

Improving the theory for transfer reactions

Filomena Nunes Michigan State University

magic numbers

[K. Jones et al, Nature 2010]

spectroscopy of ¹³²Sn

 Table 1 | Properties of the four single-particle states populated by the

 ¹³²Sn(d,p)¹³³Sn reaction

E _x (keV)	J ^π	Configuration	S	C^{2} (fm ⁻¹)
0	7/2 ⁻		0.86 ± 0.16	0.64 ± 0.10
854	3/2 ⁻		0.92 ± 0.18	5.61 ± 0.86
1,363 ± 31	(1/2 ⁻)		1.1 ± 0.3	2.63 ± 0.43
2,005	(5/2 ⁻)		1.1 ± 0.2	$(9 \pm 2) \times 10^{-4}$

distorted wave (DWBA) versus adiabatic (ADWA)
combined method for transfer reactions
adiabatic finite range
transfer and breakup: CDCC versus Faddeev
transfer versus knockout (recent Ar(d,p) data)

DWBA: distorted wave Born approximation (1st order) includes deuteron g.s. only (no breakup)

ADWA: adiabatic wave approximation takes into account deuteron breakup to all orders (present implementation <u>neglects remnant</u> and uses <u>zero range</u> approximation)

[Johnson and Soper, Phys. Rev. C 1, 976(1970)]

adiabatic distorted wave approximation (ADWA)

Nucleon Optical potentials

adiabatic distorted wave approximation (ADWA)

$$T = \left\langle \chi_f^{\bigstar} I_{AB} \Delta V \middle| I_{pd} \; \hat{\chi}_i^{\bigstar} \right\rangle$$

What about the overlap function?

overlap function

$$\boldsymbol{I}_{I_A:I_B}(\mathbf{r}) = \langle \Phi^A_{I_A}(\xi_A) | \Phi^B_{I_B}(\xi_A, \mathbf{r}) \rangle$$

spectroscopic factor (S_{nlj}): norm of overlap function

microscopic one nucleon overlap functions

⁹Be
$$(3/2^{-}, g.s.)$$

p $1p_{3/2}$
⁸Li (3^+)

Microscopic overlap from Argonne 9- and 8-body wave functions (*Bob Wiringa et al.*) Available for a few cases

Normalised bound state in Woods-Saxon potential well x (0.23)^{1/2} Spectroscopic factor $r_V = r_{so} = \text{fitted}, \ a_V = a_{so} = \text{fitted}, \ V_{so} = 6.0$

microscopic 2n overlap functions

[Brida, PhD thesis, MSU 2009] [Brida and Nunes, NPA in press]

single particle approximation

nucleons feels mean field generated by core nucleons V_{nA}

specific n,l,j and separation energy

INPC20

assumptions about single particle parameters

single particle approximation

Same radial dependence at large distances:

$$I_{AB}(r) \xrightarrow{r > R_N} C_{lj} \kappa h_l(i\kappa r) \qquad \varphi_{nlj}(r) \xrightarrow{r > R_N} b_{nlj} \kappa h_l(i\kappa r)$$

Extend that assumption within the range of the interaction:

$$I_{AB}(r) = A_{nlj} \rho_{nlj}(r)$$

C (asymptotic normalization coefficient) – **asymptotic** property

combined method

From sub-Coulomb transfer reaction obtain ANC

$$\sigma^{th}(b) = C^2 T_{out}^2$$

From higher energy transfer reaction obtain SF consistent with ANC

$$\sigma^{th}(b) = (ST_{in}(b) + CT_{out})^2$$

$$C^2 = Sb^2$$

The overlap function for ${}^{19}C \rightarrow n + {}^{18}C$ in arbitrary units. The radial sensitivity of the ${}^{18}C(d,p){}^{19}C$ cross section is represented by the colored bars for different beam energies.

Combined method provides a handle on single particle parameters!

combined method

⁴⁸Ca(d,p)⁴⁹Ca sub-Coulomb

Mukhamedzhanov and FN, Phys. Rev. C 72, 017602 (2005) Pang, Mukhamedzhanov and FN, Phys. Rev. C 75, 024601 (2007)

Mukhamedzhanov, FN and Mohr, Phys. Rev. C 77, 051601R (2008)

SFs and ANCs from ${}^{48}Ca(d,p){}^{49}Ca$ and ${}^{48}Ca(n,\gamma){}^{49}Ca$

DWBA: distorted wave Born approximation (1st order) includes deuteron g.s. only (no breakup)

ADWA: adiabatic wave approximation takes into account deuteron breakup to all orders (present implementation <u>neglects remnant</u> and uses <u>zero range</u> approximation)

[Johnson and Soper, Phys. Rev. C 1, 976(1970)]

how good is the approximation? is it adequate for experiments at ISOL facilities? is it adequate for experiments at fragmentation facilities?

effective potential for incoming deuteron including breakup

Zero range: Johnson and Soper

Finite range: Johnson and Tandy

evaluation of the transfer amplitude

zero range

$$T_{JS} = D_0 \int dR \phi_{nA}^*(\vec{R}) \chi_{pB}^*(\vec{R}) \chi_d^{JS}(\vec{R})$$

finite range $T = \langle \phi_{nA}^{(-)} \chi_{pB} | V_{np} | \Psi^{(+)} \rangle$

or local energy approx (Buttle and Goldfarb Proc. Phys. Soc 83, 701)

