Using R-matrix ideas to describe one-nucleon transfers to resonance states

Jutta Escher, Ian Thompson (LLNL) G. Arbanas (ORNL), Ch. Elster, V. Eremenko, L. Hlophe (Ohio U.), F.N. Nunes (MSU/NSCL)

Lawrence Livermore National Laboratory

LLNL-PRES-581973

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. Support was provided by the DOE through the topical collaboration TORUS. FOURTH JOINT MEETING & NUCLEAR PHYSICS DIVISIONS

merican Physical Society and The Physical Society of apan

http://web.mit.edu/Ins/hawai tee H.Goo, Duke U. W.Kim, Ky D.Gessoman, ANL T.Kishimat

al Advisory Committee H teo U. C kyo Tech J. IT H CEN H Callech K J. UC Berkeley/LBNIL C yungpook U. N. Somios, Ito, Otaka U. S. Seestram wr, Jlab B. Sherrill, A ga, TRIUMF L.Tanihata, iya, J-PARC R.Tribble, T akyo Tach M.Wiesche RIKEN M.Yamauch

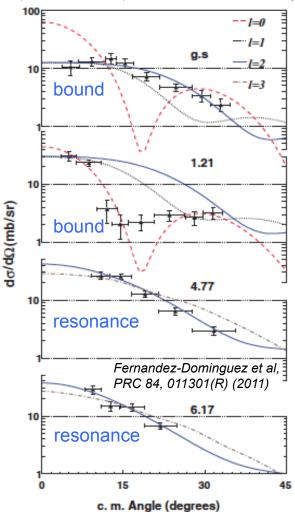
October 7—11, 2014

HILTON WAIKOLOA VILLAGE, HAWAILISLAND

Drganizing Committee L. Aprahamian, Notre Dame U. L. Gibison, LANIL L. Hosaka, Osaka U. L. Hiner, Mit L. Milner, Mit L. Nakamura, Tokyo Tech

: Complete Conference Coordinators.inc. Impedia II 65653 1124 - Phone et 16371 637.0100 - Eav. et 16371 416-3333 - Email: info@cormentions.com _ LIB

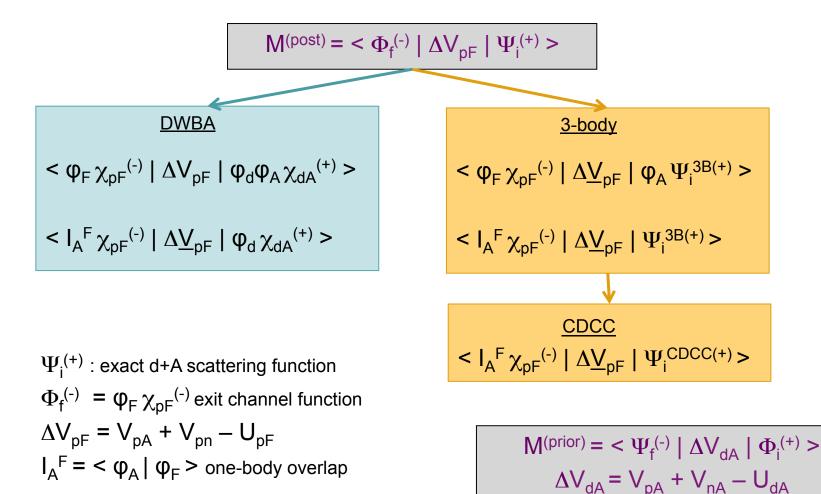
Present theories provide valuable information on angular momenta ...but have serious limitations in resonance cases

