Separable Approximation to Optical Potentials

Linda Hlophe
Advisor: Dr. Ch. Elster
Department of Physics and Astronomy
Ohio University
Athens, OH

Outline

- Fourier transform of Wood-Saxon
- Momentum space: Comparison with FRESCO
- scattering phase shifts
- bound states
- Rank-I separable potentials
- Unitary pole approximation (UPA)
- Extension to positive energies (EST)

Wood-Saxon potential Fourier transform

- Coordinate space potential
where

$$
U_{\mathrm{nucl}}(r)=V(r)+i\left(W(r)+W_{s}(r)\right)
$$

$$
\begin{aligned}
V(r) & =\frac{-V_{r}}{1+\exp \left(\frac{r-R_{r}}{a_{r}}\right)} \\
W(r) & =\frac{-V_{i}}{1+\exp \left(\frac{r-R_{i}}{a_{i}}\right)} \\
W_{s}(r) & =\frac{-V_{s} \times 4 \times \exp \left(\frac{-\left(r-R_{s}\right)}{a_{s}}\right)}{\left(1+\exp \left(\frac{-\left(r-R_{s}\right)}{a_{s}}\right)\right)^{2}},
\end{aligned}
$$

- From contour Integration (thanks R. C. Johnson)

$$
\begin{align*}
\bar{V}(\mathbf{q})= & \frac{V_{r}}{\pi^{2}}\left\{\frac{\pi a e^{-\pi a q}}{q\left(1-e^{-2 \pi a q}\right)^{2}}\left[R_{0}\left(1-e^{-2 \pi a q}\right) \cos \left(q R_{0}\right)-\pi a\left(1+e^{-2 \pi a q}\right) \sin \left(q R_{0}\right)\right]\right. \\
& \left.-a^{3} e^{-\frac{R_{0}}{a}}\left[\frac{1}{\left(1+a^{2} q^{2}\right)^{2}}-\frac{2 e^{-\frac{R_{0}}{a}}}{\left(4+a^{2} q^{2}\right)^{2}}\right]\right\}, \tag{18}\\
\bar{W}_{s}(\mathbf{q})= & -4 a_{s} \frac{V_{s}}{\pi^{2}}\left\{\frac{\pi a e^{-\pi a q}}{\left(1-e^{-2 \pi a q}\right)^{2}}\right. \\
& {\left[\left(\pi a\left(1+e^{-2 \pi a q}\right)-\frac{1}{q}\left(1-e^{-2 \pi a q}\right)\right) \cos \left(q R_{s}\right)+R_{s}\left(1-e^{-2 \pi a q}\right) \sin \left(q R_{s}\right)\right] } \\
+ & \left.a^{2} e^{-R_{s} / a}\left[\frac{1}{\left(1+a^{2} q^{2}\right)^{2}}-\frac{4 e^{-R_{s} / a}}{\left(4+a^{2} q^{2}\right)^{2}}\right]\right\}, \tag{19}
\end{align*}
$$

Scattering properties

- Lippmann-Schwinger equation

$$
t_{l}\left(k, k^{\prime}\right)=v_{l}\left(k, k^{\prime}\right)+\int_{0}^{\infty} d k^{\prime \prime} k^{\prime \prime 2} v_{l}\left(k, k^{\prime \prime}\right) \frac{1}{E-k^{\prime 2} / 2 \mu+i \varepsilon} t_{l}\left(k^{\prime \prime}, k^{\prime}\right),
$$

- solved as linear system with zgesv from lapack (~50 pts)
- partial wave projection

$$
v_{l}\left(k, k^{\prime}\right)=2 \pi \int_{-1}^{1} d \cos \theta P_{l}(\cos \theta) U\left(\sqrt{k^{2}+k^{\prime 2}-2 k k^{\prime} \cos \theta}\right)
$$

- evaluated by Gauss-Legendre integration (~ 15 pts)
- transition amplitude and S-matrix

$$
\begin{aligned}
& \tau_{l}(E)=-\pi \mu k_{0} t_{l}\left(k_{0}, k_{0}\right) \\
& s_{l}(E)=1+2 i \tau_{l}(E)
\end{aligned}
$$

