Comparing CDCC, Faddeev and Adiabatic Model

Neelam Upadhyay
NSCL, Michigan State University, USA

In Collaboration with: A. Deltuva (Universidade de Lisboa, Portugal)
Filomena Nunes (NSCL, Michigan State University, USA)

3-body Methods

- 3-body Hamiltonian:

$$
H_{3 b}=\hat{T_{R}}+\hat{T}_{r}+U_{\mathrm{pA}}+U_{\mathrm{nA}}+V_{\mathrm{pn}}
$$

- Obtain 3-body wave function by solving Schrödinger Equation:

$$
\left(H_{3 \mathrm{~b}}-E\right) \Psi^{3 \mathrm{~b}}(\mathbf{r}, \mathbf{R})=0
$$

- Use $\Psi^{3 \mathrm{~b}}$ in exact T-matrix

$$
T=\left\langle\chi_{\mathrm{pB}}^{(-)} \phi_{\mathrm{nA}}^{(-)}\right| V_{\mathrm{pn}}+U_{\mathrm{pA}}-U_{\mathrm{pB}}\left|\Psi^{3 \mathrm{~b}}\right\rangle
$$

where, U_{pB} is auxillary potential.

3-body methods

1. Finite Range Adiabatic Wave Approximation

Ref.: Johnson and Tandy, Nucl. Phys. A235, 56 (1974).

- The 3-body wave function is expanded in terms of deuteron Weinberg states, $S_{i}(\mathbf{r})$.

$$
\begin{aligned}
& \Psi^{+}(\mathbf{r}, \mathbf{R})=\sum_{i=1}^{\infty} S_{i}(\mathbf{r}) \chi_{i}(\mathbf{R}) \\
& \text { where, } \\
& \left(T_{r}+\alpha_{i} V_{\mathrm{pn}}\right) S_{i}(\mathbf{r})=-\epsilon_{d} S_{i}(\mathbf{r})
\end{aligned}
$$

3-body methods

1. Finite Range Adiabatic Wave Approximation

Ref.: Johnson and Tandy, Nucl. Phys. A235, 56 (1974).

- The 3-body wave function is expanded in terms of deuteron Weinberg states, $S_{i}(\mathbf{r})$.

$$
\begin{array}{ll}
& \Psi^{+}(\mathbf{r}, \mathbf{R})=\sum_{i=1}^{\infty} S_{i}(\mathbf{r}) \chi_{i}(\mathbf{R}) \\
\text { where, } \quad\left(T_{r}+\alpha_{i} V_{\mathrm{pn}}\right) S_{i}(\mathbf{r})=-\epsilon_{d} S_{i}(\mathbf{r})
\end{array}
$$

- Approximation: Only first term is considered in the expansion

$$
\Psi_{\mathrm{AD}}^{+}(\mathbf{r}, \mathbf{R})=S_{0}(\mathbf{r}) \chi_{0}^{\mathrm{AD}}(\mathbf{R})
$$

3-body methods

1. Finite Range Adiabatic Wave Approximation

Ref.: Johnson and Tandy, Nucl. Phys. A235, 56 (1974).

- The 3-body wave function is expanded in terms of deuteron Weinberg states, $S_{i}(\mathbf{r})$.

$$
\begin{array}{ll}
\text { states, } S_{i}(\mathbf{r}) . \\
& \Psi^{+}(\mathbf{r}, \mathbf{R})=\sum_{i=1}^{\infty} S_{i}(\mathbf{r}) \chi_{i}(\mathbf{R}) \\
\text { where, } & \left(T_{r}+\alpha_{i} V_{\mathrm{pn}}\right) S_{i}(\mathbf{r})=-\epsilon_{d} S_{i}(\mathbf{r})
\end{array}
$$

- Approximation: Only first term is considered in the expansion

$$
\Psi_{\mathrm{AD}}^{+}(\mathbf{r}, \mathbf{R})=S_{0}(\mathbf{r}) \chi_{0}^{\mathrm{AD}}(\mathbf{R})
$$

Coupled-channel equation simplifies to optical model type equation with distorting potential

$$
U_{\mathrm{AD}}(R)=-\left\langle S_{0}(\mathbf{r})\right| V_{\mathrm{pn}}\left(U_{\mathrm{nA}}+U_{\mathrm{pA}}\right)\left|S_{0}(\mathbf{r})\right\rangle
$$

3-body methods

2. T-matrix Continuum Discretized Coupled Channels Method

Ref.: N. Austern et al., Phys. Rep. 154, 125 (1987).

