

Testing Formalisms for Deuteron Breakup and Transfer Reactions

Neelam Upadhyay

NSCL, Michigan State University, USA

In Collaboration with: A. Deltuva (Universidade de Lisboa, Portugal) Filomena Nunes (NSCL, Michigan State University, USA)

This work is supported by U.S. Department of Energy under the grant number DE-SC0004087 and High Performance Computer Center (HPCC) at MSU.

COLLABORATIO

Motivation

Single-particle states

 $^{208}Pb(d,p)^{209}Pb$

 $^{132}{\rm Sn}({\rm d,p})^{133}{\rm Sn}$

- \star Study nature of single-particle state
- \star <u>Tool</u>: (d,p) reactions

DNP Meeting 2011

* Important to have reaction theory providing accurate description.

< A >

October 28, 2011

2

Spectroscopic factors

ENERGY

K. Jones et al., Nature 465 (2010), 454.

TORUS

COLLABORATION

Theories & Test Cases

COLLABORATION

- ▶ Deuteron \rightarrow loosely bound system
- ▶ Theories including deuteron breakup:
 - 1. T-matrix Continuum Discretized Coupled Channels Method

Includes breakup to all orders in complete basis of projectile bound and continuum states, but replaces exact 3-body wave function by CDCC wave function in the transfer amplitude.

2. Alt, Grassberger, Sandhas Formalism (Faddeev-AGS)

Explicitly includes breakup and transfer channels to all orders.

- ▶ Our aim: To quantify accuracy of CDCC.
- ▶ We study three test cases as a function of beam energy.
 - 1. ${}^{10}\text{Be}(d,p){}^{11}\text{Be}(g.s.) @ E_d = 21.4, 40.9 \& 71 \text{ MeV}$
 - 2. ${}^{12}C(d,p){}^{13}C(g.s.) @ E_d = 12 \& 56 \text{ MeV}$

ENERGY

3. ⁴⁸Ca(d,p)⁴⁹Ca(g.s.) @ $E_d = 56 \text{ MeV}$

3-body Hamiltonian

• For pertinent comparison, we construct a simple 3-body Hamiltonian

$$H_{3b} = \hat{T}_R + \hat{T}_r + U_{\rm pA} + U_{\rm nA} + V_{\rm pm}$$

 $\hat{T_R}$, $\hat{T_r}$: kinetic energy operators $V_{\rm pn}$: Deuteron binding potential \rightarrow Gaussian Potential $U_{\rm pA}$: proton-target optical potential Chapel-Hill Global Parametrization $U_{\rm nA}$: neutron-target optical potential (spin-orbit neglected)

- ▶ The interactions between all pairs are spin independent.
- ▶ Binding Potentials for neutron-target in final state $(r_0 = 1.25 \text{ fm } \& a_0 = 0.65 \text{ fm})$

ENERG

			,
Nucleus	nl	$S_n (MeV)$	$V_{\rm nA}~({\rm MeV})$
^{10}Be	2s	0.504	57.064
$^{12}\mathrm{C}$	1p	4.947	39.547
^{48}Ca	2p	5.146	48.905

COLLABORATIO

Elastic cross sections

Deuterons on ^{10}Be

Elastic cross section for deuterons on ¹⁰Be at: (a.) $E_d = 21.4 \text{ MeV}$, (b.) $E_d = 40.9 \text{ MeV}$ and (c.) $E_d = 71 \text{ MeV}$.

- ► In CDCC and Faddeev calculations (FADD2), U_{pA} & U_{nA} are calculated at half the deuteron energy (E_d).
- Small disagreement between CDCC & Faddeev at angles > 80°.

October 28, 2011

 $\mathbf{5}$

DNP Meeting 2011

Elastic cross sections

Deuterons on ^{12}C

Elastic cross section for deuterons on ${}^{12}C$ at: (a.) $E_d = 12$ MeV and (b.) $E_d = 56$ MeV.

- At lowest energy, large disagreement between CDCC & Faddeev at angles > 70°.
- ▶ Increase in beam energy improves agreement.

Elastic cross sections

Deuterons on $^{12}\mathrm{C}$

Elastic cross section for deuterons on $^{48}\mathrm{Ca}$ at $\mathrm{E_d}$ = 56 MeV.

COLLABORATION

ENERG

Elastic cross section for deuterons on ¹²C at: (a.) $E_d = 12$ MeV and (b.) $E_d = 56$ MeV.

- At lowest energy, large disagreement between CDCC & Faddeev at angles > 70°.
- ▶ Increase in beam energy improves agreement.
- For ⁴⁸Ca at E_d = 56 MeV, better agreement in two methods → behaviour similar to ¹²C @ 56 MeV!

