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§  Do transfer or knockout experiments measure 
surface properties (ANC, reduced width), or 
volume properties (norm of overlap function) ? 

§  Theory: only ‘asymptotic properties’ are observable: 
invariant under off-shell (interior) unitary transformations. 

§  Reply: We have relied on local potentials for interior forms 

§  Conclusion: We must: 
•  pay attention to invariance if we derive effective potentials  

(which may be local or non-local) 
•  separate the contributions from interior and exterior 
•  see if/how these contributions depend on higher-order couplings. 
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Not clear what do we measure when we compare 
(a) experimental magnitude to theory magnitude? 
(b) experimental width to theory width? 

Need a new general theory for resonant transfers! 
•  Preferably one easy to calculate!  
•  At present, to get convergence at large radii:  

we use bins, or complex contour, or damping 
•  Should calculate actual shape of resonance peak 
—  Include wide / overlapping / multichannel resonances 
—  Ideally should fit using R-matrix resonance parameters 
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§  Look at dependence of transfer rate on rnA 
= radius of neutron wave function φn(rnA) being probed 
•  Remember that φn(rnA) for  rnA > rs (surface radius)   

depends on the reduced width: γ2  or the ANC: C  
 
 
 

§  Look at how post and prior transfers depend on maximum 
value of  rnA (cut wfn to zero outside). 

§  Later, try to express as much of the transfer as possible in 
terms of the γ2. 

§  This will help calculation of transfers to resonances  
•  Needed e.g. for Trojan Horse methods, and many expts. 
 

�2 =
h̄2

2µa
�n(a)2 �n(rnA)!rnA!1 C W (krnA)

(when
Z a

0
�n(r)2dr = 1)
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§  Consider a deuteron d=n+p incident on target A, 
and the A(d,p)B reaction, with B=A+n. 

§  Binding potentials Vnp for φd(r),    VnA for φn (rnA) 
•  Entrance  & exit optical potentials UdA(R), UpB(R)  
•  Also need ‘core-core’ potential UpA 

Look at DWBA as first approximation: 
§  Tpost = <fp(-) φn | Vnp + UpA - UpB(R) | φd fd(+)> 

§  As long-ranged in rnA as φn, as Vnp acts at all distances from target 

§  Tprior = <fp(-) φn | VnA  + UpA - UdA(R) | φd fd(+)> 
§  Short-ranged in rnA than φn, as VnA  , UpA , UdA all cut off away from target 

(has ZR limit) 
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Resonance bin at 1 MeV 

Peak cross sections, calculated in the post and prior formalisms, are shown as a function of the cutoff radius, 
   (beyond which contributions from the neutron wave function are set to zero) 
The cross sections are normalized relative to the peak cross sections obtained in the full calculation. 

See that   Post contributions are from large neutron radii. 
                Convergence to resonances is slow (especially for post form)   
                Very small post contributions from the interior 



Lawrence Livermore National Laboratory LLNL-PRES-539552 
7 

§  Define Tpost(a,b) & Tprior(a,b) with a < rnA< b limits 
Mukhamedzhanov (PRC 84, 044616, 2011) showed recently: 
  T = Tpost(0,a) + Tsurf(a) + Tprior(a,∞) 
                where Tsurf(a) = <fp(-) φn |              | φd fd(+)>(in) 

§  Evaluate:  

THEORY OF DEUTERON STRIPPING: FROM SURFACE . . . PHYSICAL REVIEW C 84, 044616 (2011)

The overlap function is given by

IF
A (rnA) =

∑

jnAmjnA
mlnA

〈JAMAjnAmjnA
|JF MF 〉

× 〈JnMnlnAmlnA
|jnAmjnA

〉
×YlnAmlnA

(r̂nA)IAjnAlnA
(rnA). (18)

