

Nuclear Reaction Challenge and Opportunity for Few- and Many-Body Theory

Ch. Elster

TORUS collaboration

11/7/2010

Supported by: U.S. DOE

Witold Nazarewicz

Reactions at FRIB

- High energy beams
 - Knock-out reactions (one or two nucleons)
 - Break up
 - Charge exchange
- Reaccelerated beams
 - Transfer reactions (one or two nucleons)
 - Transfer to the continuum
 - Excitations
 - Elastic
 - Fusion

Important: Projectile can be

Separation energy

~100 keV

- close to dripline

traditionally used to extract spin,parity and spectroscopic factors

¹³²Sn(d,p)¹³³Sn

Table 1 Properties	of the	four	single-particle	states	populated	by	the
¹³² Sn(d,p) ¹³³ Sn react	tion						

E_x (keV)	J ^π	Configuration	S	C^{2} (fm ⁻¹)
0 854 1,363 ± 31 2,005	7/2 ⁻ 3/2 ⁻ (1/2 ⁻) (5/2 ⁻)		0.86 ± 0.16 0.92 ± 0.18 1.1 ± 0.3 1.1 ± 0.2	$\begin{array}{c} 0.64 \pm 0.10 \\ 5.61 \pm 0.86 \\ 2.63 \pm 0.43 \\ (9 \pm 2) \times 10^{-4} \end{array}$

[K. Jones et al, to appear in Nature 2010]

[K. Jones et al, to appear in Nature 2010]

Determination of NN forces

Three Nucleon Physics – Reactions: low energy to GeV regime Development of Faddeev Formulations & Calculations, 3NF's

JORDI HHATOM

Reactions:

IDD THE

Three Nucleon Physics – Reactions: low energy to GeV regime Development of Faddeev Formulations & Calculations, 3NF's

Exact Few-Body Methods:

Faddeev-Yakubovski /

GFMC / Resonating Group / Hyperspherical Harmonics

GFMC / Resonating Group / Hyperspherical Harmonics

Scattering Problem : Simplest: $p \rightarrow A$

- Hamiltonian: $H = H_0 + V$
- Free Hamiltonian: $H_0 = h_0 + H_A$
- Assume: two-body interactions dominant
 - V: interactions between projectile '0' and target nucleons 'i' $V = \Sigma^{A}_{i=0} v_{0i}$
- Transition Amplitude: $T = V + V G_0 T$
- Multiple Scattering Expansion

Spectator Expansion:

Single Scattering

Double Scattering

Siciliano, Thaler (1977) Picklesimer, Thaler (1981)

Triple Scattering

- ٠
- •

Elastic Scattering

- In- and Out-States have the target in ground state Φ_0
- Projector on ground state $P = |\Phi_0\rangle\langle\Phi_0|$
 - With 1=P+Q and $[P,G_0]=0$
- For elastic scattering one needs
- PTP = PUP + PUPGO(E)PTP
- Or
 - $T = U + U G_0(E) P T$
 - $U = V + V G_0(E) Q U \leftarrow optical potential$

Optical Potential – phenomenological:

- Nucleus opaque \Rightarrow complex potential (removes flux)
- Most general form of optical potential
 - $\sum_{i} [V_{A,Z,N,E}(r) + i W_{A,Z,N,E}(r)] Operator_{(i)}$
- Best fit of elastic scattering data for a wide range of nuclei and energies
 - Cross sections, angular distributions, polarizations
- **E.g.**
 - Becchetti Greenlees, Phys. Rev. 182, 1190 (1969)
 - Global: E.D. Cooper et al, PRC47, 297 (1993)
 - Koning Delaroche, NP A713, 231 (2003)

Remark: Same importance as NN phase shift analysis

Talk: Steven Weppner

Elastic Scattering

- In- and Out-States have the target in ground state Φ_0
- Projector on ground state $P = |\Phi_0\rangle\langle\Phi_0|$
 - With 1=P+Q and [P,G₀]=0
- For elastic scattering one needs
- **PTP = PUP + PUPG0(E) PTP**

• Or

- $T = U + U G_0(E) P T$
- U = V + V G₀(E) Q U \leftarrow optical potential

Low Energies:

Q-space contains e.g. coupling to resonances

⇒ Take nuclear structure information explicitly into account

Talk: Ian Thompson

Microscopic :

