Surface-integral formalism for transfer reactions:

Applications and applicability for (d,p) reactions

TORUS Collaboration Meeting MSU/NSCL, East Lansing, MI June 25-26, 2012

Jutta Escher, Ian Thompson (LLNL) Akram Mukhamedzhanov (Texas A&M) TORUS Collaboration

Lawrence Livermore National Laboratory

LLNL-PRES-562315

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. Support was provided by the DOE through the topical collaboration TORUS.

Studying nuclear structure with (d,p) one-nucleon transfers

(d,p) reactions:

- Simplest mechanism for adding a neutron
- Traditionally used to study stable nuclei
- Used in inverse kinematics at RIB facilities, for studying weakly-bound systems

Theoretical descriptions of (d,p) reactions:

 Progress over the years: Plane-wave theory, DWBA (zero-range & finite-range), coupledchannels approach, breakup, etc.

But: Current theories of (d,p) reactions not very useful for transfers to resonance states:

- Conceptual: extracting spectroscopic information
- Practical: convergence issues

Resonances in low-energy nuclear physics

Resonances:

- Unstable quantum-mechanical states
- Occur in light, medium-mass, and heavy nuclei
- Crucially affect astrophysical reaction rates
- Abundant in weakly-bound nuclei

Current approach:

- Apply standard (d,p) descriptions to resonances
- Increase model space to achieve convergence

Describing resonances in binary reactions

R-matrix approach:

Main idea: divide space into 2 regions:

 $\mathsf{r} \leq \mathsf{a} \;$ -- interior: nuclear and Coulomb interactions

- r > a -- exterior: Coulomb only
- Formalism:

Interior: expand nuclear wave function in set of basis functions Exterior: scattering wave function

Surface: matching conditions allow to parameterize collision matrix -> expressions for cross sections

- Connect observed parameters (E_R, Γ) to formal parameters (\check{E}_R , γ^2)
- Typical applications adjust parameters to reproduce measured cross sections

Experimental studies of resonances:

• Elastic & inelastic scattering, capture, etc.

Characterization of resonances: position & widths

Exploring R-matrix ideas for (d,p) one-nucleon transfers

Proposed new formalism (Mukhamedzhanov, 2011):

- R-matrix concepts:
 - $\circ~$ surface separating internal and external regions
 - cross sections expressed in terms of reduced widths, logarithmic derivatives, surface radii
- Goals for (d,p):
 - $\circ~$ useful for resonances
 - $\circ\;$ reduce dependence on model for interior
 - extract useful spectroscopic quantities from comparison to experiment (widths)
- Formalism:
 - $\circ\;$ applicable to stripping to bound and resonance states
 - general enough to include deuteron breakup contributions via CDCC (continuum-discretized coupled-channels method)
 - bonus: resolves practical issues related to numerical convergence

Formalism: Mukhamedzhanov, PRC 84, 044616 (2011)

Exploring R-matrix ideas for (d,p) one-nucleon transfers II

Generalized R-matrix formalism for (d,p) reactions I

Splitting the transition matrix element M:

Interior and exterior with respect to r_{nA}

$$M^{(\text{post})} = \langle \Phi_{f}^{(-)} | \Delta V_{pF} | \Psi_{i}^{(+)} \rangle$$

$$\frac{DWBA}{\langle \phi_{F} \chi_{pF}^{(-)} | \Delta V_{pF} | \phi_{d} \phi_{A} \chi_{dA}^{(+)} \rangle$$

$$\langle I_{A}^{F} \chi_{pF}^{(-)} | \Delta \underline{V}_{pF} | \phi_{d} \chi_{dA}^{(+)} \rangle$$

$$\frac{\text{Interior} + \text{exterior}}{M^{(\text{post})} = M^{(\text{post})}(0,a) + M^{(\text{post})}(a,\infty)}$$
$$I_A^F = \langle \phi_A | \phi_F \rangle = I_A^F(r_{nA})$$

