NPP

Separable Optical Potentials

for

(d,p) Reaction Calculations

Ch. Elster

The TORUS Collaboration

What Reactions are we interested in?

${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p}){ }^{4} \mathrm{He}$

Light nucleí

${ }^{140} \mathrm{Sn}(\mathrm{d}, \mathrm{p})^{141} \mathrm{Sn}$
Heavy Nuclei
?
Reactions: Elastic Scattering, Breakup, Transfer

Reduce Many-Body to Few-Body Problem

Task:

- Isolate important degrees of freedom in a reaction
- Keep track of important channels
- Connect back to the many-body problem

Hamiltonian for effective few-body poblem:

Three-Body Problem

(d,p) Reactions as three-body problem

Deltuva and Fonseca, Phys. Rev. C79, 014606 (2009).

Elastic, breakup, rearrangement channels are included and fully coupled (compared to e.g. CDCC calculations)

Issue: traditional Faddeev formulation does not contain target excitations
> Especially important for reactions with exotic nuclei
$>$ Forces between neutron (proton) and nucleus A
> Effective description with two-body optical potential

TORUS Collaboration
www.reactiontheory.org

Theoretical Foundation :

A.M. Mukhamedzhanov, V.Eremenko and A.I. Sattarov, Phys.Rev. C86 (2012) 034001

Generalized Faddeev formulation of (d, p) reactions with:
(a) explicit inclusion of target excitations
(b) explicit inclusion of the Coulomb interaction

Faddeev formulation \rightarrow momentum space

Suggestions:

Target excitations:
Including specific excited states \rightarrow Formulation with separable interactions
Explicit inclusion of Coulomb interaction:
Formulation of Faddeev equations in Coulomb basis instead of plane wave basis

Both need prep work!
physicics+astronomy

Hamiltonian: $\quad \mathrm{H}=\mathrm{H}_{0}+\mathrm{V}_{\mathrm{np}}+\mathrm{V}_{\mathrm{nA}}+\mathrm{V}_{\mathrm{pA}}$

V_{np} : NN interaction -- momentum space
V_{nA} : Optical potential
Phenomenological optical potentials fitted to data from ${ }^{12} \mathrm{C}$ to ${ }^{208} \mathrm{~Pb}$ given in coordinate space and
parameterized in terms of Woods-Saxon functions

$$
\begin{aligned}
& U_{n u c l}(r)=V(r)+i\left[W(r)+W_{s}(r)\right]+V_{l s}(r) \mathbf{l} \cdot \sigma \\
& V(r)=-V_{r} f_{w s}\left(r, R_{0}, a_{0}\right) \\
& W(r)=-W_{v} f_{w s}\left(r, R_{w}, a_{w}\right) \\
& W_{s}(r)=-W_{s}\left(-4 a_{w}\right) f_{w s}^{\prime}\left(r, R_{w}, a_{w}\right) \\
& V_{l s}(r)=-\left(V_{s o}+i W_{s o}\right)(-2) g_{w s}\left(r, R_{s o}, a_{s o}\right) \text { : } \\
& f_{w s}(r, R, a)=\frac{1}{1+\exp \left(\frac{r-R}{a}\right)} \\
& f_{w s}^{\prime}(r, R, a)=\frac{d}{d r} f_{w s}(r, R, a) \\
& g_{w s}(r, R, a)=f^{\prime}(r, R, a) / r
\end{aligned}
$$

However:

Woods-Saxon functions have a semi-analytic Fourier

transform: (fast converging series expansion)

Central term:

$$
\begin{aligned}
\bar{V}(\mathbf{q})= & \frac{V_{r}}{\pi^{2}}\left\{\frac{\pi a_{0} e^{-\pi a_{0} q}}{q\left(1-e^{-2 \pi a_{0} q}\right)^{2}}\left[R_{0}\left(1-e^{-2 \pi a_{0} q}\right) \cos \left(q R_{0}\right)-\pi a_{0}\left(1+e^{-2 \pi a_{0} q}\right) \sin \left(q R_{0}\right)\right]\right. \\
& \left.-a_{0}^{3} e^{-\frac{R_{0}}{a_{0}}}\left[\frac{1}{\left(1+a_{0}^{2} q^{2}\right)^{2}}-\frac{2 e^{-\frac{R_{0}}{a_{0}}}}{\left(4+a_{0}^{2} q^{2}\right)^{2}}\right]\right\}
\end{aligned}
$$

