Using R-matrix ideas to describe one-nucleon transfers to resonance states

HITES 2012
New Orleans, LA
June 4-7, 2012

L Lawrence Livermore
 National Laboratory

Jutta Escher, Ian Thompson (LLNL)
Akram Mukhamedzhanov (Texas A\&M) TORUS Collaboration

Studying nuclear structure with (d,p) one-nucleon transfers

(d,p) reactions:

- Simplest mechanism for adding a neutron
- Traditionally used to study stable nuclei
- Used in inverse kinematics at RIB facilities, for studying weakly-bound systems

Theoretical descriptions of (d, p) reactions:

- Progress over the years: Plane-wave theory, DWBA (zero-range \& finite-range), coupledchannels approach, breakup, etc.

But: Current theories of (d, p) reactions not very useful for transfers to resonance states:

- Conceptual: extracting spectroscopic
 information
- Practical: convergence issues

Resonances in low-energy nuclear physics

Resonances:

- Unstable quantum-mechanical states
- Occur in light, medium-mass, and heavy nuclei
- Crucially affect astrophysical reaction rates
- Abundant in weakly-bound nuclei

Evolution of single-particle energies and the location of the

Current approach:

- Apply standard (d,p) descriptions to resonances
- Increase model space to achieve convergence
${ }^{20} \mathrm{O}(\mathrm{d}, \mathrm{p}){ }^{21} \mathrm{O}$ inverse-kinematics experiment at GANIL to determine $\mathrm{N}=16$ shell gap

Describing resonances in binary reactions

R-matrix approach:

- Main idea: divide space into 2 regions:
$r \leq a--$ interior: nuclear and Coulomb interactions
$r>a--$ exterior: Coulomb only
- Formalism:

Interior: expand nuclear wave function in set of basis functions Exterior: scattering wave function
Surface: matching conditions allow to parameterize collision matrix -> expressions for cross sections

- Connect observed parameters $\left(\mathrm{E}_{\mathrm{R}}, \Gamma\right)$ to formal parameters ($\check{E}_{R}, \gamma^{2}$)
- Typical applications adjust parameters to reproduce measured cross sections

Experimental studies of resonances:

- Elastic \& inelastic scattering, capture, etc.

- Characterization of resonances: position \& widths

Exploring R-matrix ideas for (d,p) one-nucleon transfers

Proposed new formalism (Mukhamedzhanov, 2011):

- R-matrix concepts:
- surface separating internal and external regions
- cross sections expressed in terms of reduced widths, logarithmic derivatives, surface radii
- Goals for (d,p):
- useful for resonances
- reduce dependence on model for interior
- extract useful spectroscopic quantities from comparison to experiment (widths)
- Formalism:
- applicable to stripping to bound and resonance states
- general enough to include deuteron breakup contributions via CDCC (continuum-discretized coupled-channels method)
- bonus: resolves practical issues related to numerical convergence

Formalism:
Mukhamedzhanov, PRC 84, 044616 (2011)

Binary system

3-body system

Exploring R-matrix ideas for (d,p) one-nucleon transfers II

Transition matrix element M :

- Connects initial to final wave function
- Cross section $\sigma \sim \mathrm{M}^{2}$

3-body system

$\Psi_{\mathrm{i}}{ }^{(+)}$: exact d+A scattering function
$\Phi_{f}{ }^{(-)}=\varphi_{\mathrm{F}} \chi_{\mathrm{pF}}{ }^{(-)}$exit channel function

$$
\Delta V_{p F}=V_{p A}+V_{p n}-U_{p F}
$$

$$
\mathrm{I}_{\mathrm{A}}{ }^{\mathrm{F}}=\left\langle\varphi_{\mathrm{A}} \mid \varphi_{\mathrm{F}}\right\rangle=\mathrm{I}_{\mathrm{A}}{ }^{\mathrm{F}}\left(\mathrm{r}_{\mathrm{nA}}\right)
$$

One-body overlap of A and $A+1$ systems

- carries structure information
- typically approximated by single-particle function

$$
\begin{gathered}
\mathrm{M}^{\text {(prior) }}=\left\langle\Psi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{dA}}\left|\Phi_{\mathrm{i}^{(+)}}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{dA}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{nA}}-\mathrm{U}_{\mathrm{dA}}
\end{gathered}
$$

Generalized R-matrix formalism for (d,p) reactions I

Splitting the transition matrix element M :