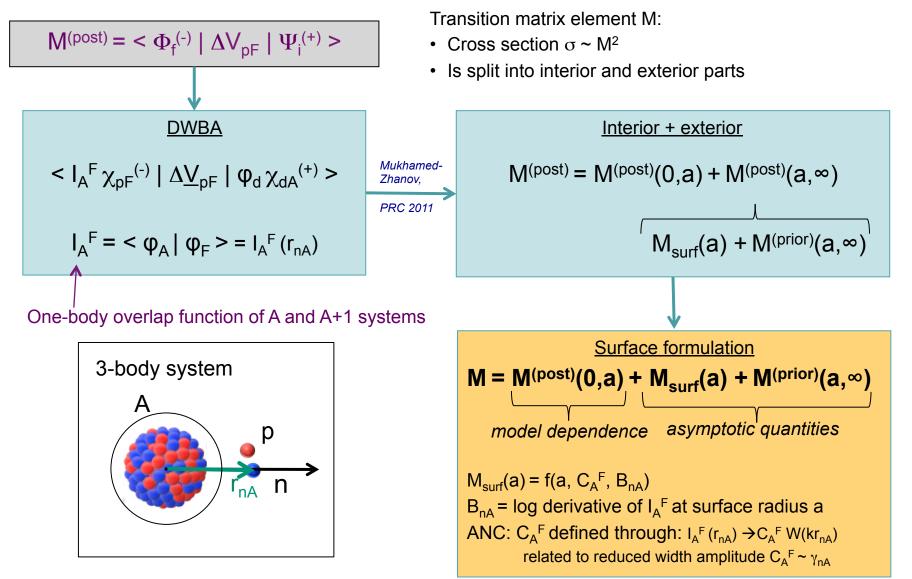

• Problem: present theories rely heavily on onebody overlap function of A and A+1 systems

$$I_A^F(r) = \langle \phi_A | \phi_F \rangle$$

carries structure information
 not well-known in nuclear interior
 typically approximated by single-particle function

- Calculations converge very slowly
- Not appropriate for describing reactions involving wide resonances
- Desired resonance properties (energies and widths) cannot be reliably obtained

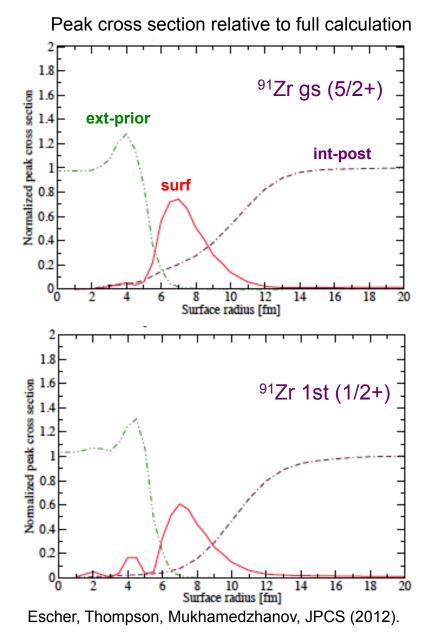

Suggestion from PRC 84, 044616 (2014): Extend R-matrix description to transfer reactions → `Surface Formalism' Example: ²⁰O(d,p)²¹O inverse-kinematics experiment - Intepreted the traditional way

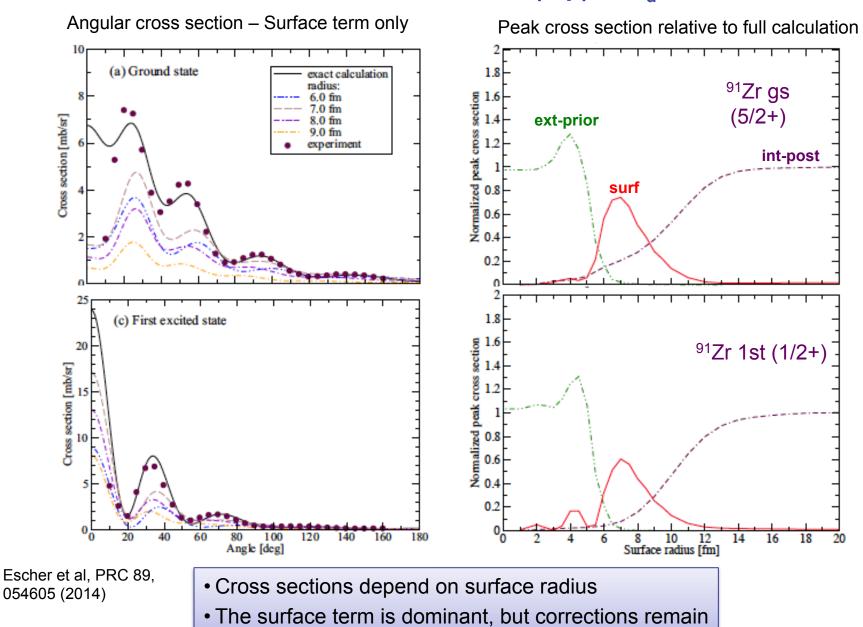

Transition matrix element – DWBA and CDCC approximations

Transition matrix element M:

- · Connects initial to final wave function
- Cross section σ ~ M^2

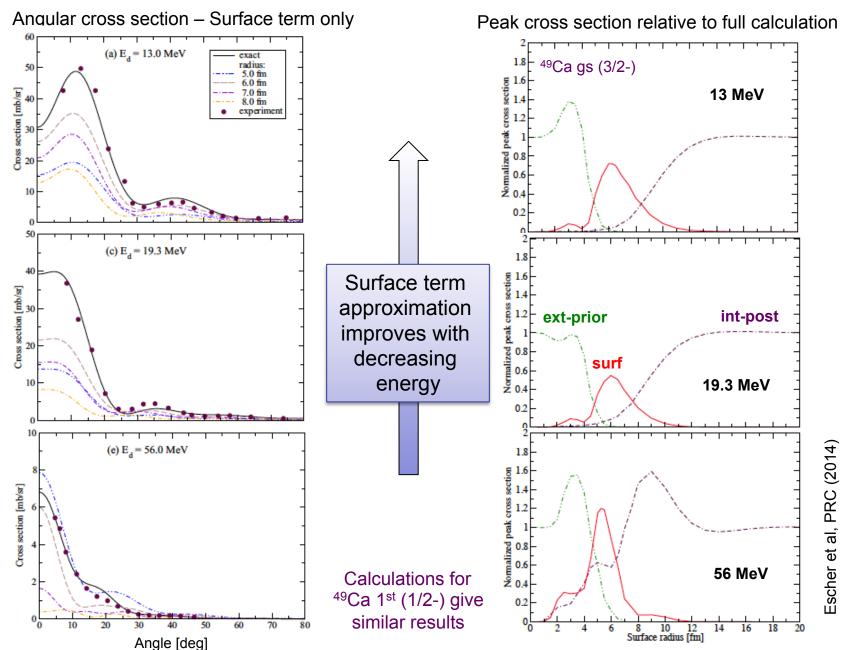
Surface formalism for DWBA


Internal, surface, external contributions – ⁹⁰Zr(d,p) at E_d=11 MeV

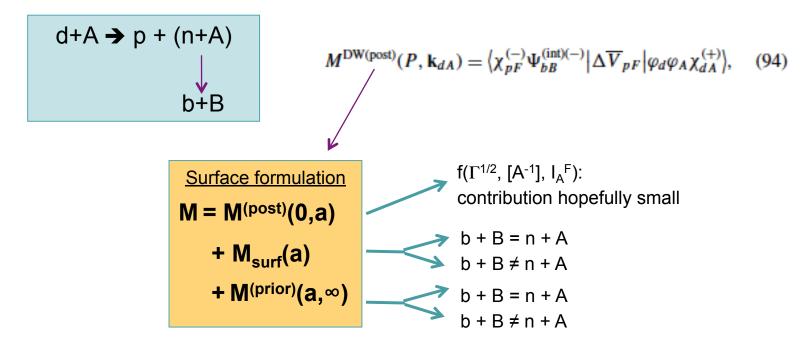

$$M = M^{(\text{post})}(0,a) + M_{(\text{surf})}(a) + M^{(\text{prior})}(a,\infty)$$

model dependence asymptotic quantities

Observations


- Surface term dominant at 6-8 fm
- Small interior contributions
- Small exterior contributions
- Surface term does not produce the whole cross section

The surface term is dominant, but contributions from the interior and exterior terms remain.


The surface contribution $- {}^{90}Zr(d,p)$ at $E_d = 11 \text{ MeV}$

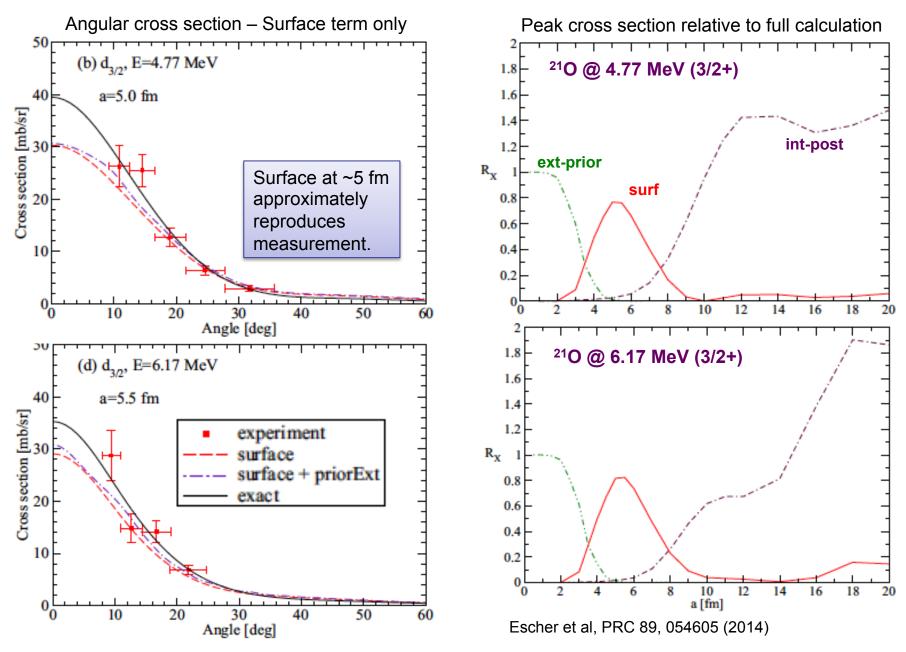
Numerical tests of the formalism (DWBA) – $^{48}Ca(d,p)$ at E_d =13, 19.3, 56 MeV

