

Coulomb Distorted nuclear matrix elements in momentum space I. Formal Aspects

Ch. Elster

N. Upadhyay, V. Eremenko, L. Hlophe, F.M. Nunes G. Arbanas, J. E. Escher, I.J. Thompson

(The TORUS Collaboration)

(d,p) Reactions as tool for investigation nuclear structure

Reduce Many-Body to Few-Body Problem

- Isolate important degrees of freedom in a reaction
- Keep track of important channels
- Connect back to the many-body problem

Hamiltonian for effective few-body poblem:

Three-Body Problem

(d,p) Reactions as three-body problem

Deltuva and Fonseca, Phys. Rev. C79, 014606 (2009).

Elastic, breakup, rearrangement channels are included and fully coupled (compared to e.g. CDCC calculations)

Issue: current momentum space implementation of Coulomb interaction (shielding) does not converge for Z ≥ 20

A.M. Mukhamedzhanov, V.Eremenko and A.I. Sattarov, Phys.Rev. C86 (2012) 034001

Solve Faddeev equations in Coulomb basis (no screening)

Implies integrals like

$$Z_{l}^{C}(p, p_{\alpha}) = \int \frac{dp'p'^{2}}{2\pi} U_{l}(p, p')\psi_{l}^{C}, p_{\alpha}(p')$$

If
$$U_l(p, p') = \sum_{i,j} u_{l,i}^*(p) \left(M_l\right)_{i,j} u_{l,j}(p')$$

Integral contains smooth function $u_{l,i}(p')$ and $\psi_{p_{\alpha l}}^C(p')$

Coulomb wave function in momentum space and pw decomposition

Very nasty! "pole" at
$$p_{\alpha} = p'$$

Suggestion is new needs to be tested

First Test in Two-Body System

Calculate two-body Coulomb distorted nuclear matrix element Separable nuclear Optical Potential

$$u_l(p'_{\alpha}, p_{\alpha}) = \sum_{ij} u_{li}^*(p'_{\alpha}) [M_l]_{ij} u_{lj}(p_{\alpha})$$
$$u_{li}(p_{\alpha}) \text{ is the nuclear potential form factor}$$

Compute: Coulomb distorted nuclear form factor

$$u_l^C(p_\alpha) = \frac{1}{2\pi^2} \int dp \, p^2 u_l(p) \psi_{p_\alpha l}^C(p)$$

 $\psi_{p_{\alpha}l}^{C}(p)$ is the Coulomb scattering wave function

Challenges:

$$\begin{split} \psi_{p_{\alpha}l}^{C}(p) &= -\frac{4\pi}{p} e^{-\pi\eta/2} \Gamma(1+i\eta) e^{i\alpha_{l}} \left[\frac{(p+p_{\alpha})^{2}}{4pp_{\alpha}} \right]^{l} \\ \times \text{ Im } \left[e^{-i\alpha_{l}} \frac{(p+p_{\alpha}+i0)^{-1+i\eta}}{(p-p_{\alpha}+i0)^{1+i\eta}} {}_{2}F_{1} \left(-l, -l-i\eta; 1-i\eta; \frac{(p-p_{\alpha})^{2}}{(p+p_{\alpha})^{2}} \right) \right] \\ \eta &= Z_{1} Z_{2} e^{2} \mu/p_{\alpha}. \end{split}$$

- ₂F₁ (a,b;c,z) requires two different representations for pole and non-pole regions
- > "oscillatory" singularity at $p = p_{\alpha}$
- Gel'fand-Shilov regularization
 - Reduce integrand around pole by subtracting 2 terms of the Taylor series

I. M. Gel'fand and G. E. Shilov. "Generalized Functions". Vol. 1. Academic Press, New York and London. 1964.

With Yamaguchi-type test form factor

First calculation of Coulomb distorted ²⁰⁸Pb formfactor in momentum space !

UNIVERSITY

Roadmap: (d,p) Reactions as 3-Body Problem applicable for heavy (and light) nuclei

- Formulation of Faddeev equations in Coulomb basis (no screening): A.M. Mukhamedzanov, V. Eremenko, A.I. Sattarov (PRC 86 (2012) 034001)
- Construction of separable optical potentials (n+12C,48Ca, 132Sn, 208Pb) : L. Hlophe (Ohio U) and TORUS collaboration (manuscript ready)
- Formulation of practical implementation of Coulomb distorted nuclear matrix elements with Yamaguchi test potential :
 - N. Uphadyay (MSU / LSU) and TORUS collaboration

Numerical implementation with realistic separable nuclear potential : V. Eremenko (OU) and TORUS collaboration (next talk)

TORUS: Theory of Reactions for Ustable iSotopes

A Topical Collaboration for Nuclear Theory

http://www.reactiontheory.org/

- Ch. Elster, V. Eremenko^{†‡}, and L. Hlophe[†]: Institute of Nuclear and Particle Physics, and Department of Physics and Astronomy, Ohio University, Athens, OH 45701.
- F. M. Nunes and N. J. Upadhyay[†]: National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824.
- G. Arbanas: Nuclear Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
- J. E. Escher and I. J. Thompson: Lawrence Livermore National Laboratory, L-414, Livermore, CA 94551.

[†] Post-Docs or Grad Students.

[‡] M. V. Lomonosov Moscow State University, Moscow, 119991, Russia.

