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Motivation

K. Jones et al., Nature 465 (2010), 454.

208Pb(d,p)209Pb

132Sn(d,p)133Sn

? Study nature of single-particle state
? Tool: (d,p) reactions
? Important to have reaction theory

providing accurate description.

Spectroscopic factors

Single-particle states
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Theories & Test Cases

I Deuteron → loosely bound system

I Theories including deuteron breakup:
1. T-matrix Continuum Discretized Coupled Channels Method

Includes breakup to all orders in complete basis of projectile
bound and continuum states, but replaces exact 3-body wave
function by CDCC wave function in the transfer amplitude.
2. Alt, Grassberger, Sandhas Formalism (Faddeev-AGS)

Explicitly includes breakup and transfer channels to all orders.

I Our aim: To quantify accuracy of CDCC.

I We study three test cases as a function of beam energy.

1. 10Be(d,p)11Be(g.s.) @ Ed = 21.4, 40.9 & 71 MeV
2. 12C(d,p)13C(g.s.) @ Ed = 12 & 56 MeV
3. 48Ca(d,p)49Ca(g.s.) @ Ed = 56 MeV
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3-body Hamiltonian

I For pertinent comparison, we construct a simple 3-body
Hamiltonian

H3b = T̂R + T̂r + UpA + UnA + Vpn

T̂R , T̂r: kinetic energy operators

Vpn: Deuteron binding potential → Gaussian Potential

UpA: proton-target optical potential Chapel-Hill Global Parametrization

UnA: neutron-target optical potential (spin-orbit neglected)

I The interactions between all pairs are spin independent.

I Binding Potentials for neutron-target in final state
(r0 = 1.25 fm & a0 = 0.65 fm)

Nucleus nl Sn (MeV) VnA (MeV)
10Be 2s 0.504 57.064
12C 1p 4.947 39.547
48Ca 2p 5.146 48.905
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Elastic cross sections

Deuterons on 10Be
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Elastic cross section for deuterons on 10Be at:
(a.) Ed = 21.4 MeV, (b.) Ed = 40.9 MeV
and (c.) Ed = 71 MeV.

I In CDCC and Faddeev calculations (FADD2),
UpA & UnA are calculated at half the deuteron
energy (Ed).

I Small disagreement between CDCC & Faddeev
at angles > 80◦.
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Elastic cross sections

Deuterons on 12C
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Elastic cross section for deuterons on 12C at:
(a.) Ed = 12 MeV and (b.) Ed = 56 MeV.

I At lowest energy, large disagreement between
CDCC & Faddeev at angles > 70◦.

I Increase in beam energy improves agreement.

I For 48Ca at Ed = 56 MeV, better agreement in two
methods → behaviour similar to 12C @ 56 MeV!

Elastic cross section for deuterons on 48Ca at
Ed = 56 MeV.
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Elastic cross sections

Deuterons on 12C
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Elastic cross section for deuterons on 12C at:
(a.) Ed = 12 MeV and (b.) Ed = 56 MeV.

I At lowest energy, large disagreement between
CDCC & Faddeev at angles > 70◦.

I Increase in beam energy improves agreement.

I For 48Ca at Ed = 56 MeV, better agreement in two
methods → behaviour similar to 12C @ 56 MeV!

Elastic cross section for deuterons on 48Ca at
Ed = 56 MeV.
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Transfer cross sections: Testing Formalism

10Be (d, p) 11Be(g.s.)
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Transfer cross section for deuterons on 10Be
at: (a.) Ed = 21.4 MeV, (b.) Ed = 40.9 MeV
and (c.) Ed = 71 MeV.

Results indicate:

I Small Coulomb effects at very forward angles.

I Continuum has strong influence on Transfer
process.
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Transfer cross sections: Testing Formalism
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Transfer cross sections: CDCC v/s Faddeev
10Be (d, p) 11Be(g.s.)
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Transfer cross section for deuterons on 10Be
at: (a.) Ed = 21.4 MeV, (b.) Ed = 40.9 MeV
and (c.) Ed = 71 MeV.

I In CDCC calculation, UpA & UnA are
calculated at half the deuteron energy (Ed).

I In Faddeev calculations, UpA is calculated at
proton energy (Ep) in the exit channel. UnA is
calculated at Ed/2 for all partial waves except
for one corresponding to the bound state.

I Disagreement increases with beam energy.
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Transfer cross sections: CDCC v/s Faddeev
12C (d, p) 13C(g.s.)
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Transfer cross section for deuterons on 12C at:
(a.) Ed = 12 MeV and (b.) Ed = 56 MeV.

I Disagreement increases with beam energy.

Transfer cross section for 48Ca (d, p)
49Ca(g.s.) at Ed = 56 MeV.
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Estimate of Disagreement

Reaction Energy nl θ ∆FADD−CDCC

∆FADD−ADWA
1

(MeV) (deg.) (%)

(%)

21.4 2s 0 5

7

10Be(d, p) 40.9 2s 0 -31

-4

71 2s 0 -44

-31

12C(d, p) 12 1p 14 9

1

56 1p 0 -29

-45

48Ca(d, p) 56 2p 0 17

21

1 F. M. Nunes & A. Deltuva, PRC84, 034607 (2011)

Effect of choice of proton energy at
which proton interaction is
calculated in Faddeev calculations.
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Conclusions & Outlook

1. CDCC and Faddeev calculations are performed for varied test
cases spanning large beam energy range.
↪→ Good agreement in Elastic cross sections.
↪→ Transfer Process: Two methods are in good agreement at

low energy. Disagreement increases with the beam energy,
however systematic uncertainity also increases.

2. Comparison of two methods for breakup is in progress.

3. Studying Faddeev formalism in momentum space

I To include Optical potentials in separable form.
I Solve Faddeev-AGS equations with core excitations.
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Methods Used

I In CDCC:

I The full 3-body wave function is expanded in terms of a
complete basis of the deuteron’s bound and continuum
states.

Ψ =
∑
α

φα ψα

where, φα: Deuteron eigen states.
ψα: Relative wave function between deuteron
and target

I The transfer matrix element is written as

T = 〈χ(−) φ
(−)
nT |Vpn + UpT − U f |Ψ 〉

I In Faddeev:

I Set of coupled integral equations in terms of 3-body AGS
transition operators are solved.

I Coulomb is treated using the renormalization and screening
techniques.
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