7

Surface formalism for DWBA – resonance states

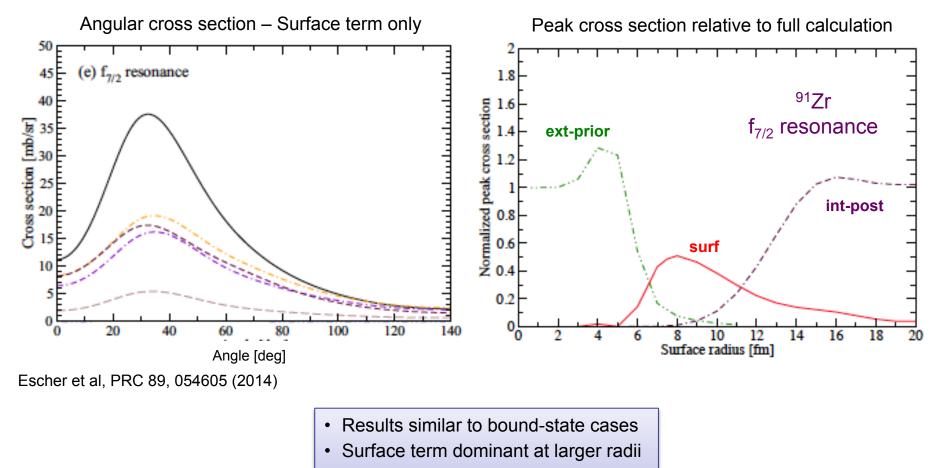
Total post matrix element for $b + B \neq n + A$ example:

$$M^{\mathrm{DW}(\mathrm{post})}(P, \mathbf{k}_{dA}) = 2\pi \sqrt{\frac{1}{\mu_{bB}k_{bB}}} \sum_{J_F M_F s' ll' m_{s'} m_{lm} l' M_A} i^l \langle sm_s lm_l | J_F M_F \rangle \langle s' m_{s'} l' m_{l'} | J_F M_F \rangle \langle J_n M_n J_A M_A | s' m_{s'} \rangle \langle J_n M_n J_p M_p | J_d M_d \rangle}$$

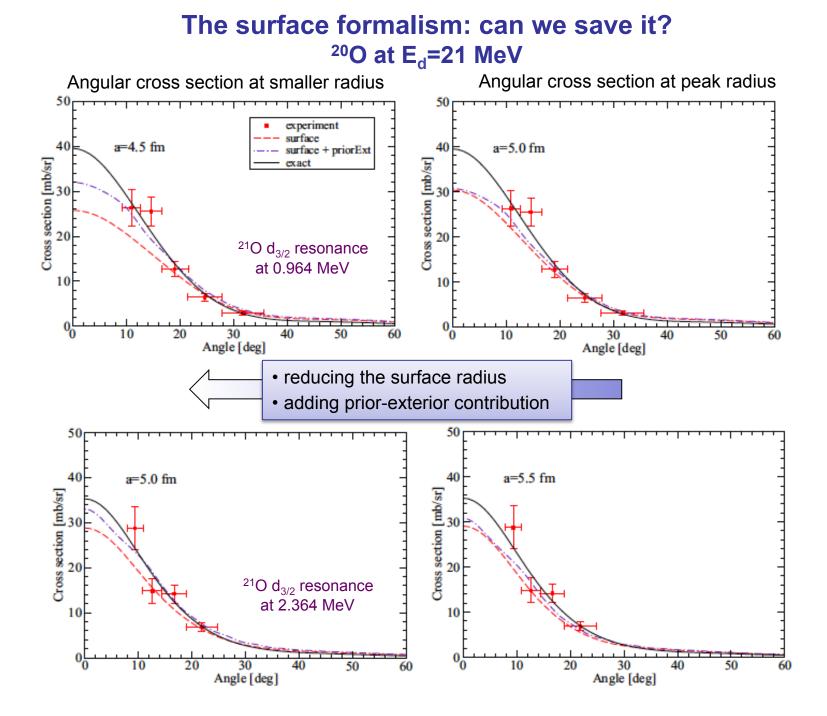

$$\times e^{-i\delta_{bBl}^{hs}} Y_{lm_l}^*(-\hat{\mathbf{k}}_{bB}) \sum_{\nu,\tau=1}^{N} [\Gamma_{\nu bBsl J_F}(E_{bB})]^{1/2} [\mathbf{A}^{-1}]_{\nu\tau} \left\{ \langle \chi_{pF}^{(-)} I_{As'l'J_F}^F | \Delta \overline{V}_{pF} | \varphi_d \chi_{dA}^{(+)} \rangle |_{r_{aA} \leqslant R_{aA}} \right.$$