Mukhamedzhanov

$$M^{(\text{post})}(a,\infty) = M_{\text{surf}}(a) + M^{(\text{prior})}(a,\infty)$$
$$M_{\text{surf}}(a) = \langle I_A^F \chi_{pF}^{(-)} | [\overleftarrow{T} - \overrightarrow{T}] | \phi_d \chi_{dA}^{(+)} \rangle_{\text{ex}}$$

$$\int_{r \leqslant R} d\mathbf{r} f(\mathbf{r}) [\overleftarrow{T} - \overrightarrow{T}] g(\mathbf{r})$$

= $-\frac{1}{2\mu} \oint_{r=R} d\mathbf{S} [g(\mathbf{r}) \nabla_{\mathbf{r}} f(\mathbf{r}) - f(\mathbf{r}) \nabla_{\mathbf{r}} g(\mathbf{r})]$
= $-\frac{1}{2\mu} R^2 \int d\Omega_{\mathbf{r}} \left[g(\mathbf{r}) \frac{\partial f(\mathbf{r})}{\partial r} - f(\mathbf{r}) \frac{\partial g(\mathbf{r})}{\partial r} \right]_{r=R}$

Surface term

$$\begin{split} &\mathsf{M}_{\mathsf{surf}}(\mathsf{a}) = \mathsf{f}(\mathsf{a}, \, \mathsf{C}_{\mathsf{A}}{}^{\mathsf{F}}, \, \mathsf{B}_{\mathsf{n}\mathsf{A}}) \\ &\mathsf{B}_{\mathsf{n}\mathsf{A}} = \mathsf{log} \; \mathsf{derivative} \; \mathsf{of} \; \mathsf{I}_{\mathsf{A}}{}^{\mathsf{F}} \; \mathsf{at} \; \mathsf{surface} \; \mathsf{radius} \; \mathsf{a} \\ &\mathsf{ANC:} \; \mathsf{C}_{\mathsf{A}}{}^{\mathsf{F}} \; \mathsf{defined} \; \mathsf{through:} \; \mathsf{I}_{\mathsf{A}}{}^{\mathsf{F}} \; (\mathsf{r}_{\mathsf{n}\mathsf{A}}) \; \mathcal{Y}_{\mathsf{A}}{}^{\mathsf{F}} \; \mathsf{W}(\mathsf{kr}_{\mathsf{n}\mathsf{A}}) \\ & \mathsf{related} \; \mathsf{to} \; \mathsf{reduced} \; \mathsf{width} \; \mathsf{amplitude} \; \mathsf{C}_{\mathsf{A}}{}^{\mathsf{F}} \sim \gamma_{\mathsf{n}\mathsf{A}} \end{split}$$

Generalized R-matrix formalism for (d,p) reactions II

DWBA matrix element

 $M^{(\text{post})} = M^{(\text{post})}(0,a) + M_{(\text{surf})}(a) + M^{(\text{prior})}(a,\infty)$

$$\mathsf{M}_{(\mathsf{surf})}(\mathsf{a}) = \sqrt{\frac{\mathcal{R}_{nA}}{2\mu_{nA}}} \sum_{j_{nA}m_{j_{nA}}m_{l_{nA}}M_n} \langle J_A M_A j_{nA} m_{j_{nA}} | J_F M_F \rangle \langle J_n M_n l_{nA} m_{l_{nA}} | j_{nA} m_{j_{nA}} \rangle \langle J_p M_p J_n M_n | J_d M_d (\gamma_{nAj_{nA}} l_{nA}) \rangle$$

$$\times \int \mathrm{d}\mathbf{r}_{pF} \chi^{(+)}_{-\mathbf{k}_{pF}}(\mathbf{r}_{pF}) \int \mathrm{d}\Omega_{\mathbf{r}_{nA}} Y^*_{l_{nA}m_{l_{nA}}}(\hat{\mathbf{r}}_{nA}) \left[\varphi_d(\mathbf{r}_{pn}) \chi^{(+)}_{\mathbf{k}_{dA}}(\mathbf{r}_{dA}) (\mathcal{B}_{nA}) - 1 \right] - \mathcal{R}_{nA}} \frac{\partial \varphi_d(\mathbf{r}_{pn}) \chi^{(+)}_{\mathbf{k}_{dA}}(\mathbf{r}_{dA})}{\partial r_{nA}} \left] \Big|_{r_{nA} = \mathcal{R}_{nA}} \right]$$

