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Abstract. A theory of partial fusion is used to calculate the competition between escape
(breakup) and absorption (compound-nucleus production) following a deuteron-induced transfer
of one neutron to a heavy nucleus at energies above the neutron escape threshold. Preliminary
calculations are shown to yield excellent results for the competition between neutron absorption
and neutron escape when deposited on actinides at energies up to 3 MeV.

1. The problem
A difficulty in reaction theory arises when there is a simultaneous absorption of one part of a
composite system: we need to be able to distinguish complete and no fusion from incomplete
fusion. After the absorption of one fragment, we want to still follow the evolution of remaining
part(s), in order to see whether it escapes (yielding incomplete fusion) or fuses with the target
(yielding complete fusion). When it may escape, we want to predict its angular scattering
amplitudes,

Experiments [1], for example, have measured protons from (d,p) reactions on actinides, both
with and without coincidence with fission events. The ratio σ(d,pf)/σ(d,p) between these cross
sections can be taken as an estimate of the fission probability at a neutron energy determined
from the measured proton energies by En = Etot − 2.226 MeV − Ep. However, using fission
probabilities from 239Pu(d,pf) does not give correct (n,f) cross sections if it is assumed that
all (d,p) transfer reactions lead to compound nucleus formation. From Fig. 1, we see that the
results can differ from evaluated fission probabilities by up to 40% even at 2 MeV of equivalent
neutron energy.

This is precisely the kind and direction of difference we find with a theory of partial fusion.
The observed σ(d,p) rate includes escape (breakup) as well as absorption (compound-nucleus
production), so the denominator in σ(d,pf)/σ(d,p) is too large.

2. Theory
There have been attempts to extend standard few-body reaction theory to describe more general
outcomes: by Udagawa and Tamura [2] , of Kerman and McVoy [3] (based on [4]), and of Baur
and Trautman [5], as well as a proposal of my own [6], but these give different results[7].

Now I follow the theory of Austern [8] that sums over the final states of just one (neutron)
particle of a few-body system (eg. deuteron), and show how partial sums of the cross sections to
those states can be expressed as integrals of the imaginary component of that particles optical
potential. In this derivation we need not make any first-order approximations in the entrance
channel wave functions, and can ensure post-prior equivalence for the transfer matrix elements.
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Figure 1. Fission probabilities for neutrons incident on 239Pu. Comparison of two surrogate
experiments with probability from the ENDF/B.VII evaluation (the ratio of the fission cross
section to the reaction cross section). The energy scale is En: the continuum neutron energy in
240Pu∗.

3. Calculations
The normal (d,p) formalism calculates the cross sections for a neutron being captured into a
bound state around the target, with the proton escaping and being measured. The T -matrix
for this process has the standard form of

Tdp(kp) = 〈ψ(−)(rp; kp)φ(rn)|V |φd(r)Ψ(+)(R)〉, (1)

where φ(rn) is the neutron final state in real potential, φd(r)Ψ(+)(R) is incoming deuteron wave
function, and V is the transfer interaction (post or prior). Using partial wave expansions, this
integral can be written as sums of L-dependent matrix elements like

TLd
LnLp

(kp) = 〈ψ(−)
Lp

(rp; kp)φLn(rn)|V |φd(r)Ψ(+)
Ld

(R)〉. (2)

Now, however, the neutron is in a complex potential V (rn) − iW (rn). Here, the −iW (rn)
term describes the loss of flux to CN resonances, which is the ‘spreading’ into CN resonances.
This is the same as the reaction cross section for neutrons incident by themselves, or, within a
deuteron-nucleus reaction, a partial fusion cross section.

In order to calculate this partial fusion, we make ‘proton bin’ wave function ξ(−)(rp; kp) by
averaging the proton outgoing waves over small sections [k1, k2] of momentum space:

ξ
(−)
Lp

(rp; kp) =

√
2

π(k2−k1)

∫ k2

k1

ψ
(−)
Lp

(rp; kp)dkp. (3)

This bin wave function is square-integrable, and hence can be used as the final captured state
in an DWBA-like matrix element. This allows transfer cross section calculations to converge
without the use of Vincent-Fortune [9] complex continuations for asymptotically large radii.
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Figure 2. Results for the reaction d + 239Pu→ p + 240Pu at Ed = 15 MeV. The left plot shows
the partial fusion cross sections as a function of energy across the neutron escape threshold, for
different spins LN of the absorbed neutron. The right plot shows that partial fusion (black) and
breakup escape (red) cross sections as a function of partial wave Lp of the outgoing proton.

Now, to find the propagation of the neutron in an optical potential after transfer, we solve
an inhomogeneous equation with source term:

[Hn − En]ψLn
LpLd

(rn; kp) = 〈ξ(−)
Lp

(rp; kp)|V |φd(r)Ψ(+)
Ld

(R)〉. (4)

The CN production cross section, integrating over all proton angles (summing over all Lp), is
then

σLn
CN(kp) = 4π

2
h̄vd

∑
LdLp

(2Ld + 1)
∫ ∞
0
|ψLn

LpLd
(rn; kp)|2W (rn)drn, (5)

which retains its dependence on the proton energy Ep = h̄2kp
2
/2µp.

4. Results
Figure 2 shows our first results, for exit cross sections integrated over all proton angles, from
Eq. (5). Later work will use a full partial wave expansion of Eq. (1) and hence give the CN cross
section as a function of both the magnitude and direction of kp, the outgoing proton momentum.
The left plot shows calculated values of σLn

CN(kp) plotted as function of neutron continuum energy
En = Etot− 2.226 MeV −Ep. The right plot shows the same cross sections as a function of the
partial wave Lp of the outgoing proton. We see strong even-odd staggering in the cross sections
that probably arises from the position of the major shells in 240Pu with respect to the neutron
threshold. The CN production cross section, at least at this low neutron energy, is seen to be
as large, or larger, than the escape (breakup) cross section (red line).

By calculating both absorption and escape cross sections for a range of negative and
positive neutron energies En, we may calculate the probability of CN capture as PCN =
σCN/(σCN + σescape). The results are plotted on the left of Figure 3. The probability is of
course unity below the neutron escape threshold, then drops towards 0.6 as the energy rises and
escape becomes possible. These new calculations for the competition between escape (breakup)
and compound nucleus formation (absorption) agree qualitatively with results for (n,γ) reaction
models [10, 11].
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Figure 3. Results for the reaction d + 239Pu→ p + 240Pu at Ed = 15 MeV. The left plot shows
the probability of CN formation, as a function of energy across the neutron escape threshold.
The right plot shows fission probabilities for neutrons incident on 239Pu: the new red curve
shows the Britt data divided by the CN formation probabilty of the left plot.

On the right side of Figure 3, we repeat the curves of Figure 1, and add in the red curve
which is the fission probability extracted from Britt et al., now divided by our newly calculated
capture probabilities of the left side of the plot. This red curve is much closer to the probability
obtained using ENDF-evaluated fission and reaction cross sections (solid black line). There are
still differences between these two curves, in part because the experiment was done at proton
angle of 140◦, whereas our preliminary theory calculates only the ratio of angle-integrated cross
sections. We also know that rotational couplings play an important role for targets such as this,
while our preliminary calculations are based only on single-channel optical scattering. Future
work, already underway, will remedy these shortcomings in our theory of partial fusion.
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