- Interior and exterior with respect to $r_{n A}$

Interior + exterior $\begin{aligned} & M^{(\text {post })}=M^{(\text {post })}(0, a)+M^{(\text {post })}(a, \infty) \\ & I_{A}{ }^{F}=<\varphi_{A}\left\|\varphi_{F}\right\rangle=I_{A}{ }^{F}\left(r_{n A}\right) \end{aligned}$
Mukhamedzhanov $\begin{aligned} & \mathrm{M}^{(\text {post })}(\mathrm{a}, \infty)=\mathrm{M}_{\text {surf }}(\mathrm{a})+\mathrm{M}^{(\text {prior })}(\mathrm{a}, \infty) \\ & \mathrm{M}_{\text {surf }}(\mathrm{a})=\left\langle\mathrm{I}_{\mathrm{A}}^{\mathrm{F}} \chi_{\mathrm{pF}}^{(-)}\right\|[\overleftarrow{T}-\vec{T}]\left\|\varphi_{\mathrm{d}} \chi_{\mathrm{dA}}{ }^{(+)}\right\rangle_{\mathrm{ext}} \\ & \quad \int_{r \leqslant R} \mathrm{~d} \mathbf{r} f(\mathbf{r})[\overleftarrow{T}-\vec{T}] g(\mathbf{r}) \\ & \quad=-\frac{1}{2 \mu} \oint_{r=R} \mathrm{~d} \mathbf{S}\left[g(\mathbf{r}) \nabla_{\mathbf{r}} f(\mathbf{r})-f(\mathbf{r}) \nabla_{\mathbf{r}} g(\mathbf{r})\right] \\ & \quad=-\frac{1}{2 \mu} R^{2} \int \mathrm{~d} \Omega_{\mathbf{r}}\left[g(\mathbf{r}) \frac{\partial f(\mathbf{r})}{\partial r}-f(\mathbf{r}) \frac{\partial g(\mathbf{r})}{\partial r}\right]_{r=R} \end{aligned}$
Surface term $M_{\text {surf }}(a)=f\left(a, C_{A}{ }^{F}, B_{n A}\right)$ $B_{n A}=\log$ derivative of $I_{A}{ }^{F}$ at surface radius a ANC: $C_{A}{ }^{F}$ defined through: $I_{A}{ }^{F}\left(r_{n A}\right) \rightarrow C_{A}{ }^{F} W\left(k r_{n A}\right)$ related to reduced width amplitude $C_{A}{ }^{F} \sim \gamma_{n A}$

Generalized R-matrix formalism for (d, p) reactions II

$$
\begin{gathered}
\text { DWBA matrix element } \\
M^{(\text {post })}=M^{(\text {post })}(0, a)+M_{(\text {surf })}(a)+M^{\text {(prior) }}(a, \infty)
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{M}_{\text {(surf) }}(\mathrm{a})= & \sqrt{\frac{R_{n A}}{2 \mu_{n A}}} \sum_{j_{n A} m_{j_{n A}} m_{n A} M_{n}}\left\langle J_{A} M_{A} j_{n A} m_{j_{n A}} \mid J_{F} M_{F}\right\rangle\left\langle J_{n} M_{n} l_{n A} m_{l_{n A}} \mid j_{n A} m_{j_{n A}}\right\rangle\left\langle J_{p} M_{p} J_{n} M_{n}\right| J_{d} M_{d}\left\langle_{\gamma_{n A} j_{n A} l_{n A}}\right) \\
& \left.\times \int \mathrm{dr}_{p F} \chi_{-\mathbf{k}_{p F}}^{(+)}\left(\mathbf{r}_{p F}\right) \int \mathrm{d} \Omega_{\mathbf{r}_{n A}} Y_{l_{n A} m_{n A}}^{*}\left(\hat{\mathbf{r}}_{n A}\right)\left[\varphi_{d}\left(\mathbf{r}_{p n}\right) \chi_{\mathbf{k}_{d A}}^{(+)}\left(\mathbf{r}_{d A}\right)\left(B_{n A}\right)-1\right)-R_{n A} \frac{\partial \varphi_{d}\left(\mathbf{r}_{p n}\right) \chi_{\mathbf{k}_{d A}}^{(+)}\left(\mathbf{r}_{d A}\right)}{\partial r_{n A}}\right]\left.\right|_{r_{n A}=R_{n A}}
\end{aligned}
$$

Assessing the approach:

- Internal - external separation sensible?
- Dominant surface term? Size of corrections?