Assessing the approach:

- Internal external separation sensible?
- Dominant surface term? Size of corrections?
- Study cross sections arising from different terms
- · Start with DWBA and bound states
- Investigate resonances

Cases considered so far:

- ⁹⁰Zr(d,p) for E_d=11 MeV
 ⁹¹Zr gs, 1st excited state, 2f_{7/2} resonance
- ⁴⁸Ca(d,p) for E_d=13 MeV – ⁴⁹Ca gs, 1st excited state
- ²⁰O(d,p) for E_d=21 MeV
 ²¹O gs, 1st excited state, 1d_{3/2} and 1f_{7/2} resonances
- ¹²C(d,p) for E_d=30 MeV
- ⁴⁰Ca(d,p) for E_d=34.4 MeV
- ²⁰⁹Pb(d,p) for E_d=52 MeV
- Planned: ${}^{48}Ca(d,p)$ for E_d =19.3 and 56 MeV

Assessing the R-matrix ideas la

This case:

• ${}^{90}Zr(d,p)$ for $E_d=11$ MeV ${}^{91}Zr gs (5/2+)$ \leftarrow bound ${}^{st} excited state (1/2+)$ ${}^{2f}_{7/2} resonance$

Observations

- · 'action is in the nuclear surface'
- Post formalism more sensitive to larger radii than prior:

$$\begin{split} \mathsf{M}^{(\text{post})} &= < \Phi_{\text{f}}^{(-)} \mid \Delta \mathsf{V}_{\text{pF}} \mid \Psi_{\text{i}}^{(+)} > \\ \Delta \mathsf{V}_{\text{pF}} &= \mathsf{V}_{\text{pA}} + \mathsf{V}_{\text{pn}} - \mathsf{U}_{\text{pF}} \end{split}$$
 $\begin{aligned} \mathsf{M}^{(\text{prior})} &= < \Psi_{\text{f}}^{(-)} \mid \Delta \mathsf{V}_{\text{dA}} \mid \Phi_{\text{i}}^{(+)} > \\ \Delta \mathsf{V}_{\text{dA}} &= \mathsf{V}_{\text{pA}} + \mathsf{V}_{\text{nA}} - \mathsf{U}_{\text{dA}} \end{split}$

surface radius with respect to $\ensuremath{r_{nA}}$

Assessing the R-matrix ideas Ib

This case:

• ⁹⁰Zr(d,p) for E_d=11 MeV ⁹¹Zr gs (5/2+) 1st excited state (1/2+) ← bound 2f_{7/2} resonance

Observations

- · 'action is in the nuclear surface'
- Post formalism more sensitive to larger radii than prior:

$$\begin{split} \mathsf{M}^{(\text{post})} &= < \Phi_{\text{f}}^{(-)} \mid \Delta \mathsf{V}_{\text{pF}} \mid \Psi_{\text{i}}^{(+)} > \\ \Delta \mathsf{V}_{\text{pF}} &= \mathsf{V}_{\text{pA}} + \mathsf{V}_{\text{pn}} - \mathsf{U}_{\text{pF}} \end{split}$$
 $\begin{aligned} \mathsf{M}^{(\text{prior})} &= < \Psi_{\text{f}}^{(-)} \mid \Delta \mathsf{V}_{\text{dA}} \mid \Phi_{\text{i}}^{(+)} > \\ \Delta \mathsf{V}_{\text{dA}} &= \mathsf{V}_{\text{pA}} + \mathsf{V}_{\text{nA}} - \mathsf{U}_{\text{dA}} \end{split}$