INPC2010

[Nguyen, FN and Johnson, Phys. Rev. C (2010) in press]

finite range effect in (d,p) reactions

Target	$E_d \; (\mathrm{MeV})$	$\Delta(\text{LEA})$	Δ (FR-JS)	Δ (FB_IT)	$\Delta(JT-JS)$
$^{12}\mathrm{C}$	4	+5.6%	+5.5%	+4.5%	-1.04%
$^{12}\mathrm{C}$	12	+2.6%	+2.9%	-1.5%	-4.31%
$^{12}\mathrm{C}$	19 . 6	+11%	+12.5%	+7.7%	-4.23%
$^{12}\mathrm{C}$	56	-37%	-27%	36%	-12%
48 Ca	2	+6.5%	+6.3%	+2.6%	-3.52%
48 Ca	13	+4.9%	+3.8%	-2.6%	-6.22%
^{48}Ca	19	+5.0%	+4.0%	-0.3%	-4.13%
^{48}Ca	56	-5.2%	-6.5%	-24%	-18.6%
69 Ga	12	+4.3%	+4.7%	1.1%	-5.49%
86 Kr	11	+4.8%	+5.5%	-0.4%	-5.63%
90 Zr	2.7	+6.2%	+7.3%	+ə.ə %	-1.68%
90 Zr	11	+5.4%	+5.0%	-0.0%	-5.56%
124 Sn	5.55	+6.1%	+10.6%	+7.5%	-2.8%
124 Sn	33.3	+2.9%	+4.6%	000	-4.38%
124 Sn	70	+5.1%	-28.7%	-42.5%	-20.8%
208 Pb	8	+6.1%	+7.2%	+6.1%	-0.96%
208 Pb	12	+5.7%	+8.8%	+2.2%	-6.11%
$^{208}\mathrm{Pb}$	20	+5.2%	+4.5%	-2.3%	-6.56%

INPC2010

[Nguyen, FN and Johnson, Phys. Rev. C (2010) in press]

finite range effect in (d,p) reactions

Target	$E_d \; ({\rm MeV})$	Δ (LEA)	Δ (FR-JS)	Δ (FR-JT)	Δ (JT-JS)
$^{12}\mathrm{C}$	4	+5.6%	+5.5%	+4.5%	-1.04%
$^{12}\mathrm{C}$	12	+2.6%	+2.9%	-1.5%	-4.31%
$^{12}\mathrm{C}$	19.6	+11%	+12.5%	+7.7%	-4.23%
$^{12}\mathrm{C}$	56	-37%	-27%	-36%	-12%
^{48}Ca	2	+6.5%	+6.3%	-2.6%	-3.52%
^{48}Ca	13	+4.9%	+3.8%	-2.8%	-6.22%
^{48}Ca	19	+5.0%	+4.0%	-0.2%	-4.13%
48 Ca	5 6	-5.2%	-6.5%	-24%	-18.6%
69 Ga	12	+4.3%	+4.7%	1 1%	-5.49%
86 Kr	11	+4.8%	+5.5%	-0.4%	-5.63%
90 Zr	2.7	+6.2%	+7.3%	+5.5%	-1.68%
90 Zr	11	+5.4%	+5.0%	-0.9%	-5.56%
124 Sn	5.55	+6.1%	+10.6%	+7.5%	-2.8%
124 Sn	33.3	+2.9%	+4.6%	2%	-4.38%
124 Sn	70	+5.1%	-28.7%	-43.5%	-20.8%
208 Pb	8	+6.1%	+7.2%	61%	-0.96%
208 Pb	12	+5.7%	+8.8%	+2.2%	-6.11%
208 Pb	20	+5.2%	+4.5%	-2.3%	-6.56%

INPC2010

[Nguyen, FN and Johnson, Phys. Rev. C (2010) in press]

until recently best reaction theories for (d,p) consider <u>breakup to all orders</u> but <u>transfer to first order</u>.

is this a valid assumption? when is it a valid assumption?

need full Faddeev calculation

INPC2010

[Deltuva, Moro, Nunes and Fonseca, PRC76, 064602]

transfer versus knockout

[Jenny Lee et al, PRL 104 (2010) 112701]

(p,d) reactions with ^{34,36,46}Ar

[FN, Deltuva, Hong, 2010]

 (\mathfrak{S})

G

(p,d) reactions with 34,36,46Ar

[FN, Deltuva, Hong, 2010]

preliminary

TABLE II: Estimates of theoretical errors in the extracted spectroscopic factors due to approximations in the reaction model as well as experimental errors.

Errors	$\epsilon_{th}(^{34}\mathrm{Ar})$	$\epsilon_{th}(^{36}\mathrm{Ar})$	$\epsilon_{th} ({\rm ^{46}Ar})$
Optical potential	8 %	7~%	4 %
Faddeev	6~%	19~%	11~%
Experiment	10%	10%	10%
Total	$14 \ \%$	23~%	15~%

Transfer reactions and combined method

- one benchmark with (n,γ) but many applications with future experiments
- finite range effects can be very important at intermediate energies

Testing CDCC against Faddeev

• disagreement needs to be better understood... new formalism?

Transfer reactions compared to knockout

- uncertainties in reaction theory have been quantified
- results move toward agreement

Collaborators: Ngoc Nguyen (MSU), June Hong(MSU), Ivan Brida(ANL),

Akram Mukhamedzhanov, Peter Mohr, Arnas Deltuva, Antonio Moro, Ron Johnson

This work was supported by DOE and NSF

