

## Momentum Space



## **Coulomb Distorted Matrix Elements**

## for Heavy Nuclei

### Ch. Elster

N. Upadhyay, V. Eremenko, F. Nunes, L. Hlophe, G. Arbanas, J. E. Escher, I.J. Thompson

(The TORUS Collaboration)







### What Reactions are we interested in?



## Reactions: Elastic Scattering, Breakup, Transfer





### **Reduce Many-Body to Few-Body Problem**



#### <u>Task:</u>

cs + astronomy

- Isolate important degrees of freedom in a reaction
- Keep track of important channels
- Connect back to the many-body problem

Hamiltonian for effective few-body poblem:



Three-Body Problem



### (d,p) Reactions as three-body problem



Deltuva and Fonseca, Phys. Rev. C79, 014606 (2009).

## Elastic, breakup, rearrangement channels are included and fully coupled (compared to e.g. CDCC calculations)



**Issue:** current momentum space implementation of Coulomb interaction (shielding) does not converge for  $Z \ge 20$ 





s + astronomy

**A.M. Mukhamedzhanov, V.Eremenko and A.I. Sattarov**, Phys.Rev. C86 (2012) 034001

### Solve Faddeev equations in Coulomb basis (no screening)



If 
$$U_l(p, p') = \sum_{i,j} u_{l,i}^*(p) (M_l)_{i,j} u_{l,j}(p')$$

Integral contains smooth function  $u_{l,i}$  (p') and  $\psi_{p_{\alpha l}}^C(p')$ 

#### **Coulomb wave function in momentum space and pw decomposition**

Very nasty! "pole" at 
$$p_{\alpha} = p'$$

Suggestion is new & needs to be tested





### First Test in Two-Body System



#### Calculate two-body Coulomb distorted nuclear matrix element

**Separable nuclear Optical Potential** 

$$u_l(p'_{\alpha}, p_{\alpha}) = \sum_{ij} u_{li}^*(p'_{\alpha}) [M_l]_{ij} u_{lj}(p_{\alpha})$$
$$u_{li}(p_{\alpha}) \text{ is the nuclear potential form factor.}$$

Compute: Coulomb distorted nuclear form factor

$$u_l^C(p_\alpha) = \frac{1}{2\pi^2} \int dp \, p^2 u_l(p) \psi_{p_\alpha l}^C(p)$$

 $\psi_{p_{\alpha}l}^{C}(p)$  is the Coulomb scattering wave function





### **Challenges:**

s + astronomy



$$\psi_{p_{\alpha}l}^{C}(p) = -\frac{4\pi}{p} e^{-\pi\eta/2} \Gamma(1+i\eta) e^{i\alpha_{l}} \left[ \frac{(p+p_{\alpha})^{2}}{4pp_{\alpha}} \right]^{i}$$

$$\times \operatorname{Im} \left[ e^{-i\alpha_{l}} \frac{(p+p_{\alpha}+i0)^{-1+i\eta}}{(p-p_{\alpha}+i0)^{1+i\eta}} {}_{2}F_{1} \left( -l, -l-i\eta; 1-i\eta; \frac{(p-p_{\alpha})^{2}}{(p+p_{\alpha})^{2}} \right) \right]$$

$$\eta = Z_{1}Z_{2}e^{2}\mu/p_{\alpha}.$$

- Compute special functions of complex arguments
- <sub>2</sub>F<sub>1</sub> (a,b;c,z) requires two different representations for pole and non-pole regions
- > "oscillatory" singularity at  $p = p_{\alpha}$
- Gel'fand-Shilov regularization
  - Reduce integrand around pole by subtracting 2 terms of the Taylor series

OHIO UNIVERSITY



I. M. Gel'fand and G. E. Shilov. "Generalized Functions". Vol. 1. Academic Press, New York and London. 1964.

### With Yamaguchi-type test form factor



s + astronomy



First calculation of Coulomb distorted <sup>208</sup>Pb formfactor in momentum space !



p + <sup>12</sup>C



JNIVERSITY



Fixed  $p_{\alpha}$ 

p + <sup>208</sup>Pb







Fixed  $p_{\alpha}$ 



### **Reduce Many-Body to Few-Body Problem**



#### <u>Task:</u>

cs + astronomy

- Isolate important degrees of freedom in a reaction
- Keep track of important channels
- Connect back to the many-body problem