Peak cross section relative to full calculation

Assessing the R-matrix ideas Ic

Observations

- · 'action is in the nuclear surface'
- Post formalism more sensitive to larger radii than prior:

$$\begin{split} \mathsf{M}^{(\text{post})} &= < \Phi_{\text{f}}^{(-)} \mid \Delta \mathsf{V}_{\text{pF}} \mid \Psi_{\text{i}}^{(+)} > \\ \Delta \mathsf{V}_{\text{pF}} &= \mathsf{V}_{\text{pA}} + \mathsf{V}_{\text{pn}} - \mathsf{U}_{\text{pF}} \end{split}$$
 $\begin{aligned} \mathsf{M}^{(\text{prior})} &= < \Psi_{\text{f}}^{(-)} \mid \Delta \mathsf{V}_{\text{dA}} \mid \Phi_{\text{i}}^{(+)} > \\ \Delta \mathsf{V}_{\text{dA}} &= \mathsf{V}_{\text{pA}} + \mathsf{V}_{\text{nA}} - \mathsf{U}_{\text{dA}} \end{split}$

 Resonance: reduced contribution from interior, more pronounced surface effect Peak cross section relative to full calculation

Assessing the R-matrix ideas Ila

2. Surface contribution

$$M = M^{(\text{post})}(0,a) + M_{(\text{surf})}(a) + M^{(\text{prior})}(a,\infty)$$

This case:

• ${}^{90}Zr(d,p)$ for $E_d = 11 \text{ MeV}$ ${}^{91}Zr \text{ gs } (5/2+)$ \leftarrow bound ${}^{1st} \text{ excited state } (1/2+)$ ${}^{2f}_{7/2} \text{ resonance}$

Observations

- Surface term indeed dominant 6-8 fm
- Small interior contributions → little dependence on model for interior
- Small exterior contributions → better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation

Angular cross sections for a=7 fm

Assessing the R-matrix ideas IIb

2. Surface contribution

$$M = M^{(\text{post})}(0,a) + M_{(\text{surf})}(a) + M^{(\text{prior})}(a,\infty)$$

This case:

• ⁹⁰Zr(d,p) for E_d=11 MeV ⁹¹Zr gs (5/2+) 1st excited state (1/2+) ← bound 2f_{7/2} resonance

Observations

- Surface term indeed dominant 6-8 fm
- Small interior contributions → little dependence on model for interior
- Small exterior contributions → better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation

Assessing the R-matrix ideas IIc

0 L 0

resonance

2. Surface contribution $M = M^{(post)}(0,a) + M_{(surf)}(a) + M^{(prior)}(a,∞)$ This case: • ⁹⁰Zr(d,p) for E_d=11 MeV ⁹¹Zr gs (5/2+)

1st excited state (1/2+) 2f_{7/2} resonance

Observations

- Surface term indeed dominant 6-8 fm
- Small interior contributions → little dependence on model for interior
- Small exterior contributions → better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external
- Reduced interior contribution at peak
 for surface term

Peak cross section relative to full calculation

80

Angle [deg]

40

60

120

100

140

160

180

Assessing the R-matrix ideas - ⁴⁸Ca

2. Surface contribution

$$M = M^{(\text{post})}(0,a) + M_{(\text{surf})}(a) + M^{(\text{prior})}(a,\infty)$$

This case:

• ⁴⁸Ca(d,p) for E_d=13 MeV ⁴⁹Ca gs (3/2-) ← bound ^{1st} excited state (1/2-)

Observations

- Surface term indeed dominant 5-8 fm
- Small interior contributions → little dependence on model for interior
- Small exterior contributions → better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external
- Cross section calculated from surface term sensitive to surface radius

Peak cross section relative to full calculation

Surface angular cross sections for various a values

Assessing the R-matrix ideas - ⁴⁸Ca

2. Surface contribution $M = M^{(post)}(0,a) + M_{(surf)}(a) + M^{(prior)}(a,\infty)$

This case:

⁴⁸Ca(d,p) for E_d=13 MeV
 ⁴⁹Ca gs (3/2-)
 1st excited state (1/2-)

Observations

- Surface term indeed dominant 5-7 fm
- Small interior contributions → little dependence on model for interior
- Small exterior contributions → better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external
- Cross section calculated from surface term sensitive to surface radius

Peak cross section relative to full calculation

Surface angular cross sections for various a values

Assessing the R-matrix ideas – ²⁰O

<u>In progress</u>

Data for both bound and resonance states available!