Surface term:

$$
\begin{aligned}
\bar{W}_{s}(\mathbf{q}) & =-4 a_{w} \frac{W_{s}}{\pi^{2}}\left\{\frac{\pi a_{w} e^{-\pi a_{w} q}}{\left(1-e^{-2 \pi a_{w} q}\right)^{2}}\right. \\
& {\left[\left(\pi a_{w}\left(1+e^{-2 \pi a_{w} q}\right)-\frac{1}{q}\left(1-e^{-2 \pi a_{w} q}\right)\right) \cos \left(q R_{w}\right)+R_{w}\left(1-e^{-2 \pi a_{w} q}\right) \sin \left(q R_{w}\right)\right] } \\
& \left.+a^{2} e^{-R_{w} / a_{w}}\left[\frac{1}{\left(1+a_{w}^{2} q^{2}\right)^{2}}-\frac{4 e^{-R_{w} / a_{w}}}{\left(4+a_{w}^{2} q^{2}\right)^{2}}\right]\right\}
\end{aligned}
$$

Short Intro to Separable Potentials:

Consider Líppmann-Schwinger (LS) equation:

Hamiltonian: $H=h_{0}+v$

$$
t(E)=v+v g_{0}(E) t(E)=v+v g(E) v
$$

free resolvent: $\quad g_{0}(E)=1 /\left(E-h_{0}+i \varepsilon\right)$
full resolvent: $\quad g(E)=1 /(E-H+i \varepsilon)$
Spectrum of full resolvent: $\quad 1=\sum_{B}\left|\Psi_{B}\right\rangle\left\langle\Psi_{B}\right|+\int d^{3} k\left|\Psi_{k}^{(+)}\right\rangle\left\langle\Psi_{k}^{(+)}\right|$

$$
\text { For } E \rightarrow E_{B} \quad t(z) \simeq \frac{v\left|\Psi_{B}\right\rangle\left\langle\Psi_{B}\right| v}{z+E_{B}}
$$

t-matrix has pole with residue: $\quad\langle k| v\left|\Psi_{B}\right\rangle\left\langle\Psi_{B}\right| v\left|k^{\prime}\right\rangle:=h_{B}(k) h_{B}^{*}\left(k^{\prime}\right)$

Define rank-1 Separable Potential: $V \equiv v\left|\Psi_{B}\right\rangle \lambda\left\langle\Psi_{B}\right| v$

General form of rank-1 separable t-matrix

$$
t(z)=|h\rangle \tau(z)\langle h|=\frac{|h\rangle\langle h|}{\frac{1}{\lambda}-\langle h| g_{0}(z)|h\rangle}
$$

With pole at: $\quad \frac{1}{\lambda}=\left\langle\Psi_{B}\right| v g_{0}\left(-E_{B}\right) v\left|\Psi_{B}\right\rangle=\left\langle\Psi_{B}\right| v \frac{1}{z+E_{B}} v\left|\Psi_{B}\right\rangle=\left\langle\Psi_{B}\right| v\left|\Psi_{B}\right\rangle$

General form of rank-1 separable t-matrix (constructed with bound state wave function

$$
t(z)=\frac{v\left|\Psi_{B}\right\rangle\left\langle\Psi_{B}\right| v}{\left\langle\Psi_{B}\right|\left(v-v g_{0}(z) v\right)\left|\Psi_{B}\right\rangle}
$$

Unitary Pole Approximation (UPA)

used many times...