- phase shifts and inelasticity

$$
\begin{aligned}
\delta_{l} & =\frac{1}{2} \arctan \left(\frac{\Re \tau_{l}}{\frac{1}{2}-\Im \tau_{l}}\right) \\
\eta_{l} & =\sqrt{1+4\left[\left(\Re \tau_{l}\right)^{2}+\left(\Im \tau_{l}\right)^{2}-\Im \tau_{l}\right]}
\end{aligned}
$$

Figure 3: The real and imaginary parts to of the s-wave projected half-shell $\mathrm{n}+{ }^{48} \mathrm{Ca}$ optical potential as function of k for fixed momentum p, where $p^{2}=2 \mu E_{c . m \text {. }}$. The top panel shoes $E_{\text {c.m. }}=5 \mathrm{MeV}$, the bottom panel $E_{c . m}=45 \mathrm{MeV}$. The calculations use $R_{r}=r_{r}\left(A^{1 / 3}+1\right)$.
on-shell t-matrix for Wood-Saxon Potential $\mathrm{U}_{\text {nucl }}(\mathrm{q})$

Figure 5: The real and imaginary parts to of the s-wave $\left(t_{0}\left(k_{0}, k_{0}, E_{k_{0}}\right)\right.$ and p-wave $\left(t_{1}\left(k_{0}, k_{0}, E_{k_{0}}\right)\right.$ projected on-shell shell t-matrix solved with the $\mathrm{n}+{ }^{48} \mathrm{Ca}$ optical potential $U_{\text {nucl }}$ as function of the on-shell momentum k_{0}. The calculations use $R_{r}=r_{r}\left(A^{1 / 3}+1\right)$.

p-space, r-space comparison: phase shifts

$E_{\text {lab }}[\mathrm{MeV}]$	$E_{c m}[\mathrm{MeV}]$	$\delta_{0}[\mathrm{deg}]$		
		k - space	$\mathrm{r}-$ space	Neelam
5.00	4.897	-64.068	-64.071	-64.222
10.00	9.794	74.685	74.685	74.570
20.00	19.588	22.463	22.462	22.379
40.00	39.176	-38.026	-38.027	-38.084
50.00	48.970	-58.696	-58.697	-58.746

- k-space : code LH
- r-space : code CE
- Neelam : Fresco
p-space, r-space comparison: bound states

	$\mathrm{n}=2$	$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=1$
	bound state code		Fresco	
$\mathrm{l}=0$	15.7097	37.805	16.0284	37.9552
$\mathrm{l}=1$	5.1160	28.295	5.4322	28.5426
$\mathrm{l}=2$	17.691		18.03	
$\mathrm{l}=3$	6.5228			

- bound state code : solves the equation

$$
\psi_{l}(p)=\frac{1}{E_{b, l}-\frac{p^{2}}{2 \mu}} \int d p^{\prime} p^{\prime 2} v_{l}\left(p, p^{\prime}\right) \psi_{l}\left(p^{\prime}\right)
$$

- returns wave function and binding energy solved as linear system with dgeev from lapack

Unitary Pole Approximation (UPA)

- two body t-matrix

$$
t=v+v g v
$$

- spectral representation

$$
\mathbf{1}=\sum_{B}\left|\Psi_{B}\right\rangle\left\langle\Psi_{B}\right|+\int d^{3} k\left|\Psi_{k}^{(+)}\right\rangle\left\langle\Psi_{k}^{(+)}\right|
$$

- leads to

$$
\begin{aligned}
\langle\mathbf{k}| t(z)\left|\mathbf{k}^{\prime}\right\rangle= & \langle\mathbf{k}| v\left|\mathbf{k}^{\prime}\right\rangle+\sum_{B} \frac{\langle\mathbf{k}| v\left|\Psi_{B}\right\rangle\left\langle\Psi_{B}\right| v\left|\mathbf{k}^{\prime}\right\rangle}{z-E_{b}} \\
& +\int d^{3} q \frac{\langle\mathbf{k}| v\left|\Psi_{q}^{(+)}\right\rangle\left\langle\Psi_{q}^{(+)}\right| v\left|\mathbf{k}^{\prime}\right\rangle}{z-E_{q}} .
\end{aligned}
$$