- The 3-body wave function is expanded in terms of deuteron bound and continuum states.

$$
\Psi^{\mathrm{CDCC}}(\mathbf{r}, \mathbf{R})=\sum_{\alpha} \phi_{\alpha}(\mathbf{r}) \psi_{\alpha}(\mathbf{R})
$$

$\phi_{\alpha}(\mathbf{r})$: eigenstates of deuteron

$$
\phi_{\alpha}(\mathbf{r})=i^{l} \frac{u_{\alpha l}(r)}{r} Y_{l}(\hat{\mathbf{r}})
$$

$\psi_{\alpha}(\mathbf{R})$: relative wave function between deuteron and target

$$
\psi_{\alpha}(\mathbf{R})=i^{L} \chi_{\alpha}(R) Y_{L_{\alpha}}(\hat{\mathbf{R}})
$$

3-body methods

2. T-matrix Continuum Discretized Coupled Channels Method Ref.: N. Austern et al., Phys. Rep. 154, 125 (1987).

- The 3-body wave function is expanded in terms of deuteron bound and continuum states.

$$
\Psi^{\mathrm{CDCC}}(\mathbf{r}, \mathbf{R})=\sum_{\alpha} \phi_{\alpha}(\mathbf{r}) \psi_{\alpha}(\mathbf{R})
$$

$\phi_{\alpha}(\mathbf{r})$: eigenstates of deuteron

$$
\phi_{\alpha}(\mathbf{r})=i^{l} \frac{u_{\alpha l}(r)}{r} Y_{l}(\hat{\mathbf{r}})
$$

$\psi_{\alpha}(\mathbf{R})$: relative wave function between deuteron and target

$$
\psi_{\alpha}(\mathbf{R})=i^{L} \chi_{\alpha}(R) Y_{L_{\sim}}(\hat{\mathbf{R}})
$$

- Discretize the continuum
- Solve CDCC equation

Alt, Grassberger, Sandhas Formalism (Faddeev-AGS)

Ref.: Deltuva and Fonseca, Phys. Rev. C79, 014606 (2009).

Exact Method

(1)

(2)

(3)

- Explicitly includes elastic, breakup \& transfer channels to all orders.
- 3-particle scattering is described in terms of transition operators,

$$
T_{\beta \alpha}=\bar{\delta}_{\beta \alpha} G_{0}^{-1}+\sum_{\gamma=1}^{3} \bar{\delta}_{\beta \gamma} t_{\gamma} G_{0} T_{\gamma \alpha}
$$

- Coulomb interaction is treated using screening \& renormalization techniques.

3-body Hamiltonian

- For pertinent comparison, we construct a simple 3-body Hamiltonian

$$
H_{3 b}=\hat{T}_{R}+\hat{T}_{r}+U_{\mathrm{pA}}+U_{\mathrm{nA}}+V_{\mathrm{pn}}
$$

$\hat{T_{R}}, \hat{T_{r}}$: kinetic energy operators
V_{pn} : Deuteron binding potential \rightarrow Gaussian Potential
U_{pA} : proton-target optical potential Chapel-Hill Global Parametrization
U_{nA} : neutron-target optical potential (spin-orbit neglected)

3-body Hamiltonian

- For pertinent comparison, we construct a simple 3-body Hamiltonian

$$
H_{3 b}=\hat{T}_{R}+\hat{T}_{r}+U_{\mathrm{pA}}+U_{\mathrm{nA}}+V_{\mathrm{pn}}
$$

$\hat{T_{R}}, \hat{T_{r}}$: kinetic energy operators
V_{pn} : Deuteron binding potential \rightarrow Gaussian Potential
U_{pA} : proton-target optical potential Chapel-Hill Global Parametrization
U_{nA} : neutron-target optical potential (spin-orbit neglected)

- Spins are neglected.