Hamiltonian for effective few-body poblem:



```
Three-Body Problem
```



### **Separable Representation of Optical Potentials**

Starting point: Woods-Saxon Representation Method of Ernst-Shakin-Thaler

BUT: Needs to be generalized for complex potentials

So that  $\mathcal{K}U\mathcal{K}^{-1} = U^{\dagger}$   $\mathcal{K}$  is the time-reversal operator.

$$\mathbf{U} = \sum_{i,j} u |\Psi_i^{(+)}\rangle \langle \Psi_i^{(+)} | M | \Psi_j^{(-)}\rangle \langle \Psi_j^{(-)} | u$$

$$\delta_{ik} = \sum_{j} \langle \Psi_i^{(+)} | M | \Psi_j^{(-)} \rangle \langle \Psi_j^{(-)} | u | \Psi_k^{(+)} \rangle = \sum_{j} \langle \Psi_i^{(-)} | u | \Psi_j^{(+)} \rangle \langle \Psi_j^{(+)} | M | \Psi_k^{(-)} \rangle.$$

Definition with In/Out-states necessary to fulfill reciprocity theorem

t-matrix:

Isics + astronomy

$$t(E) = \sum_{i,j} u |\Psi_i^{(+)}\rangle \tau_{ij}(E) \langle \Psi_j^{(-)} | u$$
$$\sum_j \tau_{ij}(E) \langle \Psi_j^{(-)} | u - ug_0(E)u | \Psi_k^{(+)}\rangle = \delta_{ik}$$

Compute and solve system of línear equations



n + <sup>48</sup>Ca and n + <sup>208</sup>Pb : I=0





## Summary & Outlook

#### Faddeev-AGS framework in Coulomb basis passed first test!

Momentum space nuclear form factors obtained in a Coulomb distorted basis for high charges for the first time.



- > "Oscillatory singularity" of  $\psi_{p_{\alpha},l}^{c}(p)$  at  $p = p_{\alpha}$  successfully regularized.
- > Algorithms to compute  $\psi_{p_{\alpha},l}{}^{c}(p)$  and the overlap integral successfully implemented

### In Progress:

Calculations with separable p+A optical potentials (generalized EST scheme)

#### **Near Future:**

s <del>+</del> astronomy

Implementation of Faddeev-AGS equations in t Coulomb basis to obtain (d,p) observables



### **TORUS: Theory of Reactions for Ustable iSotopes**

A Topical Collaboration for Nuclear Theory

http://www.reactiontheory.org/



- Ch. Elster, V. Eremenko<sup>†‡</sup>, and L. Hlophe<sup>†</sup>: Institute of Nuclear and Particle Physics, and Department of Physics and Astronomy, Ohio University, Athens, OH 45701.
- F. M. Nunes and N. J. Upadhyay<sup>†</sup>: National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824.
- G. Arbanas: Nuclear Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
- J. E. Escher and I. J. Thompson: Lawrence Livermore National Laboratory, L-414, Livermore, CA 94551.

 $^\dagger$  Post-Docs or Grad Students.

<sup>‡</sup> M. V. Lomonosov Moscow State University, Moscow, 119991, Russia.



# Some insights for momentum space Coulomb wave functions:

$$\underline{\text{Pole:}} \qquad \psi_{p_{\alpha}l}^{C}(p) = -\frac{4\pi}{p} e^{-\pi\eta/2} \Gamma(1+i\eta) e^{i\alpha_{l}} \left[ \frac{(p+p_{\alpha})^{2}}{4pp_{\alpha}} \right]^{l} \\ \times \operatorname{Im} \left[ e^{-i\alpha_{l}} \frac{(p+p_{\alpha}+i0)^{-1+i\eta}}{(p-p_{\alpha}+i0)^{1+i\eta}} {}_{2}F_{1}\left(-l,-l-i\eta;1-i\eta;\zeta \equiv \frac{(p-p_{\alpha})^{2}}{(p+p_{\alpha})^{2}}\right) \right]$$