- Hence for $z \rightarrow E_{B} \equiv-\left|E_{B}\right|$

$$
t(z) \simeq \frac{v\left|\Psi_{B}\right\rangle\left\langle\Psi_{B}\right| v}{z+E_{B}}
$$

UPA

- Ansatz for separable potential

$$
V \equiv v\left|\Psi_{B}\right\rangle\left\langle\Psi_{B}\right| v
$$

- rank-I t-matrix

$$
t(z)=|h\rangle \tau(z)\langle h|=\frac{|h\rangle\langle h|}{\frac{1}{\lambda}-\langle h| g_{0}(z)|h\rangle},
$$

- at the pole

$$
\frac{1}{\lambda}=\left\langle\Psi_{B}\right| v g_{0}\left(-E_{B}\right) v\left|\Psi_{B}\right\rangle=\left\langle\Psi_{B}\right| v \frac{1}{z+E_{B}} v\left|\Psi_{B}\right\rangle=\left\langle\Psi_{B}\right| v\left|\Psi_{B}\right\rangle,
$$

- t-matrix becomes

$$
t(z)=\frac{v\left|\Psi_{B}\right\rangle\left\langle\Psi_{B}\right| v}{\left\langle\Psi_{B}\right|\left(v-v g_{0}(z) v\right)\left|\Psi_{B}\right\rangle}
$$

- Explicitly

$$
t_{l}\left(k^{\prime}, k, z\right)=\left\langle k^{\prime}\right| v_{l}\left|\Psi_{B}^{l}\right\rangle \tau_{l}(z)\left\langle\Psi_{B}^{l} \mid v_{l} k\right\rangle=h_{B}^{l}\left(k^{\prime}\right) \tau_{l}(z) h_{B}^{l}(k)
$$

- with

$$
\begin{aligned}
& h_{B}^{l}(k)=\int d k^{\prime} k^{\prime 2} v_{l}\left(k, k^{\prime}\right) \Psi_{B}^{l}\left(k^{\prime}\right) \\
& \tau_{l}^{-1}(z)=\int d k k^{2} \int d k^{\prime} k^{\prime 2} \Psi_{B}^{l}(k) v_{l}\left(k, k^{\prime}\right) \Psi_{B}^{l}\left(k^{\prime}\right)-\int d k k^{2} \frac{\left|h_{B}^{l}(k)\right|^{2}}{z-\frac{k^{2}}{2 \mu}+i \epsilon}
\end{aligned}
$$

Test case: D.J. Ernst, C.M. Shakin, R. M.Thaler and D. L. Weiss

Phys. Rev. C8, 2056 (1973)
"deuteron" phase shifts
potential: squarewell: $\mathrm{V}_{0}=38.5, \mathrm{R}=1.93$

Extension to positive energies (EST)

- Original hamiltonian

$$
H=H_{0}+V
$$

- construct $\mathcal{V}=|v\rangle \lambda\langle v|$ such that at some energy, Ek, the separable hamiltonian is identical to the original one
- for separable potential

$$
\left|\Phi_{k_{E}}^{(+)}\right\rangle=\left|k_{E}\right\rangle+\frac{\lambda\left\langle v \mid k_{E}\right\rangle g_{0}(E)|v\rangle}{1-\lambda\langle v| g_{0}\left(E_{k}\right)|v\rangle}
$$

- for the original potential

$$
\left|\Psi_{k_{E}}^{(+)}\right\rangle=\left|k_{E}\right\rangle+g_{0}\left(E_{k_{E}}\right) V\left|\Psi_{k_{E}}^{(+)}\right\rangle .
$$