$$+ \sqrt{\frac{2\mu_{nA}}{R_{nA}}} \gamma_{\tau nAs'l'J_F} \left\{ \chi_{pF}^{(-)} \frac{O_{l'}^*(k_{nA}, r_{nA})}{r_{nA}} \frac{R_{nA}}{O_{l'}^*(k_{nA}, R_{nA})} Y_{l'm_{l'}}^*(\hat{\mathbf{r}}_{nA}) \right| \Delta \overline{V}_{dA} \left| \varphi_d \chi_{dA}^{(+)} \right|_{r_{aA} > R_{aA}} + \sqrt{\frac{R_{nA}}{2\mu_{nA}}} \gamma_{\tau nAs'l'J_F} \left\{ \chi_{pF}^{(-)} O_{l'}^*(k_{nA}, R_{nA}) O_{l'}^*(k_{nA}, R_{nA}) Y_{l'm_{l'}}^*(\hat{\mathbf{r}}_{nA}) \right| \Delta \overline{V}_{dA} \left| \varphi_d \chi_{dA}^{(+)} \right|_{r_{aA} > R_{aA}} + \sqrt{\frac{R_{nA}}{2\mu_{nA}}} \gamma_{\tau nAs'l'J_F} \left\{ \chi_{pF}^{(-)} O_{l'}^*(k_{nA}, R_{nA}) O_{l'}^*(k_{nA}, R_{nA}) Y_{l'm_{l'}}^*(\hat{\mathbf{r}}_{nA}) \right| \Delta \overline{V}_{dA} \left| \varphi_d \chi_{dA}^{(+)} \right|_{r_{aA} > R_{aA}} + \sqrt{\frac{R_{nA}}{2\mu_{nA}}} \gamma_{\tau nAs'l'J_F} \left\{ \chi_{pF}^{(-)} O_{l'}^*(k_{nA}, R_{nA}) O_{l'}^*(k_{nA}, R_{nA}) Y_{l'm_{l'}}^*(\hat{\mathbf{r}}_{nA}) \right| \Delta \overline{V}_{dA} \left| \varphi_d \chi_{dA}^{(+)} \right|_{r_{aA} > R_{aA}} + \sqrt{\frac{R_{nA}}{2\mu_{nA}}} \gamma_{\tau nAs'l'J_F} \right\}$$

Analogously for CDCC resonance case


Eq. (117) from Mukhamedzhanov, PRC 2011

The oxygen case - ^{20}O at E_d=21 MeV



9

Resonances – ⁹⁰Zr at E_d=11 MeV

• Interior/exterior terms still contribute

Concluding Notes

Surface formalism for studying resonances with (d,p):

- Uses successful R-matrix ideas to emphasize asymptotic properties of the wave function
- Separation into interior and exterior leads to a surface term which can be expressed in terms of familiar R-matrix parameters, thus providing meaningful spectrosopic information
- Our studies within a DWBA implementation show that the surface term is dominant; dependence on model for nuclear interior is reduced.
- The surface term alone is **not sufficient** to describe transfer reactions, corrections are required
- **Remains to be seen** whether a CDCC implementation (which includes breakup effects) will give the required improvements.

TORUS Collaboration

Reaction Theory.org

TORUS: Theory of Reactions for Unstable iSotopes A Topical Collaboration for Nuclear Theory

Collaboration

Research Proposal

Research Papers

Research Talks

TORUS internal

Workshops

_Laboratories

_Experiments

_Site Details

Theory of Reactions for Unstable iSotopes

A Topical Collaboration to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations and by developing a new partial-fusion theory to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest identified in the solicitation: (b) properties of nuclei far from stability; (c) microscopic studies of nuclear input parameters for astrophysics and (e) microscopic nuclear reaction theory.

© jotero.com

TORUS members

Ian Thompson, LLNL Jutta Escher, LLNL Filomena Nunes, MSU L. Hlophe (Student), OU V. Eremenko (PD), OU Charlotte Elster, OU Goran Arbanas, ORNL

www.ReactionTheory.org

Webmaster: IJT@ReactionTheory.org