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Big science questions 

How did matter come into being and how does it evolve?  

January 23, 2014 14:42 WSPC/INSTRUCTION FILE FRIB-theory˙16

FRIB Nuclear Theory 5

nuclear models provide structural input for key nuclei not accessible to experiment
that participate in reaction networks, and large scale computational simulations –
such as those shown in Fig. 2, bottom – tell us about astrophysical conditions at
possible sites.

The theory roadmap includes deriving nuclear interactions from QCD and con-
necting those to the structure of the lightest elements and Big Bang nucleosynthesis.
The combined e↵ort of new experiments and theoretical/computational approaches
will enable us to accurately determine all relevant properties and reactions of light
nuclei, in particular neutron-rich nuclei formed during stellar evolution. Interactions
obtained from e↵ective theories of QCD, density functional theories, experiments,
and astrophysical observations will describe the properties of nucleonic matter found
in nature: the nuclear landscape, neutron stars and supernovae.

While great progress has been made in the last decade in the theoretical descrip-
tion of nuclear structure by ab initio methods, configuration interaction approaches,
and nuclear density functional theory, the exploration of neutron-rich systems is still
in its infancy. Figure 3 provides theory predictions for the neutron-rich calcium iso-
topes, which are a frontier for probing nuclear forces and shell structure. Predictions
for masses (by way of two-neutron separation energies) show good agreement for
measured nuclei, but diverge where not yet constrained by experiment.19,20 This
divergence is especially evident for the 2+1 excitation energies.21 The interplay be-
tween theory and experiment at FRIB will lead to a robust phenomenology with
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Fig. 2. Top: Understanding the observed sequence of abundance enrichment of nuclides15 is
a challenge to theory. Bottom: Advanced simulations of supernova16 (left) and neutron star
mergers17 (right) - possible r-process sites.

Neutron capture on unstable nuclei  needed for understanding  possible site  of r-
process: (d,p)/(p,d) reactions  offer an  indirect tool  to extract  this information 

FRIB theory manifesto, Balantekin et al, MPLA 2014 (arXiv:1401.6435) 



Examples of using (d,p) to study unstable nuclei 

Schmitt et al, PRL 108, 192701 (2012),  
PRC 88, 064612 (2013) 

ADWA	


10Be(d,p)11Be @ 12-21 MeV	


K. Jones et al, Nature 465 (2010) 454, PRC 84, 034601 (2011) 

d(132Sn,133Sn)p@5 MeV/u 

Halo nuclei	


Neutron rich doubly magic nuclei	




Reaction theory: from many body to few body 

	


	


	


q  isolating the important degrees of freedom in a reaction 
q  connecting back to the many-body problem 

Ø   effective nucleon-nucleus interactions  
 (non-local and energy dependent) 



Non-local potential? 

	


	


	


•  Phenomenological optical potentials are usually made local U(R) 
 
•  Microscopically derived optical potentials are non-local U(R,R’) 
 

•  Does non-locality make a difference in the reaction? 
•  Can we constrain non-locality with reactions? 



Non-local Perey and Buck potential in (d,p)  

	


	


	


Solve the single channel scattering problem with non-local optical potential 
Solve the single channel bound state problem with non-local mean field 
 
 
Construct the (p,d) amplitude within DWBA 

Perey and Buck type non-locality 
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rection Factor (PCF).
Recently, Timofeyuk and Johnson [26, 27] studied the

e↵ects of including an energy-independent non-local po-
tential in (d, p) reactions within the Adiabatic Distorted
Wave Approximation (ADWA) [28]. Non-locality was in-
cluded approximately through expansions to construct
a local equivalent potential and solving the correspond-
ing local Schrödinger’s equation. They found that a
Perey-Buck type non-locality can be e↵ectively included
in (d, p) through a very significant energy shift in the
evaluation of the local optical potentials to be used in
constructing the deuteron distorted waves. This can im-
pact cross sections dramatically, and calls for further in-
vestigations.

In this work, we determine the importance of non-local
e↵ects in the various components of a nuclear reaction
process, and assess the validity of the PCF by studying a
wide range of reactions, including neutron states bound
to 16O, 40Ca, 48Ca, 126Sn, 132Sn, and 208Pb, and (p, p)
and (p, d) on 17O, 41Ca, 49Ca, 127Sn, 133Sn, and 209Pb
at 20 and 50 MeV.