- taking $\quad|v\rangle \equiv V\left|\Psi_{k_{E}}^{(+)}\right\rangle$
then

$$
\begin{aligned}
& \frac{1}{\lambda}=\left\langle\Psi_{k_{E}}^{(+)}\right| V\left|\Psi_{k_{E}}^{(+)}\right\rangle, \\
& \mathcal{V}=\frac{V\left|\Psi_{k_{E}}^{(+)}\right\rangle\left\langle\Psi_{k_{E}}^{(+)}\right| V}{\left\langle\Psi_{k_{E}}^{(+)}\right| V\left|\Psi_{k_{E}}^{(+)}\right\rangle} \equiv\left|h_{k}\right\rangle \lambda\left\langle h_{k}\right|,
\end{aligned}
$$

D. J. Ernst, C. M. Shakin and R. M. Thaler, Phys. Rev. C 8, 46 (1973).

- t-matrix

$$
\begin{aligned}
& \left\langle k^{\prime}\right| t(z)|k\rangle \equiv\left\langle k^{\prime} \mid h_{k}\right\rangle \tau(z)\left\langle h_{k} \mid k\right\rangle \equiv\left\langle k^{\prime} \mid h_{k}\right\rangle\left[\frac{1}{\lambda}-\left\langle h_{k}\right| g_{0}(z)\left|h_{k}\right\rangle\right]^{-1}\left\langle h_{k} \mid k\right\rangle . \\
& \left\langle p^{\prime}\right| t(E)|p\rangle=\frac{\left\langle p^{\prime}\right| V\left|\Psi_{k_{E}}^{(+)}\right\rangle\left\langle\Psi_{k_{E}}^{(+)}\right| V|p\rangle}{\left\langle\left\langle\Psi_{k_{E}}^{(+)}\right| V-V g_{0}(E) V \mid \Psi_{k_{E}}^{(+)}\right\rangle} \\
& t\left(p^{\prime}, p, E\right)=\frac{t_{k_{E}}^{*}(p) t_{k_{E}}\left(p^{\prime}\right)}{\left\langle\Psi_{k_{E}}^{(+)}\right| V-V g_{0}(E) V\left|\Psi_{k_{E}}^{(+)}\right\rangle}
\end{aligned}
$$

- explicitly

$$
\begin{aligned}
& \tau(E)^{-1}=t^{*}\left(k_{E}, k_{E}, E_{k_{E}}\right) \\
& \quad+2 \mu\left[\mathcal{P} \int d p p^{2} \frac{\left|t\left(p, k_{E}, E_{k_{E}}\right)\right|^{2}}{k_{E}^{2}-p^{2}}-\mathcal{P} \int d p p^{2} \frac{\left|t\left(p, k_{E}, E_{k_{E}}\right)\right|^{2}}{k_{0}^{2}-p^{2}}\right] \\
& \quad+i \pi \mu\left[k_{0}\left|t\left(k_{0}, k_{E}, E_{k_{E}}\right)\right|^{2}-k_{E}\left|t\left(k_{E}, k_{E}, E_{k_{E}}\right)\right|^{2}\right]
\end{aligned}
$$

Phase Shift
square-well: $\mathrm{V}_{0}=38.5, \mathrm{R}=1.93$

Figure 9: The s-wave for a square well potential with parameters adjusted such that the deuteron binding energy of -2.225 MeV is reproduced. The solid line gives the calculation with the square well potential while the dashed line shows the calculation with the rank1 UPA approximation. The dotted, double-dash-dotted, and double-dot-dashed lines are calculated with EST rank-1 separable potentials constructed at the energies indicated in the figure.

Next: Extension to rank-2 potential

- generalized separable potential

$$
\mathbf{V}=\sum_{i, j} v\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right| M\left|\Psi_{j}\right\rangle\left\langle\Psi_{j}\right| v
$$

- constraint

$$
\delta_{i k}=\sum_{j}\left\langle\Psi_{i}\right| M\left|\Psi_{j}\right\rangle\left\langle\Psi_{j}\right| v\left|\Psi_{k}\right\rangle=\sum_{j}\left\langle\Psi_{i}\right| v\left|\Psi_{j}\right\rangle\left\langle\Psi_{j}\right| M\left|\Psi_{k}\right\rangle
$$

for rank-2

$$
\sum_{j=1}^{2} M_{i j}\left\langle\alpha_{j}\right| v\left|\alpha_{k}\right\rangle=\delta_{i k}
$$

