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Direct Neutron Radiative Capture (n,γ) 

• Useful for studies of structure and reactions 
• Needed for astrophysical nucleosynthesis models 

–  Especially for light, and neutron rich nuclei where it may be greater 
than compound (statistical) neutron capture 

• Needed for data evaluations of light and medium mass nuclei 
• R-matrix resonance parameter fitting for resolved resonances 
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Direct Neutron Radiative Capture (n,γ) 

•  The effect of non-spherical shapes on direct capture has 
previously to this work been studied only in the incoming 
channels or the outgoing channels (bound states), but not in 
both 

• We outline a coupled-channel approach to that self-
consistently computes effects of non-spherical shape in 
incoming and in outgoing partitions 

• We compute direct capture with and without the effect of 
deformation for the even calcium isotopes:  
Ca-40,42,44,46,48 
–  By coupling 2+ and 4+ states with non-zero deformation lengths 



4 Presentation name 

Schematic Coupled Channel Model 
•  Initial and final partitions couple to 2+, 4+ states  
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capture step (to be  
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Advantages of Ca even mass isotopes 

• Wide range of deformational strengths and 2+ excitation energies 
•  Thermal capture cross sections known to better than 10%, and 

–  Thermal neutron: measured prompt γ-ray energies and branching ratios 

• Mostly E1 capture: 82%, 93% 98% 96% 100% for 
Ca-40,42,44,46,68  
–  Good for testing models of direct capture 

• Mostly direct capture at the thermal neutron energy 
–  Compound resonant capture measured but small. 
–  Its contribution can be computed via R-matrix formalism 
–  Small fraction of s-wave neutron E1 capture is compound resonant 
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Theory of Direct Capture 
• Siegert’s theorem (1937):  

–  Expresses EM operator in terms of charge density form  

• Coupled channels (FRESCO)  
–  I.J. Thompson, F.M. Nunes, “Nuclear Reactions for Astrophysics”, (2009) 

• Core excitations in incoming (n+core) or outgoing (γ+(n+core)) 
partitions:  
–  2+, 4+ state of a rotational band with deformation lengths from TALYS 
–  Core remains in the same state (0+,2+,or 4+) during the capture step 

4.7 Photo-nuclear couplings 183
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The electric photon vector-form T matrix is thus
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In the long-wavelength approximation, we use Eq. (3.1.17) to give
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The Seigert theorem therefore gives us a matrix element that is propor-
tional to the standard multipole operator of order J for the charge density
of Eq. (4.4.25):
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The conjugation of fJM and the sign of M in this equation depend on
whether the photon is in the initial or the final state.

Reconstituting a local form factor for coupled equations

Having made the reduction to charge-density form, it is sometimes con-
venient for the uniform treatment of all reaction channels to reconstitute a
coupled photon equation which gives the same partial-wave T�↵
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184 Reaction mechanisms

The same T-matrix numerical value can be obtained from the asymptotic
solution of a reformulated photon channel equation
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The new photon wave functions ⇣̃�(r) are not equal to the previous func-
tions ⇣�(r), to start with being in partial wave ⇤0 = J rather than ⇤ =
J�1, but they have been constructed to have the same asymptotic T-matrix
amplitude.

Since the wave functions  (R) are written as functions of the two-
body separation R and not on the distance r from their center-of-mass,
Eq. (4.7.17) is a non-local equation. It may be approximated by a local
equation if we can use the power series of Eq. (4.7.14) to include the scal-
ing factor in r = ⌫R:
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This equation, valid in the long-wavelength approximation or when ⌫ ' 1,
implies that the transition potential from particle to gamma channels is
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for multipolarity � equal to the bound-state orbital angular momentum.
From the T-matrix element calculated either by Eq. (4.7.12) or by Eq. (4.7.18),

the capture cross section for photon emission is (as stated in Chapter 3)
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4.7.3 Combining multiple-particle and � channels
The coupled-channels formalism that we have used as a general framework
for reaction theory is designed to have only two bodies in relative motion
in each partition. This means that if a two-body composite system or a

–  Later we may implement core transitions in the capture step itself 
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FRESCO Calculation Input 
• Koning-Delaroche complex optical potential at E=0 MeV 