3-body Hamiltonian

- For pertinent comparison, we construct a simple 3-body Hamiltonian

$$
H_{3 b}=\hat{T}_{R}+\hat{T}_{r}+U_{\mathrm{pA}}+U_{\mathrm{nA}}+V_{\mathrm{pn}}
$$

$\hat{T_{R}}, \hat{T_{r}}$: kinetic energy operators
V_{pn} : Deuteron binding potential \rightarrow Gaussian Potential
U_{pA} : proton-target optical potential Chapel-Hill Global Parametrization
U_{nA} : neutron-target optical potential (spin-orbit neglected)

- Spins are neglected.
- Binding Potentials for neutron-target in final state

$$
\left(r_{0}=1.25 \mathrm{fm} \& a_{0}=0.65 \mathrm{fm}\right)
$$

Nucleus	$n l$	$\mathrm{~S}_{\mathrm{n}}(\mathrm{MeV})$	$V_{\mathrm{nA}}(\mathrm{MeV})$
${ }^{10} \mathrm{Be}$	$2 s$	0.504	57.064
${ }^{12} \mathrm{C}$	$1 p$	4.947	39.547
${ }^{48} \mathrm{Ca}$	$2 p$	5.146	48.905

No direct comparison to data, as we neglect spin.

No direct comparison to data, as we neglect spin.

Elastic Cross sections

Various Calculations

- CDCC: U_{pA} and $U_{\mathrm{nA}} @ \mathrm{E}_{\mathrm{d}} / 2$.
- Faddeev-AGS (FAGS): $\overline{U_{\mathrm{pA}}}$ and $U_{\mathrm{nA}} @ \mathrm{E}_{\mathrm{d}} / 2$, producing no nA bound state.
- Faddeev-AGS (FAGS1):

FAGS + transfer channel to produce nA bound state.

Elastic cross sections

PRC 85, 054621 (2012)

$$
{ }^{12} \mathrm{C}(\mathrm{~d}, \mathrm{~d})^{12} \mathrm{C}
$$

--- CDCC

- FAGS
- \circ FAGS1

Breakup Cross sections

1. Computationally most demanding calculations
2. For Faddeev-AGS calculations, sufficiently accurate results at forward angles were not obtained with inclusion of Coulomb interaction.
3. Coulomb interaction switched off for both the methods.

Breakup Cross sections

1. Computationally most demanding calculations
2. For Faddeev-AGS calculations, sufficiently accurate results at forward angles were not obtained with inclusion of Coulomb interaction.
3. Coulomb interaction switched off for both the methods.
4. Various Calculations

- CDCC: U_{pA} and $U_{\mathrm{nA}} @ \mathrm{E}_{\mathrm{d}} / 2$.
- Faddeev-AGS (FAGS):
$\overline{U_{\mathrm{pA}}}$ and $U_{\mathrm{nA}} @ \mathrm{E}_{\mathrm{d}} / 2$, producing no nA bound state.

Breakup cross sections: Angular Distribution

PRC 85, 054621 (2012)
${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{pn}){ }^{10} \mathrm{Be}$

$$
{ }^{12} \mathrm{C}(\mathrm{~d}, \mathrm{pn})^{12} \mathrm{C}
$$

Breakup cross sections: Energy Distribution

PRC 85, 054621 (2012)