Here 〈j1m1j2m2|j3m3〉 is the Clebsch-Gordan coefficient, lnA

(mlnA
) is the orbital angular momentum (its projection) of the

relative motion of n and A, jnA (mjnA
) is the total angular

momentum (its projection) of n in the bound state F = (nA),
Ji(Mi) is the spin (its projection) of nucleus i, IF

AjnAlnA
(rnA) is

the radial overlap function, which is a real function [23], Ylm(r̂)
is the spherical harmonics, and r̂ = r/r is the unit vector. We
assume that only one value of lnA contributes to expansion
(18). If the channel radius is taken larger than the range of the
nuclear interaction, the radial overlap function can be replaced
by its asymptotic term,

IF
AjnAlnA

(RnA)
rnA>RnA≈ CF

AjnAlnA
ilnA+1κnAh

(1)
lnA

(iκnArnA), (19)

where h
(1)
lnA

(iκnArnA) is the spherical Hankel function of the
first order, CF

AjnAlnA
is the ANC of the overlap function, and

κnA =
√

2µnAεnA is the bound-state wave number.
It is also useful to introduce the reduced-width amplitude

used in the R-matrix approach, which can be expressed in
terms of the ANC [25]:

γnAjnAlnA
=

√
RnA

2µnA

IF
AjnAlnA

(RnA)

=

√
RnA

2µnA

ilnA+1κnACF
AjnAlnA

h
(1)
lnA

(iκnARnA). (20)

Correspondingly, the reduced width is

γ 2
nAjnAlnA

= RnA

2µnA

[
IF
AjnAlnA

(RnA)
]2

= RnA

2µnA

(−1)lnA+1κ2
nA

[
CF

A jnAlnA
h

(1)
lnA

(iκnARnA)
]2

.

(21)

It is worth mentioning that, owing to the presence of the
channel radius RnA, the reduced width, in contrast to the ANC,
is model-dependent. The dependence on the channel radius
becomes crucial with increasing binding energy. We use also
the boundary condition, which is the logarithmic derivative of
the overlap function at rnA = RnA:

BnA = 1

h
(1)
lnA

(iκnARnA)

d
[
rnAh

(1)
lnA

(iκnArnA)
]

dr

∣∣∣∣
rnA=RnA

. (22)

Owing to Eq. (19), the amplitude M
DW(prior)
ext can be

parametrized in terms of the ANC. We note that this amplitude
is also small. In the external region, rnA > RnA, the nuclear
n-A interaction can be neglected. Besides, in this region the
overlap function exponentially fades away. Also, if the proton
absorption is strong in the internal region of A, the dominant
contribution comes from rpA > RA, where RA is the radius
of nucleus A. If the adopted radius channel RnA is larger

than the n-A nuclear interaction radius we can neglect n-A
nuclear interaction in the external region. In this region each
nuclear potential UN

pA and UN
dA and their difference UpA − UdA

are small. The Coulomb part UC
pA − UC

dA ≈ ZAe2Rd/(2R2
dA),

where Rd is the deuteron size and ZAe is the charge of nucleus
A, is also too small compared to the nuclear potential. Thus, the
dominant contribution to the post DWBA amplitude M

DW(post)
ext

[Eq. (14)] and, hence, to the total post form DWBA amplitude
MDW(post), comes from the surface integral MDW

S . Here and in
what follows all the amplitudes with the transition operator
←−
T − −→

T are assigned the subscript S, which is abbreviation
of “surface,” because the volume matrix elements of these
amplitudes can be transformed into the surface ones in the
subspace over variable rnA, while over the second Jacobian
variable rpF we always keep the volume integral.

