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Present theories provide valuable information on angular momenta 
…but have serious limitations in resonance cases 

•  Problem: present theories rely heavily on one-
body overlap function of A and A+1 systems 

 
 
 

•  Calculations converge very slowly 
•  Not appropriate for describing reactions 

involving wide resonances 
•  Desired resonance properties (energies and 

widths) cannot be reliably obtained 
 

Example: 20O(d,p)21O inverse-kinematics 
experiment - Intepreted the traditional way 

bound 

bound 

resonance 

resonance 

Suggestion from PRC 84, 044616 (2014): 
Extend R-matrix description to transfer 
reactions è `Surface Formalism’ 

IAF(r) = < φA | φF > 

o  carries structure information 
o  not well-known in nuclear interior 
o  typically approximated by single-particle function 

Fernandez-Dominguez et al, 
PRC 84, 011301(R) (2011) 
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Transition matrix element – DWBA and CDCC approximations 
Transition matrix element M: 
•  Connects initial to final wave function 
•  Cross section σ ~ M2 
 
 
 
 

Ψi
(+) : exact d+A scattering function 

Φf
(-)  = φF χpF

(-)
 exit channel function 

ΔVpF = VpA + Vpn – UpF 

IAF = < φA | φF > one-body overlap 
 
 
 

3-body   
 

< φF χpF
(-) | ΔVpF | φA Ψi

3B(+) > 
 
< IAF

 χpF
(-) | ΔVpF | Ψi

3B(+) > 
 

DWBA   
 

< φF χpF
(-) | ΔVpF | φdφA χdA

(+) > 
 
< IAF

 χpF
(-) | ΔVpF | φd χdA

(+) > 
 
 
 
 
 
 

CDCC   
< IAF

 χpF
(-) | ΔVpF | Ψi

CDCC(+) > 
 

M(post) = < Φf
(-) | ΔVpF | Ψi

(+) > 
 
 
 
 
 

M(prior) = < Ψf
(-) | ΔVdA | Φi

(+) > 
ΔVdA = VpA + VnA – UdA 

 
 
 
 
 



Surface formalism for DWBA 

DWBA 
 

< IAF
 χpF

(-) | ΔVpF | φd χdA
(+) > 

 
IAF = < φA | φF > = IAF (rnA) 

 

M(post) = < Φf
(-) | ΔVpF | Ψi

(+) > 

Interior + exterior  
 

M(post) = M(post)(0,a) + M(post)(a,∞) 
 

 
 

                          Msurf(a) + M(prior)(a,∞) 

 
 
 
 
 
 

Mukhamed- 
Zhanov, 
 
PRC 2011 

Transition matrix element M: 
•  Cross section σ ~ M2 

•  Is split into interior and exterior parts 
 
 
 
 
 

One-body overlap function of A and A+1 systems 
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n 

A 

rnA 

3-body system 
Surface formulation 

M = M(post)(0,a) + Msurf(a) + M(prior)(a,∞) 
 
 
 

 
Msurf(a) = f(a, CA

F, BnA) 

BnA
 = log derivative of IAF at surface radius a 

ANC: CA
F defined through: IAF (rnA) àCA

F W(krnA) 
   related to reduced width amplitude CA

F ~ γnA 

 

asymptotic quantities 
 
 
 
 

model dependence 
 
 
 
 



Internal, surface, external contributions – 90Zr(d,p) at Ed=11 MeV 

Observations 
•  Surface term dominant at 6-8 fm 
•  Small interior contributions  
•  Small exterior contributions  
•  Surface term does not produce the 

whole cross section 

 

 

M = M(post)(0,a) + M(surf)(a) + M(prior)(a,∞) 

The surface term is dominant, but 
contributions from the interior and 
exterior terms remain. 

Escher, Thompson, Mukhamedzhanov, JPCS (2012). 5 

Peak cross section relative to full calculation 

asymptotic quantities 
 
 
 
 

model dependence 
 
 
 
 

 
91Zr gs (5/2+) 

 
91Zr 1st (1/2+) 

 
int-post 

 
surf 

 
ext-prior 



The surface contribution – 90Zr(d,p) at Ed=11 MeV 
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Peak cross section relative to full calculation 

• Cross sections depend on surface radius 
• The surface term is dominant, but corrections remain 
 

 
91Zr gs 
(5/2+) 

 
91Zr 1st (1/2+) 

 
int-post 

 
surf 

 
ext-prior 

Angular cross section – Surface term only 

Escher et al, PRC 89, 
054605 (2014) 



Numerical tests of the formalism (DWBA) – 48Ca(d,p) at Ed=13, 19.3, 56 MeV 
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Calculations for 
49Ca 1st (1/2-) give 

similar results 

Peak cross section relative to full calculation 

 
19.3 MeV 

 
49Ca gs (3/2-) 

 
56 MeV 

 
13 MeV 

 
int-post 

 
surf 

 
ext-prior 

Angular cross section – Surface term only 

Angle [deg] 

Surface term 
approximation 
improves with 

decreasing 
energy 
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Surface formalism for DWBA – resonance states 

Total post matrix element for b + B ≠ n + A example: 
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Surface formulation 

M = M(post)(0,a) 

     + Msurf(a)  
     + M(prior)(a,∞) 
 
 
 

d+A è p + (n+A) 
 

                  b+B 

f(Γ1/2, [A-1], IAF):  
contribution hopefully small 
 
b + B = n + A 

b + B ≠ n + A 

b + B = n + A 

b + B ≠ n + A 

Analogously for CDCC resonance case 
Eq. (117) from 
Mukhamedzhanov, 
PRC 2011 



The oxygen case - 20O at Ed=21 MeV 
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Peak cross section relative to full calculation Angular cross section – Surface term only 

 
surf 

 
ext-prior 

Surface at ~5 fm 
approximately 
reproduces 
measurement. 

21O @ 4.77 MeV (3/2+) 

21O @ 6.17 MeV (3/2+) 

 
int-post 

Escher et al, PRC 89, 054605 (2014) 



Resonances – 90Zr at Ed=11 MeV 
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Peak cross section relative to full calculation Angular cross section – Surface term only 

•  Results similar to bound-state cases 
•  Surface term dominant at larger radii 
•  Interior/exterior terms still contribute 

 
int-post 

 
surf 

 
ext-prior 

 
91Zr  

f7/2 resonance 

Angle [deg] 

Escher et al, PRC 89, 054605 (2014) 



The surface formalism: can we save it? 
20O at Ed=21 MeV 

 
21O d3/2 resonance 

at 2.364 MeV 

•  reducing the surface radius  
• adding prior-exterior contribution 

 
21O d3/2 resonance 

at 0.964 MeV 

Angular cross section at smaller radius Angular cross section at peak radius 



Concluding Notes 

Surface formalism for studying resonances with (d,p): 
•  Uses successful R-matrix ideas to emphasize asymptotic 

properties of the wave function  
•  Separation into interior and exterior leads to a surface term 

which can be expressed in terms of familiar R-matrix 
parameters, thus providing meaningful spectrosopic 
information 

•  Our studies within a DWBA implementation show that the 
surface term is dominant; dependence on model for nuclear 
interior is reduced. 

•  The surface term alone is not sufficient to describe transfer 
reactions, corrections are required 

•  Remains to be seen whether a CDCC implementation (which 
includes breakup effects) will give the required improvements. 
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