The paper is organized in the following way. In Sec. II
we briefly describe the necessary theory. Numerical de-
tails can be found in Sec. III. The results are presented
in Sec. IV, starting with a discussion of local equivalent
potentials in Sec. IVA and of approximate local equiv-
alent potentials in Sec. IVB. We consider the e↵ects of
non-localities on scattering wave functions and ways to
correct for non-localities in Sec. IVC. The e↵ects of non-
localities on bound state wave functions are presented in
Sec. IVD. We then explore the e↵ects of non-localities on
transfer cross sections in Sec. IVE. We discuss the con-
nection of this work with other relevant studies in Sec. V.
Finally, in Sec. VI, conclusions are drawn.

II. THEORETICAL CONSIDERATIONS

Let us consider a nucleon scattering o↵ a composite
nucleus. The e↵ective interaction between the nucleon
and the nucleus is a non-local optical potential. In this
case, the two-body Schrödinger equation takes the form

~2
2µ

r2 (r)+E (r) = Uo(r) (r)+

Z
UNL(r, r0) (r0)dr0

(1)
where µ is the reduced mass of the nucleon-nucleus sys-
tem, E is the energy in the center of mass, Uo(r) is the
local part of the potential, and  (r) is the scattering
wave function. A particular form of the non-local poten-
tial introduced by Frahn and Lemmer [21] is

UNL(r, r0) = UNL
WS

✓����
r+ r0

2

����

◆ exp

✓
�
��� r�r0

�

���
2
◆

⇡3/2�3
, (2)

where, � is the range of the non-locality, and typically

takes on a value of ⇡ 0.85 fm. In this work, UNL
WS is of a

Woods-Saxon form of the variable 1
2 |r+ r0|.

This type of potential was further investigated by
Perey and Buck [4]. Making the approximation |r+r0| ⇡
(r + r0) in UNL

WS allows for an analytic partial wave de-
composition resulting in the partial wave equation
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(4)
where j` are spherical Bessel functions, and z = 2rr0/�2.
In our study, we assume the spin-orbit and Coulomb po-
tentials are local, and therefore, Uo(r) = Vso(r)+Vcoul(r).
For a non-local potential of the Perey-Buck type, the

depths of an approximate local equivalent potential can
be found from the relations [4]

V NL
v = V Loc

v exp


µ�2

2~2
�
E � Vc + V Loc

v

��

WNL
d = WLoc

d exp


µ�2

2~2
�
E � Vc + V Loc

v

��
. (5)

Here, Vv and Wd are the depths of the real volume and
imaginary surface terms in the Woods-Saxon potential,
respectively, and are positive constants. E is the center
of mass energy, and Vc is the Coulomb potential at the
origin for a solid uniformly charged sphere with radius
Rc = rcA

1/3. Notice that even though the non-local
potential is energy-independent, the transformed local
depths are energy-dependent, which is a common feature
of local global optical potentials.
Through use of Eq.(5) and fits to neutron elastic scat-

tering data on 208Pb at low energies, the Perey-Buck
non-local potential was determined: the corresponding
parameters are given in the first column of Table I. The
parameters in the Perey-Buck potential are both energy
and mass-independent.
For a given non-local potential, a local equivalent po-

tential can often be found. However, in the nuclear inte-
rior, the wave function resulting from using a non-local
potential is reduced compared to the wave function re-
sulting from using a local equivalent potential. This phe-
nomenon is known as the Perey e↵ect [23]. Correcting
for the reduced amplitude is done via the PCF:

F (r) =


1� µ�2

2~2
�
ULE(r)� Uo(r)

���1/2

. (6)
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Perey correction factor: if the local momentum approximation is valid  
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Note that here, ULE(r) is the local equivalent potential.
As we required the spin-orbit and Coulomb terms to be
identical in the local and non-local potentials, these terms
in ULE exactly cancel Uo. Since F (r) ! 1 as r ! 1, the
correction factor Eq.(6) only a↵ects the magnitude of the
wave function within the range of the nuclear interaction.
A derivation of Eq.(5) and Eq.(6) is given in Appendix
A.

In the asymptotic limit, the wave function takes the
form

 asym
` (r) =

i

2

⇥
H�

` (⌘, kr)� S`jH
+(⌘, kr)

⇤
, (7)

where ⌘ = Z1Z2e
2µ/~2k is the Sommerfeld parameter, k

is the wave number, S`j is the scattering matrix element,
and H� and H+ are incoming and outgoing spherical
Hankel functions, respectively. For neutrons, ⌘ = 0.

