

Towards a Faddeev Description of (d,p) Reactions: Separabilizaton of Optical Potentials

Ch. Elster, L. Hlophe

TORUS collaboration

Supported by: U.S. DOE

9/15/12

Reactions of Interest: ³He (d,p) ⁴He \rightarrow ¹⁴⁰Sn (d,p)¹⁴¹Sn \rightarrow ? Ansatz:

Reduce many-body to few-body problem

•Isolate important degrees of freedom in a reaction •Keeping track of all relevant channels

•Connect back to the many-body problem

Multiple scattering expansion d+A to be developed

(d,p) Reaction as three-body problem:

A

Elastic, breakup, rearrangement channels are included and fully coupled.

Deltuva and Fonseca, Phys. Rev. C79, 014606 (2009).

Hamiltonian: $H = H_0 + V_{np} + V_{nA} + V_{pA}$

Issues: •Traditional Faddeev eqs do not consider target exitations

•Coulomb force for heavy nuclei: current calculations to not converge for $Z \ge 20$

Suggestion to extend Faddeer equations:

- Inclusion of target excitations
- •Novel treatment of Coulomb in momentum space A.M. Mukhamedzhanov, V.Eremenko and A.I. Sattarov, arXiv:1206.3791 [nucl-th]

Including target excitations:

Formulation natural when transition amplitudes in subsystems are separable.

Reminder:

t-matrices (= interactions summed up to all orders) from two-body subsystems are input to Faddeev amplitudes Optical Potentials (phenomenological) for proton and neutron elastic scattering from nuclei:

Wood-Saxon functions in coordinate space

Example: Central part of CH89 optical potential

$$U_{\rm nucl}(r) = V(r) + i (W(r) + W_s(r)).$$

$$V(r) = \frac{-V_r}{1 + \exp\left(\frac{r - R_r}{a_r}\right)} \qquad W(r) = \frac{-V_i}{1 + \exp\left(\frac{r - R_i}{a_i}\right)}$$

$$W_s(r) = \frac{-V_s \times 4 \times \exp\left(\frac{-(r - R_s)}{a_s}\right)}{\left(1 + \exp\left(\frac{-(r - R_s)}{a_s}\right)\right)^2}$$
Not a form that can be used in a Faddeev calculation in

momentum space

Our test case:

n+⁴⁸Ca CH89 cenral optical potential

Steps for creating a separable t-matrix:

1. Fourier Transform

Analytic in form of a series

- lowest terms sufficient.

E_{lab} [MeV]		δ_0 [deg]
	k - space	$\mathbf{r}-\mathbf{space}$
5	12.645	12.644
10	-41.514	-41.516
20	-74.221	-74.220
40	-0.130	-0.132
50	-26.0297	-26.0296

2. Separabilization via EST scheme

D. J. Ernst, C. M. Shakin and R. M. Thaler, Phys. Rev. C 8, 46 (1973).

Use in momentum space

Use half-shell t-matrices as form factors at EST support points

EST Scheme:

$$\hat{t}(p,p',E) = \sum_{ij} \langle p|v_l|\psi_i
angle au_{ij}(E) \langle \psi_j|v_l|p'
angle$$
i,j give the rank

$$\sum_{j} \tau_{ij}(E) \left\langle \Psi_{j} | v - v g_{0}(E) v | \Psi_{k} \right\rangle = \delta_{ik}$$

Calculate matrix for given j,k and solve algebraic system of eqs.

- $v|\Psi_i\rangle$:= half-shell t-matrices at fixed energies E_k
- t-matrix exact those E_k =: EST support points
- EST separable t-matrix interpolates between the support points

Next: spin-orbit ... straightforward ...