Transfer cross sections: Testing Formalism

10 Be (d, p) 11 Be(g.s.)

Transfer cross section for deuterons on ^{10}Be at: (a.) $\text{E}_{\text{d}} = 21.4 \text{ MeV}$, (b.) $\text{E}_{\text{d}} = 40.9 \text{ MeV}$ and (c.) $\text{E}_{\text{d}} = 71 \text{ MeV}$.

Results indicate:

- ▶ Small Coulomb effects at very forward angles.
- Continuum has strong influence on Transfer process.

October 28, 2011

DNP Meeting 2011

8

10 Be (d, p) 11 Be(g.s.)

Transfer cross section for deuterons on ^{10}Be at: (a.) $\text{E}_{\text{d}} = 21.4 \text{ MeV}$, (b.) $\text{E}_{\text{d}} = 40.9 \text{ MeV}$ and (c.) $\text{E}_{\text{d}} = 71 \text{ MeV}$.

- ▶ In CDCC calculation, U_{pA} & U_{nA} are calculated at half the deuteron energy (E_d).
- ▶ In Faddeev calculations, U_{pA} is calculated at proton energy (E_p) in the exit channel. U_{nA} is calculated at $E_d/2$ for all partial waves except for one corresponding to the bound state.
- ▶ Disagreement increases with beam energy.

80

9

60

October 28, 2011

ENERG

20

DNP Meeting 2011

 $=\theta_{cm}$ (p) (degrees)

Transfer cross section for ${}^{48}Ca$ (d, p) 49 Ca(g.s.) at E_d = 56 MeV.

COLLABORATION

Estimate of Disagreement

Reaction	Energy	nl	θ	$\Delta_{\rm FADD-CDCC}$	
	(MeV)		(deg.)	(%)	
	21.4	2s	0	5	
${}^{10}Be(d,p)$	40.9	2s	0	-31	
	71	2s	0	-44	
12C(d, p)	12	1p	14	9	
	56	1p	0	-29	
$^{48}Ca(d,p)$	56	2p	0	17	

Estimate of Disagreement

Reaction	Energy	nl	θ	$\Delta_{\rm FADD-CDCC}$	$\Delta_{\rm FADD-ADWA}$ ¹
	(MeV)		(deg.)	(%)	(%)
	21.4	2s	0	5	7
${}^{10}Be(d,p)$	40.9	2s	0	-31	-4
	71	2s	0	-44	-31
$^{-12}C(d,p)$	12	1p	14	9	1
	56	1p	0	-29	-45
-48Ca(d,p)	56	2p	0	17	21

¹ F. M. Nunes & A. Deltuva, PRC84, 034607 (2011)

Estimate of Disagreement

Reaction	Energy	nl	θ	$\Delta_{\rm FADD-CDCC}$	$\Delta_{\rm FADD-ADWA}^{1}$
	(MeV)		(deg.)	(%)	(%)
	21.4	2s	0	5	7
${}^{10}Be(d,p)$	40.9	2s	0	-31	-4
	71	2s	0	-44	-31
$^{-12}C(d,p)$	12	1p	14	9	1
	56	1p	0	-29	-45
$^{-48}Ca(d,p)$	56	2p	0	17	21

¹ F. M. Nunes & A. Deltuva, PRC84, 034607 (2011)

Effect of choice of proton energy at which proton interaction is calculated in Faddeev calculations.

Conclusions & Outlook

- 1. CDCC and Faddeev calculations are performed for varied test cases spanning large beam energy range.
 - \hookrightarrow Good agreement in Elastic cross sections.
 - → Transfer Process: Two methods are in good agreement at low energy. Disagreement increases with the beam energy, however systematic uncertainity also increases.
- 2. Comparison of two methods for breakup is in progress.
- 3. Studying Faddeev formalism in momentum space
 - ▶ To include Optical potentials in separable form.
 - ▶ Solve Faddeev-AGS equations with core excitations.

Thank you very much for your attention

- \blacktriangleright In CDCC:
 - The full 3-body wave function is expanded in terms of a complete basis of the deuteron's bound and continuum states.

$$\Psi = \sum_{\alpha} \phi_{\alpha} \, \psi_{\alpha}$$

where,

COLLABORATION

 ϕ_{α} : Deuteron eigen states. ψ_{α} : Relative wave function between deuteron and target

▶ The transfer matrix element is written as

$$T = \langle \chi^{(-)} \phi_{\rm nT}^{(-)} | V_{\rm pn} + U_{\rm pT} - U^{\rm f} | \Psi \rangle$$

▶ In Faddeev:

- Set of coupled integral equations in terms of 3-body AGS transition operators are solved.
- Coulomb is treated using the renormalization and screening techniques.