This case:

• ${}^{20}O(d,p)$ for $E_d=21$ MeV ${}^{20}O$ gs (3/2-) 1^{st} excited state (1/2-) $1d_{3/2}$ and $1f_{7/2}$ resonances \leftarrow resonance

Phase shifts for resonances considered

Cross sections for bound states compared to data

Next: Extension of the formalism to include breakup

- · Successfully used for describing data
- Currently revisited via comparison with Fadeev

CDCC extension of R-matrix formalism

- Simultaneous calculation of breakup and transfer cross sections
- Exterior term included in breakup, convergence issues removed
- More peripheral, reduce interior contribution
- Surface term dominant

Conclusions

Studying resonances with (d,p):

- Already underway at RIB facilities
- Conceptual and practical problems have to be overcome

New formalism:

- Builds on ideas from successful R-matrix approach
- Separation into interior and exterior regions works formally well, surface term emerges as important contributor, can be expressed in terms of familiar R-matrix parameters -> meaningful spectrosopic information
- Test cases show that the surface term is dominant; other contributions may not be negligible, but resonances less affected by interior contributions
- Including breakup via CDCC removes exterior prior contribution, thus eliminates convergence problem for resonances

Further studies will clarify conditions where the surface formalism will work well.

Promising approach for transfers to resonances.

TORUS Collaboration

Reaction Theory.org

TORUS: Theory of Reactions for Unstable iSotopes A Topical Collaboration for Nuclear Theory

Collaboration

Research Proposal

Research Papers

Research Talks

TORUS internal

Workshops

_Laboratories

_Experiments

_Site Details

www.ReactionTheory.org

Theory of Reactions for Unstable iSotopes

A Topical Collaboration to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations and by developing a new partial-fusion theory to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest identified in the solicitation: (b) properties of nuclei far from stability; (c) microscopic studies of nuclear input parameters for astrophysics and (e) microscopic nuclear reaction theory.

Webmaster: UT@ReactionTheory.org

© jotero.com

TORUS members

Ian Thompson, LLNL Jutta Escher, LLNL

Filomena Nunes, MSU Neelam Upadhyay (PD)

Akram Mukhamedzhanov (TAMU)

V. Eremenko (PD)

Charlotte Elster (OU)

Goran Arbanas (ORNL)

Investigating the role of the core-core interaction V_{pA}

This case:

• ${}^{90}Zr(d,p)$ for $E_d = 11 \text{ MeV}$ ${}^{91}Zr \text{ gs}(5/2+)$ \leftarrow bound ${}^{st} \text{ excited state (1/2+)}$ ${}^{2f}_{7/2} \text{ resonance}$

Observations

 Overall cross section and relative strength of contributions varies with the strength of the core-core interaction

Investigating the role of the core-core interaction V_{pA}

This case:

⁹⁰Zr(d,p) for E_d=11 MeV
 ⁹¹Zr gs (5/2+)
 1st excited state (1/2+) ← bound
 2f_{7/2} resonance

Observations

 Overall cross section and relative strength of contributions varies with the strength of the core-core interaction

Exploring R-matrix ideas for (d,p) one-nucleon transfers II

Assessing the R-matrix ideas - ⁴⁸Ca

2. Surface contribution $M = M^{(post)}(0,a) + M_{(surf)}(a) + M^{(prior)}(a,∞)$

This case:

⁴⁸Ca(d,p) for E_d=13 MeV
 ⁴⁹Ca gs (3/2-)
 1st excited state (1/2-)
 bound

Observations

- Surface term indeed dominant 5-7 fm
- Small interior contributions → little dependence on model for interior
- Small exterior contributions → better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation 1.6M^(prior)(a,∞) 1.4 Normalized peak cross section 8.0 B M^(post)(0,a) M_(surf)(a) ⁴⁹Ca gs (3/2-) post, internal prior, external surface 0.2 0ò 10 12 18 20 4 6 8 14 16 Surface radius [fm] 1.6 M^(prior)(a,∞) 1.4 Normalized peak cross section 8.0 peak cross section 0.4 peak cross section $M^{(post)}(0.a)$ M_(surf)(a) ⁴⁹Ca 1st (1/2-) post, internal prior, external surface 0.2 0^L0 8 10 12 14 16 18 20 6

Surface radius [fm]