In Sec. IVE, we use the Distorted Wave Born Ap-
proximation (DWBA) to calculate the T-matrix for the
B(p, d)A reaction, which, neglecting the remnant term,
is written as

Tp,d = h (�)
dA �d|Vnp| pB�nAi , (8)

where  (�)
dA is the deuteron scattering wave function, �d

is the deuteron bound state, Vnp is the Reid soft core
np interaction [29],  pB is the proton distorted wave,
and �nA is the neutron bound state wave function. (for
details on the formalism, please check [30]).

Due to its simplicity, a common technique is to do
a calculation with a suitable local equivalent potential,
then introduce the non-locality by modifying the wave
function with the PCF

 PCF
` (r) = F (r) Loc

` . (9)

This is precisely the approach we want to test in this
study.

III. NUMERICAL DETAILS

In this systematic study, we consider elastic scattering
(p, p) on 17O, 41Ca, 49Ca, 127Sn, 133Sn, and 209Pb at
20 and 50 MeV and the wave functions for a neutron
bound to 16O, 40Ca, 48Ca, 126Sn, 132Sn, and 208Pb. In
both cases, the full non-local equation is solved using
the Perey-Buck potential, with the method described in
Appendix B.

For the scattering process, a local equivalent potential
is determined by fitting the elastic scattering generated
from the non-local equation. This was done using the
code sfresco [31]. Using the local equivalent potential,
the local scattering equation is solved to obtain  Loc and,
finally, the PCF is applied to the wave function Eq.(9).

The corrected wave function,  PCF , is then compared to
the solution of the full non-local equation,  NL.
A similar procedure is followed for the bound states.

The full non-local equation is solved using a real Woods-
Saxon form with a radius parameter of r = 1.25 fm,
which is used to find the radius of the nucleus under con-
sideration through the formula R = rA1/3. The di↵use-
ness is set to a = 0.65 fm, and the non-locality parameter
is fixed at � = 0.85 fm. The depth is then adjusted to re-
produce the physical binding energy of the system. The
local equation is solved with the local depth V Loc

ws nec-
essary to reproduce the binding energy. We then apply
the PCF to the resulting wave function, and renormal-
ize to unity, to obtained the corrected bound state. The
corrected wave function, �PCF , is then compared to the
solution of the full non-local equation, �NL.
The bound and scattering states resulting from either

non-local or local potentials are then introduced into the
DWBA T-matrix for (p, d), Eq.(8), for describing the pro-
cess at 20 and 50 MeV. Angular distributions are calcu-
lated using the code fresco [31]. Non-locality was only
added in the entrance channel, namely through the pro-
ton distorted wave and the neutron bound state. The lo-
cal global parameterization of Daehnick et al. was used to
obtain  dA in the exit channel. In principle, the deuteron
optical potential is also non-local due to breakup e↵ects
and the non-locality of the nucleon-nucleus optical poten-
tial. The non-locality of the deuteron optical potential
will be addressed in a future study. The scattering wave
functions were solved by using a 0.05 fm radial step size
with a matching radius of 40 fm. For the bound state
solutions, we used a radial step size of 0.02 fm. The
matching radius was half the radius of the nucleus under
consideration, and the maximum radius was 30 fm, ex-
cept for a very low binding energy study, when a larger
value was necessary. The cross sections contain contri-
butions of partial waves up to J = 30.

In the following subsection, we present the results and
analyze the e↵ect of non-locality and the approximate
correction factor in detail.

IV. RESULTS

A. Local Equivalent Potentials

As described before, in order to study the correction
factor, a local equivalent potential (LEP) needs to be
found. A local potential is equivalent to a given non-local
potential if it produces the same S-matrix elements, thus,
producing the same elastic scattering angular distribu-
tion. A LEP is found by �2 minimization starting from
the transformed local potential obtained by using Eq.(5).
We required that the spin-orbit and Coulomb terms of
the Perey-Buck non-local potential and the LEP be ex-
actly the same, thus only the real volume and imaginary
surface terms were allowed to vary in the fit to find the
LEP (a total of 6 parameters). For most cases we were
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F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962). 

N. Austern, Phys. Rev. 137, 752 (1965) 



Non-local Perey and Buck potential: effect on (p,d) 
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non-locality in both the proton distorted wave and the
neutron bound state, the dashed line corresponds to the
distribution obtained when only local equivalent interac-
tions are used, and the crosses correspond to the cross
sections obtained when the proton scattering state and
the neutron bound state are both corrected by the PCF.
While the Perey correction improves upon the distribu-
tion involving local interactions only, it is still unable
to fully capture the complex e↵ect of non-locality. The
prominent changes at zero degrees was unique to this
case, but the very significant changes between the uncor-
rected local and the fully non-local around the main peak
was seen for most distributions studied.

