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Unified description of nuclel
and their reactions

Need a good model!

» describes data
» predictable outside known regions




Physics of Hadrons

Physics of Nuclei
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nuclear shell model

magic numbers
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Nuclear Shell Structure

Near stability For N >>2
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Nature 459, 1069-1070 (25 June 2009)
NUCLEAR PHYSICS

Unexpected doubly magic nucleus

Robert V. F. Janssens

Nuclei with a ‘'magic’ number of both protons and neutrons, dubbed doubly
magic, are particularly stable. The oxygen isotope **O has been found to be
one such nucleus — yet it lies just at the limit of stability.
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any simple central interaction can give correct binding

¢

only the large body of reaction analysis could
provide the detailed structure of the deuteron
and the tensor interaction

Pieper and Wiringa, ANL
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traditionally used to
extract optical potentials,
rms radii, density
distributions.

"Li+*®Pb @ 29.5 MeV
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X(11Be, 11Be*)
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Fig. 2. Comparison of B(El) valucs obtained from lifetime and Coulomb ¢x-
citation measurements. The weighted average of lifetime measurements [3]

tr aditianally USEd to (open circle) is plotted on the left along with the weighted average (solid cir-
- cle) of three Coulomb excitation measurements (solid symbols). The individual
extract electromagnetic

Coulomb excitation measurements, GANIL (this work, square), MSU (up tri-
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- (diamond) [4], are plotted versus the beam energy.
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traditionally used to
extract spin,parity and
spectroscopic factors

example:
13ZSn(d’ p) 133Sn
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Table 1| Properties of the four single-particle states populated by the
132Sn(d,|::)1335n reaction

E. (keV) JF Configuration C(fm ™)

0 712~ B2Sh . ®vy,, 086%016  0.64+0.10
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1,363 + 31 (1/27)  Sn,e®vy, 11+03 2.63+0.43
e 11402 (9+2)x10*
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11j(p,t)°Li@ 3 A MeV
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FIG. 3 (color online). Differential cross sections of the (p, 1)
reaction to the ground state of ®Li and to the first excited state
(insert). Theoretical predictions using four different wave func-
tions were shown by curves. See the text for the difference of the
wave functions.

traditionally used to study
two nucleon correlations

h : oL | e
measured both ground state and excited state °Li and pairing

[Tanihata et al, PRL 100, 192502 (2008)]
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Fig. 1. Doppler cotrected ¥ -ray spectra measured in coincidence
with an 220 fragment and one neutron for Pb (symbols) and C
(shaded area) targets. Arrows indicate the strongest y transitions
as expected from the 220 level scheme of Ref. [10] (partial level
scheme shown as inset; level energies are in keV).
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- direct measurement “Be(p,y)¢B

 transfer reaction '

»— .
 Coulomb dissociation
. ' ’Be
14N(7Be, 8B)13C '&
e low relative energy
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- stable nuclel

- neutron-rich nuclei

= nuclei of a special
Borromean nuclei interest

- proton-rich nuclei four neutron halo
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FIG. 2. The 7, as a function of the neutron number of C
isotopes. The filled square and circles show the present result
and those determined at GSI [14], respectively, while open
symbols are the result of the calculation [22]. The lines connect
the open circles. The inset shows p,(r) (solid line) and p,(r)
(dotted line) of 22C for the determined parameter. See text.
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FIG. 3 (color).
f = 0.0 (blue triangles), with §,, = 420 keV (open symbols)
and S,, = 10 keV (closed symbols), respectively. The lines are
to guide the eye. The experimental data (solid circles) as a
function of the mass number of C isotopes are also plotted.

The oy for f = 1.0 (red triangles) and that for

PRL 104, 062701 (2010)



An infinite series of three-
body bound states with
Eﬂ — EGE—QHWKSD

when two-body scattering
length a — oc (59 =
1.00624)
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Compare theory to data: structure=data/reaction




theory = restruciontaucre

Compare theory to data:
cross section(theory)=cross section(exp) ?

If yes: structure assumptions correct
If no: try again!

need absolute confidence in reaction model



[S. Quaglioni and P. Navratil, PRL101, 092501 (2008); PRC79, 044606 (2009)]
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Reaction theories need to map onto the many-body problem!




overlap function
L1,05(r) = (@] (E0)| D7, (Ea. 1))

spectroscopic factor (5,,):
norm of overlap function
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nfj

A

(Tr +VnA t E)¢nlj (r) = O

nucleon feels a mean field generated by core nucleons V,,
« specific n,l,j and separation energy
« assumptions about single particle parameters V,,



Same radial dependence at large distances:

e OI(C e B g, ()0 (B h(im)

Extend that assumption within the range of the interaction:

Lo (1) <Ak (1)
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The overlap function for C — n+'"C in arbitrary units. The
radial sensitivity of the *C(d,p)'”C cross section is represented
by the colored bars for different beam energies.



Method has been checked for consistency for a number of nuclei

Benchmarked for 48Ca(d,p)*Ca against “Ca(n,y)*Ca

Motivated several new experiments at NSCL, ORNL, TexasA&M, etc

Mukhamedzhanov and FN, Phys. Rev. C 72, 017602 (2005)
Pang, Mukhamedzhanov and FN, Phys. Rev. C 75, 024601 (2007)



until recently best reaction theories for (d,p)
consider breakup to all orders but transfer to first order.

is this a valid assumption?
when is it a valid assumption?

need full Faddeev calculation



CDCC Formalism
Ha, — B0 (1, Ry) = 0

Faddeev Formalism

(E—T, — Vo)W = 1, (0@ 4 ¢
(B =Ty = Ve)¥® = V(W wil)
(B —Ts — Vi) W™ = Vi, (v 4+ w®)
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sy
TABLE II: Estimates of theoretical errors in the extracted

spectroscopic factors due to approximations in the reaction
model as well as experimental errors.

Errors Eth(géAr) Eth(%Ar) Eth(%Ar)
Optical potential| 8 % 7% 4 %
Faddeev 6 % 19 % 11 %
Experiment 10% 10% 10%
Total 14 % 23 % 15 %
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S
NSCL

CDCC + set of single particle parameters
» extract ANC from x2 minimum
> error from e=),i,°+1

Yao, JPG33 (2006) 1

ANC =1.32 + 0.07 fm1/2

Summers and Nunes, PRC78(2009)069908
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Continuum discretized coupled channels method (CDCC)
= many applications to weakly bound nuclei: good description of data
= extensions to core excitation (also 4-body CDCC)

Coulomb dissociation can be used to extract peripheral (n,y)

= new methodology based on xs scaling with the ANC
= 14C(n,y)1>C from Coulomb dissociation consistent with direct capture data

Transfer reactions and combined method
» one benchmark with (n,y) but many applications with future experiments
» finite range effects can be very important at intermediate energies

Testing CDCC against Faddeev
 disagreement needs to be better understood... new formalism

Transfer reactions compared to knockout
e uncertainties in reaction theory have been quantified
e results move toward agreement

Microscopic overlap functions

 2n overlap functions show increased spectroscopic strength (compared to 3body)
* significant progress needs to be made in reaction theory before structure models
can be tested



v" our hose will increase enormously with FRIB

v' impressive improvements in detector technology

v last 2 decades incredible advances on nuclear
structure theory
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manpower

e less than a handful of researchers at PhD granting institutions




Collaborators: Ngoc Nguyen(MSU), June Hong(MSU), Ivan Brida(ANL),
Pierre Capel, Antonio Moro, Neil Summers, Arnas Deltuva,
Akram Mukhamedzhanov, Peter Mohr, Ron Johnson




