space (continued)

 $\psi_{l,q,\eta}^C(p)$:

- two representations, depending on the value of ζ ,
- special functions of complex arguments, including hypergeometric function 2F₁,
- algorithms to choose the correct representation,
- numerical issues...
- * Eremenko et al. // Comp. Phys. Comm. 187, 195 (2015).

INPP OU Seminar

Singularity at the on-shell point

 $\psi_{l,q,\eta}^C(p)\Big|_{m,q} \propto \frac{1}{(p-q\pm i0)^{1\pm i\eta}}.$ $[\Ree \ \psi^C_{0,1.5,1}(p)], \ \operatorname{fm}^3_{10} \frac{10_{e^{-1}}}{10_{10}} \frac{10_{e^{-1}}}{10_{10}}$ Infinetely rapid oscillatory singularity. 10^{-3} 10^{-6} p-a, fm⁻¹

* Upadhyay et al. // Phys. Rev. C 90, 014615 (2014).

▲ 御 ▶ → ● ▶ -

T-matrix elements in Coulomb basis

$$t_{l}^{C}(q',q) = \int dp' dp \\ \times \psi_{l,q',\eta'}^{C(-)}(p')^{*} t_{l}(p',p) \psi_{l,q,\eta}^{C(+)}(p).$$

$$\bullet_{+i\epsilon}$$

Pinch singularity in the elastic channel:

$$\begin{array}{c} q' = q \\ \bullet \\ p', p \end{array}$$

 $-i\epsilon$

2015-02-17

æ

20 / 27

Vasily Eremenko (Seminar at the Inst

INPP OU Seminar

Separable representation of the optical potentials

$$t_l(p',p) = \sum_{ky} |\chi_{l,k}(p')\rangle \lambda_{l,ky} \langle \chi_{l,y}(p)|.$$

* Hlophe et al. // Phys. Rev. C 88, 064608 (2013).

Vasily Eremenko (Seminar at the Inst

INPP OU Seminar

2015-02-17 21 / 27

Separable representation of the optical potentials

$$t_l(p',p) = \sum_{ky} |\chi_{l,k}(p')\rangle \lambda_{l,ky} \langle \chi_{l,y}(p)|.$$

* Hlophe et al. // Phys. Rev. C 88, 064608 (2013).

- Two independent integrals over p and p'.
- Cauchy's theorem.
- No pinch singularity!

A D N A B N A B N

Vasily Eremenko (Seminar at the Inst

Gel'fand-Shilov regularization for complex form-factors

$$u_l^C(q) \propto \int_{a<0}^{b>0} \frac{f(y) \, dy}{y^{1+i\eta}} \equiv \int_a^b dy \ J_a(y), \quad (\text{e.g. } f(y) = y^2 + y + 1).$$

Subtract as many terms of Laurent expansion of f(y)around the integrand's special point y = 0 as needed to split the integral and get the regular term, plus the analytically calculated terms.

* Upadhyay et al. // Phys. Rev. C 90, 014615 (2014).

Results: form-factors in Coulomb basis

Vasily Eremenko (Seminar at the Ins

2015-02-17 23 / 27

Singularity contribution for $p + {}^{12}C$

æ

Image: A matrix and a matrix

Singularity contribution for $p + {}^{208}\text{Pb}$

2015-02-17 25 / 27

Faddeev-AGS equations in Coulomb basis (in progress)

Mukhamedzhanov et al. // Phys. Rev. C 86, 034001 (2012)

Faddeev-AGS equations in Coulomb basis for real two-body t-matrices and spinless particles.

- Take spin degrees of freedom into account.
- Generalize the equations for the complex potentials.
- Develop the codes to solve the equations.

Summary & Outlook

- Faddeev formalism is the theoretical tool to study (d, p) reactions.
- This formalism treats all possible three-body channels on the same footage.
- Momentum space is preferrable due to the boundary conditions.
- Coulomb interaction can be treated properly by using the Coulomb basis in momentum space.
- Pinch singularity is avoided by choosing the two-body interactions in separable form.
- Mathematics and machinery are developed to compute Coulomb functions and matrix elements in Coulomb basis in momentum space.
- Work is in progress to cast Faddeev-AGS equations in Coulomb basis taking into account spin degrees of freedom and complex two-body *t*-matrix form-factors.

Vasily Eremenko (Seminar at the Inst