We also show the separate e↵ect of including only non-
locality in the proton scattering state (dotted) and the
neutron bound state (dot-dashed). For this case, the non-
locality in the proton distorted wave acts in a similar way
to the non-locality in the bound state, namely it increases
the cross section at zero degrees and reduces the cross
section around 15�.
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FIG. 5: Angular distributions for 49Ca(p, d)48Ca at 50.0 MeV:
inclusion of non-locality in both the proton distorted wave and
the neutron bound state (solid line), using LEP, then apply-
ing the correction factor to both the scattering and bound
states (crosses), using the LEP without applying any correc-
tions (dashed line); including non-locality only to the proton
distorted wave (dotted line), and including non-locality in the
neutron bound state only (dot-dashed line).

The reason for the large changes at small angles can be
seen from an analysis of the scattering and bound wave
functions of Figs. 2, 3, and 4. The existence of a node in
the bound state wave function influences the cross section
in a complex manner. The radius that corresponds to the
surface for 49Ca occurs at a radius slightly larger than
that where the bound state wave function is zero. The
bound wave function has a large slope in this region, so
the percent di↵erence between the non-local and local
wave functions can be quite large in this region. For this
case, the non-local bound wave function is smaller than

the local wave functions in this region, reducing the cross
section at the peak. On the other hand, the magnitude
of the bound wave function is larger for the non-local
case in the tail region, which enhances the cross section
at forward angles.
For the scattering wave functions, the largest di↵er-

ences were for partial waves that corresponded to the
surface. Also, the asymptotics of scattering partial waves
were di↵erent due to small di↵erences in the S-Matrix,
mostly for surface partial waves. The larger the ampli-
tude in the asymptotic region, the larger the cross sec-
tion at forward angles. There is an interplay between
the real and imaginary parts of the scattering wave func-
tion which influences the cross section at forward angles.
In a very complex manner, the combination of all these
e↵ects produces the interesting behavior of the transfer
cross section at forward angles, and the changes in the
magnitude of the cross section at the peak for this par-
ticular reaction.
In order to better understand this case, we artificially

modified the bound wave function. By changing the bind-
ing energy we altered the Q-value of the reaction. Dif-
ferent Q-values produced very di↵erent types of distri-
butions, both in shape and in magnitude. Nevertheless,
similar dramatic changes in the cross section due to non-
locality were found. For very low binding energy, the nor-
malization of the bound wave function was dominated by
the asymptotics, so the PCF did very little. The node in
the wave function altered the cross section in a very com-
plex way. The PCF was not able to correct the bound
wave function in the region around the node since the
wave function and the PCF have a very large slope in
this region, so inadequacies of the PCF were amplified.
Consider now the same target but lower energy. In

Fig.6 we present the transfer angular distribution for
49Ca(p, d)48Ca at 20.0 MeV. Non-locality is seen to have
a large e↵ect at small angles. Including non-locality in
only the bound state increases the cross section at for-
ward angles, which is to be expected from Fig.4, where
it is seen that the magnitude of �NL

nA is larger than �PCF
nA

and �Loc
nA in the asymptotic region. Non-locality in only

the scattering state decreases the cross section, but only
by a small amount. The net e↵ect of non-locality is an
overall increase in the cross section of 17.3% relative to
the cross section obtained with local interactions only.
While the correction factor moves the transfer distribu-
tion in the right direction, it falls short by 5.2%.
Next we consider some heavier targets, 133Sn and

209Pb, and study (p, d) at 20 MeV. In both cases, the
inclusion of non-locality in the scattering state decreases
the cross section by a small amount. This is due to the
low energy of the proton, and the high charge of the tar-
get; the details of the scattering wave function within
the nuclear interior are not significant for the transfer
since these details are suppressed by the Coulomb bar-
rier. Non-locality in the bound state is very significant,
and increases the cross section by a large amount in both
cases. In 133Sn, the correction factor does a fair job tak-
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FIG. 6: Angular distributions for 49Ca(p, d)48Ca at 20.0 MeV
(descriptions of each line is given in the caption of Fig.5).

ing non-locality into account, but there is still a notice-
able discrepancy between the full non-local and corrected
local results. In 209Pb, there are discrepancies at forward
angles, but coincidentally the distributions resulting from
the non-local potential and the local potential with the
PCF agree quite well at the major peak of the distribu-
tion. This agreement is accidental and comes from the
non-local e↵ect in the bound state canceling that in the
scattering state.
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FIG. 7: Angular distributions for 133Sn(p, d)132Sn at 20.0
MeV (descriptions of each line is given in the caption of Fig.5).