–  Good for thermal neutron capture and sufficient for low-energy 

• Deformation length parameters from TALYS database from B(E2) 
• Compute direct capture for Ca-40,42,44,46,48 

–  No deformation; 2+; {2+,4}, in initial and final channels  
–  Deformation 2+; {2+,4+}; in initial channel only, or final channel only 
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Deformation in initial vs. final states 
•  The effect of deformation in the final neutron bound state is 

greater than in the initial neutron scattering state 
–  Assumed by Boison and Jang, Nucl. Phys. A189 (1972) 334-352 
–  Using bound spectroscopic factors (SF) from Kahane et al. (1987) 
–  Plots below are for thermal neutron capture 
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Experimental determination of SF’s 

• SF were determined by fitting (d,p) cross sections w/o deformation 
(spherical potentials) 

• But, in bound states, the fraction of the core in its GS diminishes 
with coupling to 2+ and 4+ core states. This upsets (d,p) fits. 

• We compensated, approximately, by rescaling overall SF in order 
to make the GS component the same as was fitted before 

• Most of the direct capture occurs into the core in the GS, so a 
decrease in the fraction of the core in the GS decreases capture 

•  Later, should revisit (d,p) reactions with couplings to (2+, 4+) states
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Thermal capture results vs. data 
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Thermal capture results vs. data 
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• Computations of capture over-predict thermal cap. by a factor of 2 
40Ca(n,g) spherical vs. CC (0+,2+) 
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40Ca(n,g) spherical vs. CC (0+,2+,4+) 
• Computations of capture over-predict thermal cap. by a factor of 2 
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• DC with rescaled SF is larger than thermal capture expt.  
42Ca(n,g) spherical vs. CC (0+,2+) 
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42Ca(n,g) spherical vs. CC (0+,2+,4+) 
• DC with rescaled SF is larger than thermal capture expt.  
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• Renormalization of SF yields capture compatible with experiment 
44Ca(n,g) spherical vs. CC (0+,2+) 
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44Ca(n,g) spherical vs. CC (0+,2+,4+) 
• Renormalization of SF yields thermal capture smaller than expt. 
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• Rescaling of SF yields thermal capture larger than expt. 
46Ca(n,g) spherical vs. CC (0+,2+) 
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46Ca(n,g) spherical vs. CC (0+,2+,4+) 
• Rescaling of SF yields thermal capture larger than experiment 
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• All methods yield thermal capture cross sections smaller than expt. 
48Ca(n,g) spherical vs. CC (0+,2+) 
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48Ca(n,g) spherical vs. CC (0+,2+,4+) 
• All methods yield thermal capture cross sections smaller than expt. 

0"

200"

400"

600"

800"

1000"

1200"

1400"

1.E*08" 1.E*07" 1.E*06" 1.E*05" 1.E*04" 1.E*03" 1.E*02" 1.E*01" 1.E+00"

48
Ca

(n
,γ
))σ

)D
C)[
m
b]
)

En)[MeV])

48)Ca(n,γ))Direct)Capture)(DC):))
spherical)vs.)non@spherical)(0+,2+,4+))

DC"spherical"approx."
Non*spherical"DC,"Unrenormalized"SF"
Non*spherical"DC,"Renormalized"SF"
Exp."Thermal"Capture"



22 Presentation name 

Conclusions 
•  These quadrupole-core couplings have strong effects on capture 

away from closed shell. 
–  Even if spherical models come close to the data  

• Effect of non-spherical shapes are larger for final (bound) state 
–  Bound states become fractionated among core states (0+,2+,4+) 
–  This fractionation diminishes fraction of the core in GS and direct capture  

•  To restore the original experimental spectroscopic amplitudes 
some renormalization of bound states may be necessary 
Future research (TORUS Collaboration) 
• Allow for core (de-)excitations in the capture step itself 

–  Findings may yield insight on the SF renormalization method  

• Revisit (d,p) reactions with couplings to (2+, 4+) states   
–  It may affect values and interpretation of SF 
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• Renormalization of SF yields capture compatible with experiment 
44Ca(n,g) spherical vs. CC (0+,2+) 
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44Ca(n,g) spherical vs. CC (0+,2+,4+) 
• Renormalization of SF yields thermal capture too small 
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44Ca(n,g) spherical vs. CC (0+,2+,4+) 
• Renormalization of SF yields thermal capture too small 
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