Switching point: 
$$\zeta = \chi \approx 0.34$$
  $\eta = Z_1 Z_2 e^2 \mu / p_{\alpha}$ 

$$\underbrace{\text{Non-Pole:}} \quad \psi_{p_{\alpha}l}^{C}(p) = -\frac{4\pi\eta e^{-\pi\eta/2} p_{\alpha}(pp_{\alpha})^{2}}{(p^{2} + p_{\alpha}^{2})^{l+1+i\eta}} \left[ \frac{\Gamma(l+1+i\eta)\Gamma(1/2)}{\Gamma(l+3/2)} \right] \\
\times [p^{2} - (p_{\alpha} + i0)^{2}]^{-1+i\eta} {}_{2}F_{1}\left(\frac{l+2+i\eta}{2}, \frac{l+1+i\eta}{2}; l+\frac{3}{2}; \chi \equiv \frac{4p^{2}p_{\alpha}^{2}}{(p^{2} + p_{\alpha}^{2})^{2}} \right)$$



#### Some insights on momentum space Coulomb wave functions: There are two representations for pole and non-pole regions

$$\begin{split} \psi_{p_{\alpha}l}^{C}(p') &= \frac{-4\pi \, e^{-\eta_{\alpha}\pi/2}}{p'} \left( \frac{(p'+p_{\alpha})^{2}+\gamma^{2}}{4p'p_{\alpha}} \right)^{l} \times \Gamma(1+i\eta_{\alpha}) \, e^{i\alpha_{l}} \\ &\times \lim_{\gamma \to +0} \, \mathrm{Im} \left\{ \left[ e^{-i\alpha_{l}} \frac{(p'+p_{\alpha}+i\gamma)^{i\eta_{\alpha}-1}}{(p'-p_{\alpha}+ii\gamma)^{i\eta_{\alpha}+1}} \right] \\ &\times {}_{2}F_{1} \left( -l, -l - i\eta_{\alpha}; \, 1 - i\eta_{\alpha}; \, \frac{(p'-p_{\alpha})^{2}+\gamma^{2}}{(p'+p_{\alpha})^{2}+\gamma^{2}} \right) \right] + \gamma \left[ \dots \right] \right\} \\ \underline{\psi_{p_{\alpha}l}^{C}(p')} \; \mathbf{at} \; \mathbf{low} \; \& \; \mathbf{high} \; \mathbf{mc} \frac{\mathbf{Switch}: \; \frac{4p'^{2}p_{\alpha}^{2}}{(p'^{2}+p_{\alpha}^{2}+\gamma^{2})^{2}} = \frac{(p'-p_{\alpha})^{2}+\gamma^{2}}{(p'+p_{\alpha})^{2}+\gamma^{2}}} \\ \psi_{p_{\alpha}l}^{C}(p') \; = \; -2\pi \, e^{-\eta_{\alpha}\pi/2} \, (p'p_{\alpha})^{l} \left[ \frac{\Gamma(l+1+i\eta_{\alpha})\Gamma(\frac{1}{2})}{\Gamma(l+\frac{3}{2})} \right] \\ &\times \; \lim_{\gamma \to +0} \left\{ \left[ \left( \frac{2(p'^{2}-(p_{\alpha}+i\gamma)^{2})^{i\eta_{\alpha}}}{(p'^{2}+p_{\alpha}^{2}+\gamma^{2})^{l+i\eta_{\alpha}+1}} \right) \left( \frac{\eta_{\alpha}(p_{\alpha}+i\gamma)}{p'^{2}-(p_{\alpha}+i\gamma)^{2}} - \frac{\gamma(l+i\eta_{\alpha}+1)}{p'^{2}+p_{\alpha}^{2}+\gamma^{2}} \right) \\ &\times {}_{2}F_{1} \left( \frac{l+i\eta_{\alpha}+2}{2}, \frac{l+i\eta_{\alpha}+1}{2}; l+\frac{3}{2}; \frac{4p'^{2}p_{\alpha}^{2}}{(p'^{2}+p_{\alpha}^{2}+\gamma^{2})^{2}} \right) \right] + \gamma \left[ \dots \right] \right\} \end{split}$$

Code will eventually be published