Ernst-Shakin-Thaler (EST)

Extend to scattering states and define (here V Hermitian!)

$$
\mathcal{V}=\frac{V\left|\Psi_{k_{E}}^{(+)}\right\rangle\left\langle\Psi_{k_{E}}^{(+)}\right| V}{\left\langle\Psi_{k_{E}}^{+()}\right| V\left|\Psi_{k_{E}}^{(+)}\right\rangle}
$$

Then partial wave t-matrix :
Reminder:

$$
\left\langle p^{\prime}\right| t(E)|p\rangle=\frac{\left\langle p^{\prime}\right| V\left|\Psi_{k_{E}}^{(+)}\right\rangle\left\langle\Psi_{k_{E}}^{(+)}\right| V|p\rangle}{\left\langle\Psi_{k_{E}}^{(+)}\right| V-V g_{0}(E) V\left|\Psi_{k_{E}}^{(+)}\right\rangle} \quad V\left|\Psi_{k_{E}}^{(+)}\right\rangle:=t\left|k_{E}\right\rangle
$$

The EST construction guarantees:
At a given scattering energy E_{kE} the scattering wave functions obtained with the original potential V and the separable potential V are identical.\rightarrow the half-shell t-matrices are identical

Optical Potentials == Complex Potentials Generalizaton of EST necessary

L. Hlophe et al.: arXiv:1310.8334

Definition with In-state necessary to fulfill reciprocity theorem

$$
U=\frac{V\left|\Psi_{k_{E}}^{(+)}\right\rangle\left\langle\Psi_{k_{E}}^{(-)}\right| V}{\left\langle\Psi_{k_{E}}^{(-)}\right| V\left|\Psi_{k_{E}}^{(+)}\right\rangle}
$$

For time reversal operator K potential must fulfill:

$$
K \cup K^{-1}=U^{\dagger}
$$

Technical details:

Let $\mid f l_{, k E}>$ be a radial wave function and $\left.\quad K_{0}\left|f l_{, k E}>=\right| f^{*}{ }_{l, k E}\right\rangle$
Rank-1 separable t-matrix: $\quad\left\langle p^{\prime}\right| t(E)|p\rangle=\frac{\left\langle p^{\prime}\right| u\left|f_{l, k_{E}}\right\rangle\left\langle f_{l, k_{E}}^{*}\right| u|p\rangle}{\left\langle f_{l, k_{E}}^{*}\right| u-u g_{0}(E) u\left|f_{l, k_{E}}\right\rangle}$
With

$$
t\left(p^{\prime}, k_{E}, E_{k_{E}}\right)=\left\langle f_{l, k_{E}}^{*}\right| u\left|p^{\prime}\right\rangle \quad \text { and } \quad t\left(p, k_{E}, E_{k_{E}}\right)=\langle p| u\left|f_{l, k_{E}}\right\rangle
$$

$$
\left\langle p^{\prime}\right| t(E)|p\rangle=\frac{t\left(p^{\prime}, k_{E}, E_{k_{E}}\right) t\left(p, k_{E}, E_{k_{E}}\right)}{\left\langle f_{l, k_{E}}^{*}\right| u\left(1-g_{0}(E) u\right)\left|f_{l, k_{E}}\right\rangle} \equiv t\left(p^{\prime}, k_{E}, E\right) \tau(E) t\left(p, k_{E}, E\right)
$$

and

$$
\begin{aligned}
& \tau(E)^{-1}=t\left(k_{E}, k_{E}, E_{k_{E}}\right) \\
& +2 \mu\left[\mathcal{P} \int d p p^{2} \frac{t\left(p, k_{E}, E_{k_{E}}\right) t\left(p, k_{E}, E_{k_{E}}\right)}{k_{E}^{2}-p^{2}}-\mathcal{P} \int d p p^{2} \frac{t\left(p, k_{E}, E_{k_{E}}\right) t\left(p, k_{E}, E_{k_{E}}\right)}{k_{0}^{2}-p^{2}}\right] \\
& +i \pi \mu\left[k_{0} t\left(k_{0}, k_{E}, E_{k_{E}}\right) t\left(k_{0}, k_{E}, E_{k_{E}}\right)-k_{E} t\left(k_{E}, k_{E}, E_{k_{E}}\right) t\left(k_{E}, k_{E}, E_{k_{E}}\right)\right] .
\end{aligned}
$$