Cases considered so far:

- Study cross sections arising from different terms
- Start with DWBA and bound states
- Investigate resonances
- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$

- ${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=13 \mathrm{MeV}$
- ${ }^{49} \mathrm{Ca}$ gs, $1^{\text {st }}$ excited state
- ${ }^{12} \mathrm{C}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=30 \mathrm{MeV}$
- ${ }^{40} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=34.4 \mathrm{MeV}$
- ${ }^{209} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=52 \mathrm{MeV}$
- Planned: ${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=19.3$ and 56 MeV

Assessing the R-matrix ideas la

1. Interior vs exterior contributions

$M=M(0, a)+M(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91} \mathrm{Zr}$ gs (5/2+)
bound
$1^{\text {st }}$ excited state ($1 / 2+$)
$2 f_{7 / 2}$ resonance

Observations

- 'action is in the nuclear surface'
- Post formalism more sensitive to larger radii than prior:

$$
\begin{gathered}
\mathrm{M}^{(\text {post) })}=\left\langle\Phi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{pF}}\left|\Psi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{pF}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{pn}}-\mathrm{U}_{\mathrm{pF}} \\
\mathrm{M}^{(\text {(prior) })}= \\
\Delta \mathrm{V}_{\mathrm{dA}}=\mathrm{V}_{\mathrm{pA}}^{(-)}\left|\Delta \mathrm{V}_{\mathrm{dA}}\right| \Phi_{\mathrm{i}}^{(+)}-\mathrm{U}_{\mathrm{dA}}
\end{gathered}
$$

Peak cross section relative to full calculation

surface radius with respect to $r_{n A}$

Assessing the R-matrix ideas lb

1. Interior vs exterior contributions
$M=M(0, a)+M(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91} \mathrm{Zr}$ gs (5/2+)
$1^{\text {st }}$ excited state $(1 / 2+) \quad \longleftarrow$ bound
$2 f_{7 / 2}$ resonance

Observations

- 'action is in the nuclear surface'
- Post formalism more sensitive to larger radii than prior:

$$
\begin{gathered}
\mathrm{M}^{(\text {post) })}=\left\langle\Phi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{pF}}\left|\Psi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{pF}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{pn}}-\mathrm{U}_{\mathrm{pF}} \\
\mathrm{M}^{(\text {(prior) })}= \\
\left.\Delta \Psi_{\mathrm{f}}^{(-)}\left|\Delta \mathrm{V}_{\mathrm{dA}}\right| \Phi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{dA}}+\mathrm{V}_{\mathrm{nA}}-\mathrm{U}_{\mathrm{dA}}
\end{gathered}
$$

Peak cross section relative to full calculation

Assessing the R-matrix ideas Ic

1. Interior vs exterior contributions
$M=M(0, a)+M(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91} \mathrm{Zr}$ gs (5/2+)
$1^{\text {st }}$ excited state ($1 / 2+$)
$2 f_{7 / 2}$ resonance

resonance

Observations

- 'action is in the nuclear surface'
- Post formalism more sensitive to larger radii than prior:

$$
\begin{gathered}
\mathrm{M}^{(\text {post) })}=\left\langle\Phi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{pF}}\left|\Psi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{pF}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{pn}}-\mathrm{U}_{\mathrm{pF}} \\
\mathrm{M}^{(\text {(prior) })}=\left\langle\Psi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{dA}}\left|\Phi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{dA}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{nA}}-\mathrm{U}_{\mathrm{dA}}
\end{gathered}
$$

- Resonance: reduced contribution from interior, more pronounced surface effect

Peak cross section relative to full calculation

Assessing the R-matrix ideas Ila

2. Surface contribution

$M=M^{(\text {post) }}(0, a)+M_{\text {(surf) }}(a)+M^{\text {(prior) }}(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91 \mathrm{Zr} \text { gs }(5 / 2+)}$
$1^{\text {st }}$ excited state $(1 / 2+)$
$2 \mathrm{f}_{7 / 2}$ resonance

Observations

- Surface term indeed dominant 6-8 fm
- Small interior contributions \rightarrow little dependence on model for interior
- Small exterior contributions \rightarrow better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation

Angular cross sections for $\mathrm{a}=7 \mathrm{fm}$

Assessing the R-matrix ideas IIb

2. Surface contribution

$M=M^{(\text {post })}(0, a)+M_{(\text {surf })}(a)+M^{\text {(prior) }}(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91} \mathrm{Zr}$ gs (5/2+)
$1^{\text {st }}$ excited state $(1 / 2+) \quad \longleftarrow$ bound
$2 f_{7 / 2}$ resonance

