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Direct Neutron Radiative Capture (n,y)

 Useful for studies of structure and reactions

* Needed for astrophysical nucleosynthesis models

— Especially for light, and neutron rich nuclei where it may be greater
than compound (statistical) neutron capture

* Needed for data evaluations of light and medium mass nuclei
 R-matrix resonance parameter fitting for resolved resonances
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Direct Neutron Radiative Capture (n,y)

* The effect of non-spherical shapes on direct capture has
previously to this work been studied only in the incoming
channels or the outgoing channels (bound states), but not in
both

» We outline a coupled-channel approach to that self-
consistently computes effects of non-spherical shape in
incoming and in outgoing partitions

 We compute direct capture with and without the effect of
deformation for the even calcium isotopes:
Ca-40,42,44,46,48

— By coupling 2+ and 4+ states with non-zero deformation lengths
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Schematic Coupled Channel Model
* |nitial and final partitions couple to 2+, 4+ states

A Core (A) does not

E change state in the
4+ capture step (to be

implemented).

—— E1 dipole
— E2 quadrupole

A

E

y +(A+1)
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Advantages of Ca even mass isotopes

* Wide range of deformational strengths and 2+ excitation energies

* Thermal capture cross sections known to better than 10%, and
— Thermal neutron: measured prompt y-ray energies and branching ratios

* Mostly E1 capture: 82%, 93% 98% 96% 100% for
Ca-40,42,44,46,68

— Good for testing models of direct capture

* Mostly direct capture at the thermal neutron energy

— Compound resonant capture measured but small.
— lts contribution can be computed via R-matrix formalism
— Small fraction of s-wave neutron E1 capture is compound resonant
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Theory of Direct Capture

» Siegert’s theorem (1937):
— Expresses EM operator in terms of charge density form

* Coupled channels (FRESCO)
— I.J. Thompson, F.M. Nunes, “Nuclear Reactions for Astrophysics”, (2009)

» Core excitations in incoming (n+core) or outgoing (y+(n+core))
partitions:

— 2+, 4+ state of a rotational band with deformation lengths from TALYS

— Core remains in the same state (0+,2+,0r 4+) during the capture step
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— Later we may implement core transitions in the capture step itself
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FRESCO Calculation Input

» Koning-Delaroche complex optical potential at E=0 MeV
— Good for thermal neutron capture and sufficient for low-energy

» Deformation length parameters from TALYS database from B(E2)
 Compute direct capture for Ca-40,42,44,46,48

— No deformation; 2+; {2+,4}, in initial and final channels
— Deformation 2+; {2+,4+}; in initial channel only, or final channel only
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Deformation in initial vs. final states

* The effect of deformation in the final neutron bound state is
greater than in the Initial neutron scattering state

— Assumed by Boison and Jang, Nucl. Phys. A189 (1972) 334-352

— Using bound spectroscopic factors (SF) from Kahane et al. (1987)
— Plots below are for thermal neutron capture
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Experimental determination of SF’s

 SF were determined by fitting (d,p) cross sections w/o deformation
(spherical potentials)

* But, in bound states, the fraction of the core in its GS diminishes
with coupling to 2+ and 4+ core states. This upsets (d,p) fits.

 We compensated, approximately, by rescaling overall SF in order
to make the GS component the same as was fitted before

* Most of the direct capture occurs into the core in the GS, so a
decrease in the fraction of the core in the GS decreases capture

» Later, should revisit (d,p) reactions with couplings to (2+, 4+) states
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Thermal capture results vs. data
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Thermal capture results vs. data
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40Ca(n,g) spherical vs. CC (0+,2+)
» Computations of capture over-predict thermal cap. by a factor of 2
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40Ca(n,g) spherical vs. CC (0+,2+,4+)
 Computations of capture over-predict thermal cap. by a factor of 2
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42Ca(n,g) spherical vs. CC (0+,2+)
* DC with rescaled SF is larger than thermal capture expt.
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42Ca(n,g) spherical vs. CC (0+,2+,4+)
 DC with rescaled SF is larger than thermal capture expt.
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44Ca(n,g) spherical vs. CC (0+,2+)
* Renormalization of SF yields capture compatible with experiment
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44Ca(n,g) spherical vs. CC (0+,2+,4+)
 Renormalization of SF yields thermal capture smaller than expt.
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46Ca(n,g) spherical vs. CC (0+,2+)
» Rescaling of SF yields thermal capture larger than expt.
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46Ca(n,g) spherical vs. CC (0+,2+,4+)
* Rescaling of SF yields thermal capture larger than experiment
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48Ca(n,g) spherical vs. CC (0+,2+)
* All methods yield thermal capture cross sections smaller than expt.
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48Ca(n,g) spherical vs. CC (0+,2+,4+)
* All methods yield thermal capture cross sections smaller than expt.
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Conclusions

» These quadrupole-core couplings have strong effects on capture
away from closed shell.

— Even if spherical models come close to the data

» Effect of non-spherical shapes are larger for final (bound) state
— Bound states become fractionated among core states (0+,2+,4+)
— This fractionation diminishes fraction of the core in GS and direct capture

* To restore the original experimental spectroscopic amplitudes
some renormalization of bound states may be necessary

Future research (TORUS Collaboration)

» Allow for core (de-)excitations in the capture step itself
— Findings may yield insight on the SF renormalization method

* Revisit (d,p) reactions with couplings to (2+, 4+) states
— It may affect values and interpretation of SF
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44Ca(n,g) spherical vs. CC (0+,2+)
* Renormalization of SF yields capture compatible with experiment
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44Ca(n,g) spherical vs. CC (0+,2+,4+)
 Renormalization of SF yields thermal capture too small

1000

100

=
(o o

o
_

44Ca(n,y) direct capture cross section [mb]

0.01

44 Ca(n,y) Direct Capture: spherical vs. non-spherical

==Direct Capture spherical approx.

==Non-spherical DC, Unrenormalized SF

Non-spherical DC, Renormalized SF

1.e-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

En [MeV]

t OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY




44Ca(n,g) spherical vs. CC (0+,2+,4+)
 Renormalization of SF yields thermal capture too small
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