Now we express MDW
S in terms of the surface integral

over variable rnA and the same technique is used throughout
the paper. The kinetic energy operator can be written as
T = TpF + TnA. TpF is a Hermitian operator in the subspace
spanned by the bra and ket states in Eq. (16). It can be proved
if we take into account that at rpF → ∞ the integrand in this
equation vanishes exponentially owing to the presence of the
bound state wave function ϕd (rpn) and the overlap function
IF
A (rnA). Hence, integrating by parts twice the integral over

rpF we obtain
〈
χ

(−)
pF IF

A

∣∣←−T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

=
〈
χ

(−)
pF IF

A

∣∣−→T pF − −→
T pF

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

= 0. (23)

Then MDW
S reduces to

MDW
S (kpF , kdA) =

〈
χ

(−)
pF IF

A

∣∣←−T nA − −→
T nA

∣∣ϕdχ
(+)
dA

〉∣∣
rnA>RnA

.

(24)

We apply now Green’s theorem to transform the volume
integral into the surface one, which encircles the inner volume
over the coordinate r:

∫

r!R

drf (r)[←−T − −→
T ]g(r)

= − 1
2µ

∮

r=R

dS[g(r)∇rf (r) − f (r)∇rg(r)]

= − 1
2µ

R2
∫

d&r

[
g(r)

∂f (r)
∂r

− f (r)
∂g(r)
∂r

]

r=R

. (25)

Here dS = R2d&rr̂, where &r is the solid angle. Note that
the unit vector r̂ is the normal vector to the sphere directed
outside of the restricted by the surface volume. The integration
in Eq. (24) over rnA is taken over the external volume restricted
by two spherical surfaces: the inner surface with the radius RnA

and the external surface with the radius R
′

nA → ∞; that is,

MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA) + MDW

S∞
(kpF , kdA).

(26)

The first term in this equation is the surface integral
encircling the inner surface of the external volume at
rnA = RnA, while the second term is the surface integral taken
at rnA = R

′

nA → ∞. A negative sign in front of the first term
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Prove post-prior equivalence in DWBA: 
§  If a=0, then, since Tsurf(0) = 0, find T = Tprior(0,∞) 
§  If a=∞, then, since Tsurf(∞) = 0, find T = Tpost(0,∞) 
 
Dependence on reduced width γ2 of neutron wf: 
§  If a is outside radius of the potential, then  

Tsurf(a) + Tprior(a,∞) depend on wfn only by γ2 

§  Only dependence on interior is by (small) Tpost(0,a)  
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Now we see the surface term peaked at the surface (as expected). 
 
But it does not produce all the cross section peak, or all the integral 

Tsurf(a)  = Tprior(0,a) - Tpost(0,a) 
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§  The potentials in the prior matrix element 
     Vn  + UpA - Ud(R)  
are very similar to the  
    UnA  + UpA - Ud(R)  
used in CDCC breakup calculations. 
Difference is that Vn = binding potl and UnA = optical potl. 

§  If we can ignore this difference, and calculate ΨCDCC, 
then the ‘exterior prior’ term disappears: 

   T = TCDCC
post(0,a) + TCDCC

surf(a)  

§  For now:  
regard the ‘exterior prior’ as indicator of breakup. 
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TCDCC
surf(a) = T  -  TCDCC

post(0,a)  
                   ≈ Tpost(a,∞)                   -- use this to estimate: 
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outside potential, where the CDCC-surface 
contribution is complete 

Black curve ratio of post cross sections σpost(a,∞)/σ   = |Tpost(a,∞)/T|2 : 
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§  See development of a model that separates 
1.  Interior contributions from shape of wave function 
2.  Breakup contributions from exterior tails 
3.  Dominant ‘surface contribution’ from exterior tails. 

§  ‘Surface Approximation’: if neglect other terms 
§  Good prospects for  

•  a new model of transfer reactions to resonances, that 
•  uses small-radius calculations (convergent!), 
•  to map R-matrix parameters onto resonance shapes. 

§  We are now developing the CDCC approach 
§  In future: fit neutron R-matrix parameters from expt. 
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Define ‘spectroscopic factor’ S 
= ratio of observed reduced width 
    to that of single-particle state  

Maybe something for us to learn here? 
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