The percent di↵erences at the first peak of the transfer
distributions for all the cases that were studied are sum-
marized in Table II and III for the (p, d) reactions at 20
and 50 MeV.

It is seen that for both energies and for nearly all cases,
the inclusion of non-locality in the entrance channel can

0 10 20 30 40 50 60 70 80 90
θc.m. (deg)

0.0

0.4

0.8

1.2

1.6

2.0

dθ
/d
Ω

 [m
b/

sr
]

Non-Local
Corrected Local
Uncorrected Local
Non-Local Scattering State
Non-Local Bound State

FIG. 8: Angular distributions for 209Pb(p, d)208Pb at 20.0
MeV (descriptions of each line is given in the caption of Fig.5).

Corrected Non-Local

E
lab

= 20 MeV Relative to Local Relative to Local
17O(1d5/2)(p, d) 7.1% 18.8%
17O(2s1/2)(p, d) 20.1% 26.5%

41Ca(p, d) 11.4% 21.9%
49Ca(p, d) 10.4% 17.3%
127Sn(p, d) 17.5% 17.3%
133Sn(p, d) 18.2% 24.4%
209Pb(p, d) 19.4% 20.8%

TABLE II: Percent di↵erence of the (p, d) transfer cross sec-
tions at the first peak when using Eq.(6) (2nd column), or a
non-local potential (3rd column), relative to the local calcu-
lation with the LEP, for a number of reactions occurring at
20 MeV.

have a very significant e↵ect on the transfer cross section,
often times introducing di↵erences of 15� 35%. Most of
the time, adding non-locality increases the cross section
at the first peak. In general, the correction factor moves
the distribution obtained with local interactions in the
direction of the distribution including the non-local
interactions. In the case of 127Sn(p, d) at 50 MeV, the
correction factor overshoots at the first peak, but the
overall shape of the corrected distribution is in better
agreement with the exact result.

V. DISCUSSION

It should be noted that the PCF is only valid for non-
local potentials of the Perey-Buck form. However, there
is no reason to expect that the full non-locality in the
optical potential will look anything like the Perey-Buck
form. On physical grounds, the optical potential must
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Corrected Non-Local

E
lab

= 50 MeV Relative to Local Relative to Local
17O(1d5/2)(p, d) 17.0% 35.4%
17O(2s1/2)(p, d) 0.2% 12.7%

41Ca(p, d) 2.9% 5.8%
49Ca(p, d) �16.0% �17.1%
127Sn(p, d) 10.1% 4.5%
133Sn(p, d) �6.7% �16.9%
209Pb(p, d) 8.6% 8.6%

TABLE III: Percent di↵erence of the (p, d) transfer cross sec-
tions at the first peak when using Eq.(6) (2nd column), or a
non-local potential (3rd column), relative to the local calcu-
lation with the LEP, for a number of reactions occurring at
50 MeV.

be energy dependent due to non-localities arising from
channel couplings. While the specific form chosen for
the Perey-Buck potential is convenient for numerical cal-
culations, a single Gaussian term mocking up all energy-
independent non-local e↵ects is likely to be an oversim-
plification.

In an earlier study, Rawitscher et al. [8] calculated the
exchange non-locality in n�16O scattering and examined
the PCF. The wave functions obtained from their micro-
scopically derived exchange non-locality were reasonably
corrected by the PCF. The exchange non-locality is based
on anti-symmetrized wave functions, which will naturally
reduce the amplitude of the wave function in the nuclear
interior due to the Pauli exclusion principle, similarly to
the PCF. Results in [8] show that the PCF is able to
approximately take into account the e↵ects of including
exchange. However, data suggests [33] that exchange is
not su�cient and that channel coupling is also needed.

In another study by Rawitscher [17], the micro-
scopic Feshbach optical potential from channel coupling
is examined. The resulting potentials were strongly
`�dependent, had emissive (positive imaginary) parts,
and the non-local part did not resemble a Gaussian
shape. The PCF obtained from the Wronskian was also
strongly angular momentum dependent, and was found
to be larger than unity in some cases. The channel cou-
pling non-locality is therefore very di↵erent than the ex-
change non-locality, and one should not expect it to be
corrected for in the same way. In those studies [8, 17], the
exchange and channel coupling non-localities were ana-
lyzed separately. In [7], the e↵ect of channel coupling in
low energy scattering is studied, including a repulsive po-
tential to account for the Pauli Principle. The resulting
non-local potentials were found to be very di↵erent from
the Perey-Buck form.