Observations

- Surface term indeed dominant 6-8 fm
- Small interior contributions \rightarrow little dependence on model for interior
- Small exterior contributions \rightarrow better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation

Angular cross sections for $\mathrm{a}=7 \mathrm{fm}$

Assessing the R-matrix ideas IIc

2. Surface contribution

$M=M^{(\text {post) }}(0, a)+M_{\text {(surf) }}(a)+M^{\text {(prior) }}(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91} \mathrm{Zr}$ gs (5/2+)
$1^{\text {st }}$ excited state (1/2+)
$2 f_{7 / 2}$ resonance
resonance

Observations

- Surface term indeed dominant 6-8 fm
- Small interior contributions \rightarrow little dependence on model for interior
- Small exterior contributions \rightarrow better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external
- Reduced interior contribution at peak for surface term

Peak cross section relative to full calculation

Angular cross sections for a = 8 fm

Next: Extension of the formalism to include breakup

```
    DWBA matrix element
M
```

CDCC (Continum-discretized coupled channels)

- Approximate treatment of 3-body problem
- Describes breakup of deuteron

CDCC matrix element
$M^{\text {(post) }}=M^{(\text {post })}(0, a)+M_{\text {(surf) }}(a)$
$M^{(\text {prior) }}(\mathrm{a}, \infty)=0$ (is included in breakup)

- Successfully used for describing data
- Currently revisited via comparison with Fadeev

CDCC extension of \mathbf{R}-matrix formalism

- Simultaneous calculation of breakup and transfer cross sections
- Exterior term included in breakup, convergence issues removed
- More peripheral, reduce interior contribution
- Surface term dominant

Conclusions

Studying resonances with (d,p):

- Already underway at RIB facilities
- Conceptual and practical problems have to be overcome

New formalism:

- Builds on ideas from successful R-matrix approach
- Separation into interior and exterior regions works formally well, surface term emerges as important contributor, can be expressed in terms of familiar R-matrix parameters -> meaningful spectrosopic information
- Test cases show that the surface term is dominant; other contributions may not be negligible, but resonances less affected by interior contributions
- Including breakup via CDCC removes exterior prior contribution, thus eliminates convergence problem for resonances

Further studies will clarify conditions where the surface formalism will work well.

Promising approach for transfers to resonances.

TORUS Collaboration

ReactionTheory.org

TORUS: Theory of Reactions for Unstable iSotopes A Topical Collaboration for Nuclear Theory

> Collaboration

> Research Proposal

> Research Papers

> Research Talks

> TORUS internal

Theory of Reactions for Unstable iSotopes

A Topical Collaboration to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations and by developing a new partial-fusion theory to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest identified in the solicitation: (b) properties of nuclei far from stability; (c) microscopic studies of nuclear input parameters for astrophysics and (e) microscopic nuclear reaction theory.

TORUS members
Ian Thompson, LLNL Jutta Escher, LLNL
Filomena Nunes, MSU
Neelam Upadhyay (PD)
Akram Mukhamedzhanov (TAMU)
V. Eremenko (PD)

Charlotte Elster (OU)
Goran Arbanas (ORNL)

Appendix

Investigating the role of the core-core interaction V_{pA}

3. $V_{p A}$ dependence of the various contributions

$M=M^{(\text {post })}(0, a)+M_{(\text {surf })}(a)+M^{\text {(prior) }}(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91 Z} \mathrm{Zr}$ gs (5/2+)
\longleftarrow bound
$1^{\text {st }}$ excited state ($1 / 2+$)
$2 \mathrm{f}_{7 / 2}$ resonance

Observations

- Overall cross section and relative strength of contributions varies with the strength of the core-core interaction

Angular cross sections for $\mathrm{a}=7 \mathrm{fm}$

Investigating the role of the core-core interaction V_{pA}

3. $V_{p A}$ dependence of the various contributions

$M=M^{(\text {post })}(0, a)+M_{(\text {surf })}(a)+M^{\text {(prior) }}(a, \infty)$

This case:

- ${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=11 \mathrm{MeV}$
${ }^{91} \mathrm{Zr}$ gs (5/2+)
${ }^{1 \text { st }}$ excited state $(1 / 2+) \quad \longleftarrow$ bound
$2 \mathrm{f}_{7 / 2}$ resonance

Observations

- Overall cross section and relative strength of contributions varies with the strength of the core-core interaction

Angular cross sections for $\mathrm{a}=7 \mathrm{fm}$

Exploring R-matrix ideas for (d,p) one-nucleon transfers II

Transition matrix element M :

