Towards a Faddeev Description of (d,p) Reactions:
 Separabilizaton of Optical Potentials

Ch. Elster, L. Hlophe

TORUS collaboration

Reactions of Interest:

$$
{ }^{3} \mathrm{He}(\mathrm{~d}, \mathrm{p}){ }^{4} \mathrm{He} \cdots{ }^{140} \mathrm{Sn}(\mathrm{~d}, \mathrm{p})^{141} \mathrm{Sn} \quad \cdots \quad \text { ? }
$$

Ansatz:

Reduce many-body to few-body problem

-Isolate important degrees of freedom in a reaction
-Keeping track of all relevant channels

- Connect back to the many-body problem
-Multiple scattering expansion d+A to be developed
(d, p) Reaction as three-body problem:

Faddeev AGS

Elastic, breakup, rearrangement channels are included and fully coupled.

Deltuva and Fonseca, Phys. Rev. C79, 014606 (2009).
Hamiltonian: $\mathbf{H}=\mathbf{H}_{\mathbf{0}}+\mathbf{V}_{\mathbf{n p}}+\mathbf{V}_{\mathbf{n A}}+\mathbf{V}_{\mathbf{p A}}$
Issues: •Traditional Faddeev eqs do not consider target exitations
-Coulomb force for heavy nuclei: current calculations to not converge for $Z \geq 20$

Suggestion to extend Faddeev equations:

-Inclusion of target excitations

- Novel treatment of Coulomb in momentum space
A.M. Mukhamedzhanov, V.Eremenko and A.I. Sattarov, arXiv:1206.3791 [nucl-th]

Including target excitations.

Formulation natural when transition amplitudes in subsystems are separable.

Reminder:
t-matrices (= interactions summed up to all orders) from two-body subsystems are input to Faddeev amplitudes

Optical Potentials (phenomenological) for proton and neutron elastic scattering from nuclei:
Wood-Saxon functions in coordinate space
Example: Central part of CH89 optical potential

$$
\begin{aligned}
& \qquad U_{\text {nucl }}(r)=V(r)+i\left(W(r)+W_{s}(r)\right) . \\
& V(r)=\frac{-V_{r}}{1+\exp \left(\frac{r-R_{r}}{a_{r}}\right)} \quad W(r)=\frac{-V_{i}}{1+\exp \left(\frac{r-R_{i}}{a_{i}}\right)} \\
& \qquad W_{s}(r)=\frac{-V_{s} \times 4 \times \exp \left(\frac{-\left(r-R_{s}\right)}{a_{s}}\right)}{\left(1+\exp \left(\frac{-\left(r-R_{s}\right.}{a_{s}}\right)\right)^{2}} \\
& \text { Nota form that canbe } \\
& \text { used ina Faddeev } \\
& \text { calculation in } \\
& \text { momentum space }
\end{aligned}
$$

Our test case:

n+ ${ }^{48} \mathbf{C a} \mathbf{C H 8 9}$ cenral optical potential

Steps for creating a separable t-matrix:

1. Fourier Transform

Analytic in form of a series

- lowest terms sufficient.

$E_{\text {lab }}[\mathrm{MeV}]$		$\delta_{0}[\mathrm{deg}]$
	$\mathrm{k}-$ space	$\mathrm{r}-$ space
5	12.645	12.644
10	-41.514	-41.516
20	-74.221	-74.220
40	-0.130	-0.132
50	-26.0297	-26.0296

2. Separabilization via EST scheme

D. J. Ernst, C. M. Shakin and R. M. Thaler, Phys. Rev. C 8, 46 (1973).

Use in momentum space
Use half-shell t-matrices as form factors at EST support points

EST Scheme:

$$
\hat{t}\left(p, p^{\prime}, E\right)=\sum_{i j}\langle p| v_{l}\left|\psi_{i}\right\rangle \tau_{i j}(E)\left\langle\psi_{j}\right| v_{l}\left|p^{\prime}\right\rangle
$$

i,j give the rank

$$
\sum_{j} \tau_{i j}(E) \underbrace{\left\langle\Psi_{j}\right| v-v g_{0}(E) v\left|\Psi_{k}\right\rangle}=\delta_{i k}
$$

Calculate matrix for given j,k and solve algebraic system of eqs.

- $v\left|\Psi_{j}\right\rangle$:= half-shell t-matrices at fixed energies E_{k}
- t-matrix exact those $E_{k}=$: EST support points
- EST separable t-matrix interpolates between the support points

$\mathrm{n}-{ }^{48} \mathrm{Ca}$ phase shifts : $1=4$ partial wave
 CH89 Optical Potential - Central

Next: spin-orbit ... straightforward...