Chinn,Elster,Tandy, Redish, Thaler Crespo, Johnson, Tostevin Arrellano, Love

First order Optical Potential --- Full Folding

Proton scattering: $U_{el}(\mathbf{k}', \mathbf{k}) = Z \langle \hat{\tau}_{01}^{pp} \rangle + N \langle \hat{\tau}_{01}^{np} \rangle$

Optical Potential is non-local and depends on energy Off-shell NN t-matrix and nuclear density matrix

Via $\langle \Phi_A | \Phi_A \rangle$ results from nuclear structure calculations enter

\Rightarrow Structure and Reaction calculations can be treated with similar sophistication

Older microscopic calculations concentrated on closed shell spin-0 nuclei (ground state wave functions were not available)

Today one can start to explore importance of open-shells in light exotic nuclei (full complexity of the NN interactions enters)
[Surrey group started work along this line]

Experimental relevance: Polarization measurements for ${}^{6}\text{He} \rightarrow p$ at RIKEN

"Nuclear Medium"

Single Scattering

Propagator is (A+1) body operator: $G_0(E) = (E - h_0 - H_A + i\epsilon)^{-1}$

 $\mathbf{H}_{\!A}$ in a mean field view

$$H_{A} = h_{i} + \sum_{j \neq i}^{A} v_{ij} + H^{i}$$
$$\langle \Sigma_{j \neq i}^{A} v_{ij} \rangle \equiv U_{i} \equiv \text{mean field}$$

Single scattering is an implicit three-body problem: Projectile + struck nucleon + (A-1) core

Chinn, Elster, Thaler PRC 48, 2956 (1993)

Different consideration: Folding the ground state wave function with the nuclear matter g-matrix:

Pioneered by Arellano & Love - cont'd by Karataglidis & Amos

Faddeev Formulation of (d,p) Reactions

Single Scattering

Interactions: phenomenological optical potentials

Expected that those capture the important features of a nucleon in the nucleus

Deuteron: NN interaction p(n) – nucleon i: optical potential

A. Deltuva, PRC 79, 021602(R) (2009)

Faddeev Formulation of (d,p) Reactions cont'd

A. DELTUVA

Transfer Reaction (breakup)

Further:

Considerations on optical potential similar to the ones in p+A scattering?

Improvements in treating optical potential in Faddeev calculation?

Talk: A. Fonseca

CDCC: Continuum discretized coupled channel approach

Developed to for calculating deuteron-nucleus reactions (~80s)

- -- Approximate treatment of the 3-body problem including breakup to all orders but -- assuming breakup-transfer couplings are small.
- -- Well developed and widely used for d+A
- Expansion in scattering (continuum) states of target and projectile
 - Core excitations can be included naturally
 - Convergence of expansion needs to be established for each reaction
- Difficult to treat breakup and transfer on equal footing
 - Assumptions can and need to be tested today with respect to a Faddeev approach.

Comparing CDCC and Faddeev Calculations

Detailed comparisons between CDCC and Faddeev approach needed to improve on short-comings of CDCC

Breakup of ⁸B $\theta_{lab}(^{7}Be)=30^{\circ}$ (b) $\theta_{lab}(^{7}Be)=20^{\circ}$ (a) d^rơ/dΩ_cdE_c (mb/(sr MeV)) ο (mb/(sr MeV)) 12 d⁺α/dΩ_cdE_c 2 و ⁸B breakup on ⁵⁸Ni (E_{beam}=26 MeV) $E_{lab}(^{7}Be)$ (MeV) ${\sf E}_{\sf lab}(^7{\sf Be})~({\sf MeV})$ (d) $\theta_{lab}(^{7}Be)=40^{0}$ (C) $\theta_{lab}(^{7}Be) = 50/60^{\circ}$ $d^{-1}\sigma/d\Omega_{c}dE_{c}$ (mb/(sr MeV)) $d^{z}\sigma/d\Omega_{c}dE_{c}$ (mb/(sr MeV)) **Results of CDCC** calculations assuming a single particle structure for ${}^{8}B = {}^{7}Be + p$ n $E_{lab}(^{^{7}}Be)$ (MeV) $E_{lab}(^{7}Be)$ (MeV) [Tostevin, FN, Thompson PRC (2001) 024617]

Breakup reactions and (n,γ): methodology

Goal for Reaction Theory:

Determine the topography of the nuclear landscape according to reactions described in definite schemes

At present `traditional' few-body methods are being successfully applied to a subset of nuclear reactions.

Establish overlaps, where different approaches can be firmly tested.

This `cross fertilization' of two different fields carries a lot promise for developing the theoretical tools necessary for FRIB physics.

It is an exciting time to participate in this endeavor.