Exploring R-matrix ideas for the description of one-nucleon transfer reactions

NHEP Section talk
May 30, 2012

Lawrence Livermore National Laboratory

Jutta Escher, Ian Thompson (LLNL) Akram Mukhamedzhanov (Texas A\&M) TORUS Collaboration

TORUS Collaboration

ReactionTheory.org

TORUS: Theory of Reactions for Unstable iSotopes A Topical Collaboration for Nuclear Theory

TORUS members

Ian Thompson, LLNL Jutta Escher, LLNL

Filomena Nunes, MSU
Neelam Upadhyay (PD)
Akram Mukhamedzhanov
(TAMU)
V. Eremenko (PD)

Charlotte Elster (OU)
Goran Arbanas (ORNL)

Studying nuclear structure with (d,p) one-nucleon transfers

(d,p) reactions:

- Simplest mechanism for adding a neutron
- Traditionally used to study stable nuclei
- Used in inverse kinematics at RIB facilities, for studying weakly-bound systems

Theoretical descriptions of (d, p) reactions:

- Progress over the years: Plane-wave theory, DWBA (zero-range \& finite-range), coupledchannels approach, breakup, etc.

Current status of (d, p) direct-reaction theories:

- Developing Fadeev techniques to better account for 3-body effects (TORUS collab.)
- Conceptual work needed: rethinking spectroscopic factors

- Not very useful for transfers to resonance states.

Resonances in low-energy nuclear physics

Resonances:

- Unstable quantum-mechanical states
- Occur in light, medium-mass, and heavy nuclei
- Crucially affect astrophysical reaction rates
- Abundant in weakly-bound nuclei

INTERACTION ENERGY E

Problems in applying standard method to resonances:

- Conceptual: meaning of spectroscopic factor?
- Practical: convergence issues

Resonances in low-energy nuclear physics

Resonances:

- Unstable quantum-mechanical states
- Occur in light, medium-mass, and heavy nuclei
- Crucially affect astrophysical reaction rates
- Abundant in weakly-bound nuclei

Evolution of single-particle energies and the location of the

Problems in applying standard method to resonances:

- Conceptual: meaning of spectroscopic factor?
- Practical: convergence issues
${ }^{20} \mathrm{O}(\mathrm{d}, \mathrm{p}){ }^{21} \mathrm{O}$ inverse-kinematics experiment at GANIL to determine $N=16$ shell gap

Describing resonances in binary reactions

Experimental studies of resonances:

- Elastic \& inelastic scattering, capture, etc.

- Characterization of resonances: position \& widths

R-matrix approach:

- Main idea: divide space into 2 regions:
$r \leq a--$ interior: nuclear and Coulomb interactions
$r>a--$ exterior: Coulomb only
- Formalism:

Interior: set of basis functions to express nuclear wave function
Exterior: scattering wave function
Surface: matching conditions allow to parameterize collision matrix -> expressions for cross sections

- Connect observed parameters $\left(\mathrm{E}_{\mathrm{R}}, \Gamma\right)$ to formal parameters ($\check{E}_{R}, \gamma^{2}$)
- Typical applications adjust parameters to reproduce measured cross sections

Exploring R-matrix ideas for (d,p) one-nucleon transfers

Proposed new formalism (Mukhamedzhanov, 2011):

- R-matrix concepts:
- surface separating internal and external regions
- cross sections expressed in terms of reduced widths, logarithmic derivatives, surface radii
- Applicable to stripping to bound and resonance states
- Provides conceptually improved way to describe (d,p) transfer reactions
- General enough to include deuteron breakup contributions via CDCC
- Resolves practical issues related to numerical convergence

Formalism:

Mukhamedzhanov, PRC 84, 044616 (2011)

Exploring R-matrix ideas for (d,p) one-nucleon transfers II

Transition matrix element M:

- Connects initial to final wave function
- Cross section $\sigma \sim M^{2}$

$$
\mathrm{M}^{(\text {post })}=\left\langle\Phi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{pF}}\left|\Psi_{\mathrm{i}}^{(+)}\right\rangle
$$

$\Psi_{\mathrm{i}}^{(+)}$: exact d+A scattering function

$\Phi_{\mathrm{f}}^{(-)}=\varphi_{\mathrm{F}} \chi_{\mathrm{pF}}{ }^{(-)}$exit channel function
$\Delta \mathrm{V}_{\mathrm{pF}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{pn}}-\mathrm{U}_{\mathrm{pF}}$
$\mathrm{I}_{\mathrm{A}}{ }^{\mathrm{F}}=\left\langle\varphi_{\mathrm{A}} \mid \varphi_{\mathrm{F}}\right\rangle$ one-body overlap

Exploring R-matrix ideas for (d, p) one-nucleon transfers II

Transition matrix element M:

- Connects initial to final wave function
- Cross section $\sigma \sim M^{2}$

$\Psi_{\mathrm{i}}^{(+)}$: exact d+A scattering function

$\Phi_{\mathrm{f}}^{(-)}=\varphi_{\mathrm{F}} \chi_{\mathrm{pF}}{ }^{(-)}$exit channel function
$\Delta \mathrm{V}_{\mathrm{pF}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{pn}}-\mathrm{U}_{\mathrm{pF}}$
$I_{A}{ }^{F}=\left\langle\varphi_{A} \mid \varphi_{F}\right\rangle$ one-body overlap

$$
\begin{gathered}
\mathrm{M}^{(\text {prior })}=\left\langle\Psi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{dA}}\left|\Phi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{dA}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{nA}}-\mathrm{U}_{\mathrm{dA}}
\end{gathered}
$$

Generalized R-matrix formalism for (d,p) reactions I

Generalized R-matrix formalism for (d,p) reactions II

$$
\begin{gathered}
\text { DWBA matrix element } \\
M^{(\text {post })}=M^{(\text {post })}(0, a)+M_{(\text {surf })}(a)+M^{\text {(prior) }}(a, \infty)
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{M}_{(\mathrm{surf})}(\mathrm{a})= & \sqrt{\frac{R_{n A}}{2 \mu_{n A}}} \sum_{j_{n A} m_{j_{n A}} m_{n A} M_{n}}\left\langle J_{A} M_{A} j_{n A} m_{j_{n A}} \mid J_{F} M_{F}\right\rangle\left\langle J_{n} M_{n} l_{n A} m_{l_{n A}} \mid j_{n A} m_{j_{n A}}\right\rangle\left\langle J_{p} M_{p} J_{n} M_{n}\right| J_{d} M_{d}\left\langle\gamma_{\left.n A j_{n A} l_{n A}\right\rangle}\right. \\
& \left.\times \int \mathrm{d} \mathbf{r}_{p F} \chi_{-\mathbf{k}_{p F}}^{(+)}\left(\mathbf{r}_{p F}\right) \int \mathrm{d} \Omega_{\mathbf{r}_{n A}} Y_{l_{n A} m_{n A}}^{*}\left(\hat{\mathbf{r}}_{n A}\right)\left[\varphi_{d}\left(\mathbf{r}_{p n}\right) \chi_{\mathbf{k}_{d A}}^{(+)}\left(\mathbf{r}_{d A}\right)\left(B_{n A}\right)-1\right)-R_{n A} \frac{\partial \varphi_{d}\left(\mathbf{r}_{p n}\right) \chi_{\mathbf{k}_{d A}}^{(+)}\left(\mathbf{r}_{d A}\right)}{\partial r_{n A}}\right]\left.\right|_{r_{n A}=R_{n A}}
\end{aligned}
$$

Assessing the approach:

- Separation into internal and external regions sensible?
- Is the surface term dominant and what is the size of the corrections?
- Study cross sections arising from different terms
- Start with DWBA and bound states
- Investigate resonances

Cases considered so far:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
- ${ }^{91} \mathrm{Zr}$ gs, $1{ }^{\text {st }}$ excited state, $2 \mathrm{f}_{7 / 2}$ resonance
- ${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=13 \mathrm{MeV}$
- ${ }^{49} \mathrm{Ca}$ gs, $1^{\text {st }}$ excited state
- ${ }^{12} \mathrm{C}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=30 \mathrm{MeV}$
- ${ }^{40} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=34.4 \mathrm{MeV}$
- ${ }^{209} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=52 \mathrm{MeV}$
- Planned: ${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=19.3$ and 56 MeV

Assessing the R-matrix ideas la

1. Interior vs exterior contributions
$M=M(0, a)+M(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91} \mathrm{Zr}$ gs (5/2+)
$1^{\text {st }}$ excited state (1/2+)
$2 f_{7 / 2}$ resonance

Observations

- 'action is in the nuclear surface'
- Post formalism more sensitive to larger radii than prior:

$$
\begin{gathered}
\mathrm{M}^{(\text {post) })}=\left\langle\Phi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{pF}}\left|\Psi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{pF}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{pn}}-\mathrm{U}_{\mathrm{pF}} \\
\mathrm{M}^{\text {(prior) })}=\left\langle\Psi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{dA}}\left|\Phi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{dA}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{nA}}-\mathrm{U}_{\mathrm{dA}}
\end{gathered}
$$

- Exterior contributions: Post requires contributions further out; also an issue for resonance calculations

Peak cross section relative to full calculation

Assessing the R-matrix ideas lb

1. Interior vs exterior contributions
$M=M(0, a)+M(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91 Z} \mathrm{Zr}$ gs (5/2+)
$1^{\text {st }}$ excited state (1/2+)
$2 f_{7 / 2}$ resonance

Observations

- 'action is in the nuclear surface'
- Post formalism more sensitive to larger radii than prior:

$$
\begin{gathered}
\mathrm{M}^{(\text {post) })}=\left\langle\Phi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{pF}}\left|\Psi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{pF}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{pn}}-\mathrm{U}_{\mathrm{pF}} \\
\mathrm{M}^{\text {(prior) })}=\left\langle\Psi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{dA}}\left|\Phi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{dA}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{nA}}-\mathrm{U}_{\mathrm{dA}}
\end{gathered}
$$