- form factor
$\left.\left.\mathbf{h}(p)=\binom{h_{B}(p)}{t\left(p, k_{E}, E_{k_{E}}\right)}=\langle p| V \right\rvert\,\binom{\left|\Psi_{B}\right\rangle}{\left|\Phi_{k_{E}}^{(+)}\right\rangle} \equiv\langle p| V \right\rvert\,\binom{\left|\alpha_{1}\right\rangle}{\left|\alpha_{2}\right\rangle}$.
- M-matrix elements

$$
\binom{M_{11} M_{12}}{M_{21} M_{22}} \cdot\binom{A_{11} A_{12}}{A_{21} A_{22}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

with

$$
A_{i j} \equiv\left\langle\alpha_{j}\right| v\left|\alpha_{j}\right\rangle
$$

D. J. Ernst, C. M. Shakin and R. M. Thaler, Phys. Rev. C 8, 46 (1973).

- diagonalize M

$$
\hat{\mathbf{M}} \equiv \mathbf{U M U}^{-1}
$$

- eigenvectors

$$
\left|\hat{\alpha}_{i}\right\rangle=\sum_{j} U_{i j}\left|\alpha_{j}\right\rangle
$$

- coupling strengths

$$
\ddot{\lambda}_{i}=\left\langle\hat{\alpha}_{i}\right| \mathbf{M}\left|\hat{\alpha}_{i}\right\rangle
$$

- rank-2 separable potential (Neelam and CE)

$$
v_{l}\left(p^{\prime}, p\right)=h_{l, 1}\left(p^{\prime}\right) \lambda_{11} h_{l, 1}(p)+h_{l, 2}\left(p^{\prime}\right) \lambda_{22} h_{l, 2}(p)
$$

- t-matrix

$$
t_{l}\left(p^{\prime}, p, E\right)=\sum_{i, j=1}^{2} h_{l, i}\left(p^{\prime}\right) \tau_{i j}(E) h_{l, j}(p)
$$

with

$$
\tau_{i j}(E)=(\lambda-B(E))_{i j}^{-1},
$$

where

$$
B_{i j}(E) \equiv \int d p^{\prime \prime} p^{\prime \prime 2} \frac{h_{i}\left(p^{\prime \prime}\right) h_{j}\left(p^{\prime \prime}\right)}{E-p^{2} / 2 \mu}
$$

OR Calculate t-matrix without diagonalizing M

Figure 4: The real and imaginary parts to of the p-wave projected half-shell $\mathrm{n}+{ }^{48} \mathrm{Ca}$ optical potential as function of k for fixed momentum p, where $p^{2}=2 \mu E_{c . m}$. The top panel shoes $E_{c . m .}=5 \mathrm{MeV}$, the bottom panel $E_{c . m .}=45 \mathrm{MeV}$. The calculations use $R_{r}=r_{r}\left(A^{1 / 3}+1\right)$.

Figure 6: The real and imaginary parts to of the s-wave $\left(t_{0}\left(q, k_{0}, E_{k_{0}}\right)\right.$ and p-wave $\left(t_{1}\left(q, k_{0}, E_{k_{0}}\right)\right.$ projected half-shell t-matrix solved with the $\mathrm{n}+{ }^{48} \mathrm{Ca}$ optical potential $U_{\text {nucl }}$ as function of q for fixed momentum k_{0}, where $k_{0}^{2}=2 \mu E_{\text {c.m. }}$. The top panel shoes $E_{c . m}=5 \mathrm{MeV}$, the bottom panel $E_{c . m .}=45 \mathrm{MeV}$. The calculations use $R_{r}=r_{r}\left(A^{1 / 3}+1\right)$.
np on-shell t-matrix
Square Well : $1=0, \mathrm{~V}_{0}=38.5 \mathrm{MeV}, \mathrm{R}_{0}=1.93 \mathrm{fm}$

np on-shell t-matrix
Square Well : $1=0, V_{0}=38.5 \mathrm{MeV}, \mathrm{R}_{0}=1.93 \mathrm{fm}$