Our results, together with [7, 8, 17], emphasize the
need for non-locality to be treated explicitly, contrary to
what has been preferred for more than 50 years. Since
we have not yet found a good way to pin down non-
locality phenomenologically, it would be extremely help-
ful to have microscopically derived optical potentials to

guide further work. Microscopic nA optical potentials
based on the nucleon-nucleon interaction are particularly
attractive because they immediately connect the intrinsic
structure of the target to the reaction.

VI. CONCLUSIONS

The long established Perey correction factor (PCF)
was studied. To do so, the integro-di↵erential equation
containing the Perey-Buck non-local potential was solved
numerically for single channel scattering and bound
states. A local equivalent potential was obtained by
fitting the elastic distribution generated by the Perey-
Buck potential to a local potential. Both the local and
non-local binding potentials reproduced the experimental
binding energies. The scattering and bound state wave
functions were used in a finite range DWBA calculation
in order to calculate (p, d) transfer cross sections. The
PCF was applied to the wave functions generated with
the local equivalent potentials.
For the (p, d) transfer reactions, we found that the ex-

plicit inclusion of non-locality to the entrance channel
increased the transfer distribution at the first peak by
15 � 35%. The transfer distribution from using a non-
local potential increased relative to the distribution from
the local potential in most cases. In all cases, the PCF
moved the transfer distribution in the direction of the
distribution which included non-locality explicitly. How-
ever, non-locality was never fully taken into account with
the PCF.
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APPENDIX A: DERIVING THE PEREY
CORRECTION FACTOR

Here we provide details on the derivation of the PCF,
Eq.(6). We also include the derivation of the transforma-
tion formulas Eq.(5), as well as the correct radial version
of the transformation formulas which could be used to
transform the non-local radius and di↵useness to their
local counterpart.
We start from Eq.(1). Let us define a function F (r)

that connects the local wave function  Loc(r), resulting
from the potential ULE(r), with the wave function re-
sulting from a non-local potential,  NL(r)

 NL(r) ⌘ F (r) Loc(r). (A1)
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ing non-locality into account, but there is still a notice-
able discrepancy between the full non-local and corrected
local results. In 209Pb, there are discrepancies at forward
angles, but coincidentally the distributions resulting from
the non-local potential and the local potential with the
PCF agree quite well at the major peak of the distribu-
tion. This agreement is accidental and comes from the
non-local e↵ect in the bound state canceling that in the
scattering state.
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The percent di↵erences at the first peak of the transfer
distributions for all the cases that were studied are sum-
marized in Table II and III for the (p, d) reactions at 20
and 50 MeV.
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the inclusion of non-locality in the entrance channel can
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= 20 MeV Relative to Local Relative to Local
17O(1d5/2)(p, d) 7.1% 18.8%
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49Ca(p, d) 10.4% 17.3%
127Sn(p, d) 17.5% 17.3%
133Sn(p, d) 18.2% 24.4%
209Pb(p, d) 19.4% 20.8%

TABLE II: Percent di↵erence of the (p, d) transfer cross sec-
tions at the first peak when using Eq.(6) (2nd column), or a
non-local potential (3rd column), relative to the local calcu-
lation with the LEP, for a number of reactions occurring at
20 MeV.

have a very significant e↵ect on the transfer cross section,
often times introducing di↵erences of 15� 35%. Most of
the time, adding non-locality increases the cross section
at the first peak. In general, the correction factor moves
the distribution obtained with local interactions in the
direction of the distribution including the non-local
interactions. In the case of 127Sn(p, d) at 50 MeV, the
correction factor overshoots at the first peak, but the
overall shape of the corrected distribution is in better
agreement with the exact result.