- Exterior contributions: Post requires contributions further out; also an issue for resonance calculations

Peak cross section relative to full calculation

Assessing the R-matrix ideas Ic

1. Interior vs exterior contributions
$M=M(0, a)+M(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91} \mathrm{Zr}$ gs (5/2+)
$1^{\text {st }}$ excited state ($1 / 2+$)
$2 f_{7 / 2}$ resonance

Observations

- 'action is in the nuclear surface'
- Post formalism more sensitive to larger radii than prior:

$$
\begin{gathered}
\mathrm{M}^{(\text {post) })}=\left\langle\Phi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{pF}}\left|\Psi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{pF}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{pn}}-\mathrm{U}_{\mathrm{pF}} \\
\mathrm{M}^{\text {(prior) })}=\left\langle\Psi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{dA}}\left|\Phi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{dA}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{nA}}-\mathrm{U}_{\mathrm{dA}}
\end{gathered}
$$

- Exterior contributions: Post requires contributions further out; also an issue for resonance calculations

Peak cross section relative to full calculation

Assessing the R-matrix ideas Ila

2. Surface contribution

$M=M^{(\text {post })}(0, a)+M_{\text {(surf) }}(a)+M^{\text {(prior) }}(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91} \mathrm{Zr}$ gs (5/2+)
$1^{\text {st }}$ excited state ($1 / 2+$)
$2 f_{7 / 2}$ resonance

Observations

- Surface term indeed dominant 6-8 fm
- Small interior contributions \rightarrow little dependence on model for interior
- Small exterior contributions \rightarrow better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation

Angular differential cross sections

Assessing the R-matrix ideas Ilb

2. Surface contribution

$M=M^{(\text {post })}(0, a)+M_{(\text {surf })}(a)+M^{\text {(prior) }}(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91 Z} \mathrm{Zr}$ gs (5/2+)
$1^{\text {st }}$ excited state ($1 / 2+$)
$2 f_{7 / 2}$ resonance

Observations

- Surface term indeed dominant 6-8 fm
- Small interior contributions \rightarrow little dependence on model for interior
- Small exterior contributions \rightarrow better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation

Angular differential cross sections

Assessing the R-matrix ideas IIc

2. Surface contribution

$M=M^{(\text {post })}(0, a)+M_{(\text {surf })}(a)+M^{(\text {prior })}(a, \infty)$

This case:

```
- 90Zr(d,p) for E E =11 MeV
    91Zr gs (5/2+)
    1 st excited state (1/2+)
    2f f/2 resonance
```


Observations

- Surface term indeed dominant 6-8 fm
- Small interior contributions \rightarrow little dependence on model for interior
- Small exterior contributions \rightarrow better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation

Angular differential cross sections

Assessing the R-matrix ideas $-{ }^{48} \mathrm{Ca}$

2. Surface contribution

$M=M^{(\text {post) })}(0, a)+M_{\text {(surf) }}(a)+M^{(\text {prior) })}(a, \infty)$

This case:

- ${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=13 \mathrm{MeV}$
${ }^{49} \mathrm{Ca}$ gs (3/2-)
$1^{\text {st }}$ excited state (1/2-)

Observations

- Surface term indeed dominant 5-7 fm
- Small interior contributions \rightarrow little dependence on model for interior
- Small exterior contributions \rightarrow better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation

Next: Extension of the formalism to include breakup

$$
\begin{gathered}
\text { DWBA matrix element } \\
M^{(\text {post })}=M^{(\text {post })}(0, a)+M_{(\text {surf })}(a)+M^{(\text {prior })}(a, \infty)
\end{gathered}
$$

CDCC matrix element

$$
\begin{aligned}
& M^{(\text {post) })}=M^{(\text {post) }}(0, a)+M_{\text {(surf) }}(a) \\
& M^{\text {(prior) }}(a, \infty)=0 \text { (is included in breakup) }
\end{aligned}
$$

- Approximate treatment of 3-body problem
- Describes breakup of deuteron

- Successfully used for describing data
- Currently revisited via comparison with Fadeev
- To be studied in connection with R-matrix approach for (d, p) to resonances

Conclusions

(d,p) reactions:

- Important for nuclear structure studies and astrophysics
- New experimental techniques for radioactive isotopes
- Improved theoretical descriptions required

Studying resonances with (d,p):

- Conceptual and practical problems have to be overcome

New formalism:

- Builds on ideas from successful R-matrix approach
- Separation into interior and exterior regions works formally well, surface term emerges as important contributor, can be expressed in terms of familiar R-matrix parameters
- Test cases show that the surface term is dominant, but other contributions may not be negligible
- Including breakup via CDCC removes exterior prior contribution, thus eliminates convergence problem for resonances

Further studies needed to clarify conditions where the surface formalism will work well.