$$
{ }^{12} \mathrm{C}(\mathrm{~d}, \mathrm{pn})^{12} \mathrm{C}
$$

\square CDCC
FAGS

Transfer Cross sections

Various Calculations

- CDCC: $U_{\mathrm{pA}}, U_{\mathrm{nA}} @ \mathrm{E}_{\mathrm{d}} / 2$ in entrance channel, while $U_{\mathrm{pB}} @$ E_{p} in exit channel.
- Faddeev-AGS (FAGS1): $U_{\mathrm{pA}}, U_{\mathrm{pB}} @ \mathrm{E}_{\mathrm{d}} / 2$ and $U_{\mathrm{nA}} @$ $\overline{\mathrm{E}_{\mathrm{d}} / 2 \text { for all partial waves except for one corresponding to }}$ bound state.
- Adiabatic Wave Approximation (ADWA): Same Hamiltonian as in CDCC calculations.

Transfer cross sections: CDCC-Faddeev-ADWA

Various Calculations

- CDCC: $U_{\mathrm{pA}}, U_{\mathrm{nA}} @ \mathrm{E}_{\mathrm{d}} / 2$ in entrance channel, while $U_{\mathrm{pB}} @$ E_{p} in exit channel.
- Faddeev-AGS (FAGS1): $U_{\mathrm{pA}}, U_{\mathrm{pB}} @ \mathrm{E}_{\mathrm{d}} / 2$ and $U_{\mathrm{nA}} @$ $\mathrm{E}_{\mathrm{d}} / 2$ for all partial waves except for one corresponding to bound state.
- Faddeev-AGS (FAGS2): $U_{\mathrm{pA}}, U_{\mathrm{pB}} @ \mathrm{E}_{\mathrm{p}}$ and $U_{\mathrm{nA}} @ \mathrm{E}_{\mathrm{d}} / 2$ for all partial waves except for one corresponding to bound state.

Transfer cross sections

${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{p})^{11} \mathrm{Be}$ (g.s.)

PRC 85, 054621 (2012)
${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p}){ }^{49} \mathrm{Ca}$ (g.s.)

Collaboration meeting

Transfer cross sections

Collaboration meeting

Conclusions

1. CDCC/Faddeev-AGS comparison show no immediate correlation between elastic, transfer or breakup processes.

Conclusions

1. CDCC/Faddeev-AGS comparison show no immediate correlation between elastic, transfer or breakup processes.
2. Elastic Process

- CDCC is a good approximation to FAGS.
- Inclusion of n-A bound state in FAGS1 calculations introduces small modifications at large angles.

Conclusions

1. CDCC/Faddeev-AGS comparison show no immediate correlation between elastic, transfer or breakup processes.
2. Elastic Process

- CDCC is a good approximation to FAGS.
- Inclusion of n-A bound state in FAGS1 calculations introduces small modifications at large angles.

3. Breakup Process

- CDCC fails at lower energies in comparison to FAGS.
- Strong contributions from the proton and neutron Faddeev components are present, which are not explicitly included in CDCC.

Conclusions

1. CDCC/Faddeev-AGS comparison show no immediate correlation between elastic, transfer or breakup processes.
2. Elastic Process

- CDCC is a good approximation to FAGS.
- Inclusion of n-A bound state in FAGS1 calculations introduces small modifications at large angles.

3. Breakup Process

- CDCC fails at lower energies in comparison to FAGS.
- Strong contributions from the proton and neutron Faddeev components are present, which are not explicitly included in CDCC.

4. Transfer Process

- ADWA is a good approximation to CDCC/FAGS1 at low energy $\sim 10 \mathrm{MeV} / \mathrm{A}$.
- Sensitivity of cross sections to the choice of the energy at which the proton interaction is calculated in the Faddeev method makes the comparison of methods ambiguous for ${ }^{10} \mathrm{Be}$ and ${ }^{48} \mathrm{Ca}$ but robust for ${ }^{12} \mathrm{C}$.

Backup Slides

CDCC Model Space

Transfer cross sections: Testing Formalism

Transfer cross section for deuterons on ${ }^{10} \mathrm{Be}$ at: (a.) $\mathrm{E}_{\mathrm{d}}=21.4 \mathrm{MeV}$, (b.) $\mathrm{E}_{\mathrm{d}}=40.9 \mathrm{MeV}$ and (c.) $\mathrm{E}_{\mathrm{d}}=71 \mathrm{MeV}$.