- Connects initial to final wave function
- Cross section $\sigma \sim M^{2}$

$\Psi_{\mathrm{i}}{ }^{(+)}$: exact d+A scattering function
$\stackrel{\text { 3-body }}{ }$
$<\varphi_{F} \chi_{p F^{(-)}}^{\left(\Delta \underline{\mathrm{V}}_{p F}\right.} \mid \varphi_{\mathrm{A}} \Psi_{\mathrm{i}}^{3 \mathrm{~B}(+)}>$
$<\mathrm{I}_{\mathrm{A}}{ }^{\mathrm{F}} \chi_{\mathrm{pF}}{ }^{(-)}\left|\Delta \underline{\mathrm{V}}_{\mathrm{pF}}\right| \Psi_{\mathrm{i}}{ }^{3 \mathrm{~B}(+)}>$
$\Phi_{\mathrm{f}}^{(-)}=\varphi_{\mathrm{F}} \chi_{\mathrm{pF}}{ }^{(-)}$exit channel function
$\Delta \mathrm{V}_{\mathrm{pF}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{pn}}-\mathrm{U}_{\mathrm{pF}}$
$\mathrm{I}_{\mathrm{A}}{ }^{\mathrm{F}}=<\varphi_{\mathrm{A}} \mid \varphi_{\mathrm{F}}>$ one-body overlap

$$
\begin{gathered}
\mathrm{M}^{\text {(prior) }}=\left\langle\Psi_{\mathrm{f}}^{(-)}\right| \Delta \mathrm{V}_{\mathrm{dA}}\left|\Phi_{\mathrm{i}}^{(+)}\right\rangle \\
\Delta \mathrm{V}_{\mathrm{dA}}=\mathrm{V}_{\mathrm{pA}}+\mathrm{V}_{\mathrm{nA}}-\mathrm{U}_{\mathrm{dA}}
\end{gathered}
$$

Assessing the R-matrix ideas $-{ }^{48} \mathrm{Ca}$

2. Surface contribution

$M=M^{(\text {post) }}(0, a)+M_{\text {(surf) }}(a)+M^{\text {(prior) }}(a, \infty)$

This case:

- ${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$ for $\mathrm{E}_{\mathrm{d}}=13 \mathrm{MeV}$
${ }^{49}$ Ca gs (3/2-)
\square bound
$1^{\text {st }}$ excited state (1/2-) bound

Observations

- Surface term indeed dominant 5-7 fm
- Small interior contributions \rightarrow little dependence on model for interior
- Small exterior contributions \rightarrow better convergence for resonance case
- Surface term does not produce the whole cross section, corrections required from internal/external

Peak cross section relative to full calculation

Abstract

HITES 2012

Using R-matrix ideas to describe one-nucleon transfers to resonance states*

Jutta E. Escher ${ }^{1}$, Akram M. Mukhamedzhanov ${ }^{2}$, and Ian J. Thompson ${ }^{1}$
${ }^{1}$ Lawrence Livermore National Laboratory, Livermore, CA 94551, U.S.A.
${ }^{2}$ Cyclotron Institute, Texas A\&M University, College Station, TX 77843, U.S.A.

Deuteron-induced reactions, in particular (d, p) one-neutron transfer reactions, have been used for decades to investigate the structure of nuclei. These reactions, carried out in inverse kinematics, are expected to play a central role in the study of weakly-bound systems at modern radioactive beam facilities. While the theoretical framework and its computational implementation for describing (d, p) reactions have seen much progress over the decades, open questions remain and need to be addressed. Resonances, for example, occur frequently in the low-energy spectra of weakly-bound nuclei, are of interest for astrophysical applications, and can in principle be studied with transfer reactions. Applying standard transfer reaction theories in this context is problematic, though, both practically in terms of achieving converged solutions, and conceptually in terms of interpreting the results. Recently, a new formalism that utilizes concepts known from the successful and popular R-matrix theory was proposed for the description of deuteron-induced reactions [1]. The formalism covers transfers to bound and resonance states, and is general enough to include deuteron breakup. Here we test some of the ideas underlying the proposed formalism, in particular the role of interior and exterior contributions to the cross sections, and discuss some implications.
[1] A. M. Mukhamedzhanov, Theory of deuteron stripping: From surface integrals to a generalized R-matrix approach, Phys. Rev. C, 84, 044616 (2011).

* This work, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, is supported by the DOE through the topical collaboration TORUS.