V. DISCUSSION

It should be noted that the PCF is only valid for non-
local potentials of the Perey-Buck form. However, there
is no reason to expect that the full non-locality in the
optical potential will look anything like the Perey-Buck
form. On physical grounds, the optical potential must
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Dispersive Optical Potential (DOM) 

numerical values of all parameters together with a list of all
employed equations.
Included in the present fit are the same elastic scattering

data and level information considered in Ref. [15]. In
addition, we now include the charge density of 40Ca as
given in Ref. [22] by a sum of Gaussians in the fit. Data from
the (e, e0p) reaction at high missing energy and momentum
obtained at Jefferson Lab for 12C [23], 27Al, 56Fe, and 197Au
[24] were incorporated as well. We note that the spectral
function of high-momentum protons per proton number is
essentially identical for 27Al and 56Fe, thereby providing a
sensible benchmark for their presence in 40Ca. We merely
aimed for a reasonable representation of these cross sections
since their interpretation requires further consideration of
rescattering contributions [25]. We did not include the results
of the analysis of the (e, e0p) reaction from NIKHEF [26]
because the extracted spectroscopic factors depend on the
employed local optical potentials. We plan to reanalyze these
data with our nonlocal potentials in a future study.
Motivated by the work of Refs. [18,19], we allow for

different nonlocalities above and below the Fermi energy,
otherwise the symmetry around this energy is essentially
maintained by the fit. The values of the nonlocality param-
eters β appear reasonable and range from 0.64 fm above to
0.81 fm below the Fermi energy for volume absorption.
These parameters are critical in ensuring that particle number
is adequately described. We limit contributions to l ≤ 5
below εF [19] obtaining 19.88 protons and 19.79 neutrons.
We note the extended energy domain for volume absorption
below εF to accommodate the Jefferson Lab data. Surface
absorption requires nonlocalities of 0.94 fm above and
2.07 fm below εF.
The final fit to the experimental elastic scattering data is

shown in Fig. 1 while the fits to total and reaction cross
sections are shown in Fig. 2. In all cases, the quality of the
fit is the same as in Refs. [14] or [15]. This statement also
holds for the analyzing powers.
Having established our description at positive energies is

equivalent to our earlier work, but now consistent with
theoretical expectations associated with the nonlocal con-
tent of the nucleon self-energy, we turn our attention to the
new results below the Fermi energy. In Fig. 3 we display the
spectral strength given in Eq. (2) as a function of energy for
the first few levels in the independent-particle model. The
downward arrows identify the experimental location of the
levels near the Fermi energy while for deeply bound levels
they correspond to the peaks obtained from (p, 2p) [27]
and (e, e0p) reactions [28]. The DOM strength distributions
track the experimental results represented by their peak
location and width. Neutron single-particle energies are
listed in Table I for levels near εF. The calculated levels
exhibit a deviation of about 1 MeV from the experimental
values similar to Ref. [15], except for the 1s1=2.
For the quasihole proton states we find spectroscopic

factors of 0.78 for the 1s1=2 and 0.76 for the 0d3=2 level.

The location of the former deviates slightly from the
experimental peak as for neutrons which may require
additional state dependence of the self-energy as expressed
by poles nearby in energy [29]. The analysis of the (e, e0p)
reaction in Ref. [30] clarified that the treatment of non-
locality in the relativistic approach leads to different
distorted proton waves as compared to conventional non-
relativistic optical potentials, yielding about 10%–15%
larger spectroscopic factors. Our current results are also
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employed equations.
Included in the present fit are the same elastic scattering

data and level information considered in Ref. [15]. In
addition, we now include the charge density of 40Ca as
given in Ref. [22] by a sum of Gaussians in the fit. Data from
the (e, e0p) reaction at high missing energy and momentum
obtained at Jefferson Lab for 12C [23], 27Al, 56Fe, and 197Au
[24] were incorporated as well. We note that the spectral
function of high-momentum protons per proton number is
essentially identical for 27Al and 56Fe, thereby providing a
sensible benchmark for their presence in 40Ca. We merely
aimed for a reasonable representation of these cross sections
since their interpretation requires further consideration of
rescattering contributions [25]. We did not include the results
of the analysis of the (e, e0p) reaction from NIKHEF [26]
because the extracted spectroscopic factors depend on the
employed local optical potentials. We plan to reanalyze these
data with our nonlocal potentials in a future study.
Motivated by the work of Refs. [18,19], we allow for

different nonlocalities above and below the Fermi energy,
otherwise the symmetry around this energy is essentially
maintained by the fit. The values of the nonlocality param-
eters β appear reasonable and range from 0.64 fm above to
0.81 fm below the Fermi energy for volume absorption.
These parameters are critical in ensuring that particle number
is adequately described. We limit contributions to l ≤ 5
below εF [19] obtaining 19.88 protons and 19.79 neutrons.
We note the extended energy domain for volume absorption
below εF to accommodate the Jefferson Lab data. Surface
absorption requires nonlocalities of 0.94 fm above and
2.07 fm below εF.
The final fit to the experimental elastic scattering data is