Results indicate:

- Small Coulomb effects at very forward angles.
- Continuum has strong influence on Transfer process.

Alt, Grassberger, Sandhas Formalism (Faddeev-AGS)

$$
T_{\beta \alpha}=\bar{\delta}_{\beta \alpha} G_{0}^{-1}+\sum_{\gamma=1}^{3} \bar{\delta}_{\beta \gamma} t_{\gamma} G_{0} T_{\gamma \alpha}
$$

where,
$\bar{\delta}_{\beta \alpha}=\left(1-\delta_{\beta \alpha}\right) \&$
$G_{0}=\left(E+i 0-H_{0}\right)^{-1}$ is the free resolvent with E being the total energy in 3-body c.m. system.
t_{γ} is 2-body transition operator for each interacting pair and is derived from the pair potential v_{γ} via the Lippmann-Schwinger equation

$$
t_{\gamma}=v_{\gamma}+v_{\gamma} G_{0} t_{\gamma}
$$

Scattering amplitude: $X_{\beta \alpha}=\left\langle\phi_{\beta}\right| T_{\beta \alpha}\left|\phi_{\alpha}\right\rangle$

CDCC vs Faddeev: First Attempt

$$
\text { Ref.: A. Deltuva et al., Phys. Rev. C76, } 064602 \text { (2007) }
$$

- Good agreement for Elastic and Breakup observable for

$$
\begin{aligned}
& \text { 1. } \mathrm{d}+{ }^{12} \mathrm{C} @ \mathrm{E}_{\mathrm{d}}=56 \mathrm{MeV} \\
& \text { 2. } \mathrm{d}+{ }^{58} \mathrm{Ni} @ \mathrm{E}_{\mathrm{d}}=80 \mathrm{MeV}
\end{aligned}
$$

- Disagreement for Breakup and Transfer observable for $\mathrm{p}+{ }^{11} \mathrm{Be} @ \mathrm{E}_{\mathrm{Be}}=38.4 \mathrm{MeV} / \mathrm{A}$

What is the range of validity of CDCC method?

Breakup: Coupling to Transfer Channel

${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{pn}){ }^{10} \mathrm{Be}$
Coulomb interaction switched off

Breakup: Coupling to Transfer Channel

Coulomb interaction switched off

$$
{ }^{12} \mathrm{C}(\mathrm{~d}, \mathrm{pn})^{12} \mathrm{C}
$$

${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{pn}){ }^{48} \mathrm{Ca}$

U.S. DEPARTMENT OF

ENERCY Collaboration meeting June 25, 2012

Transfer cross sections: CDCC vs Faddeev

O ENERGY

Transfer cross sections: Estimate of Disagreement

Reaction	Energy (MeV)	$n l$	θ $($ deg. $)$	$\Delta_{\text {FAGS1-CDCC }}{ }^{2}$ $(\%)$	$\Delta_{\text {FAGS1-ADWA }}{ }^{1}$ $(\%)$
${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{p})$	21.4	$2 s$	0	3	6
	40.9	$2 s$	0	-36	-19
	71	$2 s$	0	-53	-48
$\mathrm{C}(\mathrm{d}, \mathrm{p})$	12	$1 p$	14	6	
	56	$1 p$	0	-21	-2
${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$	56	$2 p$	0	39	-30

${ }^{1}$ Phys. Rev. C84, 034607 (2011)
${ }^{2}$ Phys. Rev. C85, 054621 (2012)

Sensitivity to NN interaction

$$
{ }^{12} \mathrm{C}(\mathrm{~d}, \mathrm{p}){ }^{13} \mathrm{C}(\text { g.s. })
$$

$$
{ }^{12} \mathrm{C}(\mathrm{~d}, \mathrm{~d}){ }^{12} \mathrm{C}
$$