shown in Fig. 1 while the fits to total and reaction cross
sections are shown in Fig. 2. In all cases, the quality of the
fit is the same as in Refs. [14] or [15]. This statement also
holds for the analyzing powers.
Having established our description at positive energies is

equivalent to our earlier work, but now consistent with
theoretical expectations associated with the nonlocal con-
tent of the nucleon self-energy, we turn our attention to the
new results below the Fermi energy. In Fig. 3 we display the
spectral strength given in Eq. (2) as a function of energy for
the first few levels in the independent-particle model. The
downward arrows identify the experimental location of the
levels near the Fermi energy while for deeply bound levels
they correspond to the peaks obtained from (p, 2p) [27]
and (e, e0p) reactions [28]. The DOM strength distributions
track the experimental results represented by their peak
location and width. Neutron single-particle energies are
listed in Table I for levels near εF. The calculated levels
exhibit a deviation of about 1 MeV from the experimental
values similar to Ref. [15], except for the 1s1=2.
For the quasihole proton states we find spectroscopic

factors of 0.78 for the 1s1=2 and 0.76 for the 0d3=2 level.

The location of the former deviates slightly from the
experimental peak as for neutrons which may require
additional state dependence of the self-energy as expressed
by poles nearby in energy [29]. The analysis of the (e, e0p)
reaction in Ref. [30] clarified that the treatment of non-
locality in the relativistic approach leads to different
distorted proton waves as compared to conventional non-
relativistic optical potentials, yielding about 10%–15%
larger spectroscopic factors. Our current results are also
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larger by about 10%–15% than the numbers extracted in
Ref. [26]. Introducing local DOM potentials in the analysis
of transfer reactions has salutary effects for the extraction of
spectroscopic information of neutrons [31] and nonlocal
potentials should further improve such analyses.
In Fig. 4 we compare the experimental charge density of

40Ca (thick line representing a 1% error) with the DOM fit.
While some details could be further improved, it is clear
that an excellent description of the charge density is
possible in the DOM. The correct particle number is
essential for this result, which in turn can only be achieved
by including nonlocal absorptive potentials that are also
constrained by the high-momentum spectral functions.
With a local absorption we are not capable to either
generate a particle number close to 20 or describe the
charge density accurately [8].
We compare in Fig. 5 the results for the high-momentum

removal spectral strength with the Jefferson Lab data [24].
We note that the high-energy data correspond to intrinsic

nucleon excitations and cannot be part of the present
analysis. To further improve the description, one would
have to introduce an energy dependence of the radial form
factors for the potentials. Nevertheless we conclude that an
adequate description is generated which corresponds to
10.6% of the protons having momenta above 1.4 fm−1.
Employing the energy sum rule [9] in the form given in
Ref. [32] yields a binding energy of 7.91 MeV per nucleon
much closer to the experimental 8.55 MeV than the
4.71 MeV found in Ref. [8]. The constrained presence
of the high-momentum nucleons is responsible for this
change [33]. The 7.91 MeV binding per nucleon obtained
here represents the contribution to the ground-state energy
from two-body interactions including a kinetic energy of
22.64 MeV per nucleon and was not part of the fit. This
empirical approach therefore leaves about 0.64 MeV per
nucleon attraction for higher-body interactions about
1 MeV less than the Green’s function Monte Carlo results
of Ref. [34] for light nuclei.
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TABLE I. Quasihole energies in MeV for neutron orbits in 40Ca
near the Fermi energy compared with experiment.

Orbit DOM Experiment

1p1=2 −3.47 −4.20
1p3=2 −4.51 −5.86
0f7=2 −7.36 −8.36
0d3=2 −16.2 −15.6
1s1=2 −15.3 −18.3
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Poten&al	   Perey-‐Buck	   DOM	  

Energy	  
(MeV)	  

Non-‐Local	  
rela3ve	  to	  local	  

Corrected	  
rela3ve	  to	  local	  

Non-‐Local	  
rela3ve	  to	  local	  

20	  	   42	  %	   1	  %	   21	  %	  

35	   50	  %	   6	  %	   32	  %	  

50	   28	  %	   2	  %	   20	  %	  

40Ca(p,d)39Ca	  @	  50	  MeV	  	




Summary and Outlook 

 
•  Impact of non-locality in nuclear reactions 

•  DWBA tests show strong sensitivity  
to non-locality (20-30% change in cross section) 
 
 
•  need to upgrade best reaction theories to handle non-local 
interactions 
•  use state-of-the-art ab-initio methods with correlations to derive 
non-local optical potentials 



thankyou! 
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