Generalization to arbitrary rank

$$
\mathbf{U}=\sum_{i, j} u\left|f_{l, k_{E_{i}}}\right\rangle\left\langle f_{l, k_{E_{i}}}\right| M\left|f_{l}^{*}, k_{E_{j}}\right\rangle\left\langle f_{l, k_{E_{j}}}^{*}\right| u
$$

with
$\delta_{i k}=\sum_{j}\left\langle f_{l, k_{E_{i}}}\right| M\left|f_{l, k_{E_{j}}}^{*}\right\rangle\left\langle f_{l, k_{E_{j}}}^{*}\right| u\left|f_{l, k_{E_{k}}}\right\rangle=\sum_{j}\left\langle f_{l, k_{E_{i}}}^{*}\right| u\left|f_{l, k_{E_{j}}}\right\rangle\left\langle f_{l, k_{E_{j}}}\right| M\left|f_{l, k_{E_{k}}}^{*}\right\rangle$
t-matrix

$$
\begin{aligned}
& t(E)=\sum_{i, j} u\left|f_{l, k_{E_{i}}}\right\rangle \tau_{i j}(E)\left\langle f_{l, k_{E_{j}}}^{*}\right| u \\
& \sum_{j} \tau_{i j}(E) \underbrace{\left\langle f_{l, k_{E_{j}}}^{*}\right| u-u g_{0}(E) u\left|f_{l, k_{E_{k}}}\right\rangle}\rangle=\delta_{i k}
\end{aligned}
$$

Compute and solve system of linear equations
$\mathrm{n}+{ }^{48} \mathrm{Ca}: \mathrm{l}=4, \mathrm{j}=9 / 2 \quad$ s-matrix elements

$\mathrm{n}+{ }^{48} \mathrm{Ca}$: higher partial waves

Very smooth s-matrix elements \rightarrow low rank separable sufficient

Guideline for Rank of Separable Representation

system	partial wave(s)	rank	EST support point(s) $[\mathrm{MeV}]$
$\mathrm{n}+{ }^{48} \mathrm{Ca}$	$l \geq 10$	1	40
	$l \geq 8$	2	29,47
	$l \geq 6$	3	$16,36,47$
	$l \geq 0$	4	$6,15,36,47$
$\mathrm{n}+{ }^{132} \mathrm{Sn}$	$l \geq 16$	1	40
and	$l \geq 13$	2	35,48
$\mathrm{n}+{ }^{208} \mathrm{~Pb}$	$l \geq 6$	3	$24,39,48$
	$l \geq 0$	4	$11,21,36,45$
	$\mathbf{5}$	$\mathbf{5}, \mathbf{1 1}, \mathbf{2 1}, \mathbf{3 6}, 47$	

I=0 s-matrix elements:

physics +astronomy

Comparison with r-space calculation: $\mathrm{n}+{ }^{48} \mathrm{Ca} @ 12 \mathrm{MeV}$

Off-Shell t-matrix elements: $t_{1}\left(k^{\prime}, k ; E_{k 0}\right)$

physics+astronomy

$n+{ }^{48} \mathrm{Ca}$

0.000
-0.010
-0.020
-0.030
-0.040
-0.050
$\mathrm{k}, \mathrm{k}^{\prime}=\mathrm{k}_{0}$
\qquad \square

Off-shell t-matrix elements $t_{1}\left(k^{\prime}, k ; E_{k 0}\right) \quad I=0$

Separable Representation of n+Nucleus Optical Potentials

Method of Ernst-Shakin-Thaler

- In momentum space

Generalized to non-Hermitian potentials

- Universal Rank-5 representation: ${ }^{12} \mathrm{C}$ to ${ }^{208} \mathrm{~Pb}$
- Allows to use all phenomenological Woods-Saxon based optical potentials in momentum-space
- Excellent representation of s-matrices and cross sections in the energy regime 10-50 MeV
- EST projects out high-momentum off-shell components.

Separable Potentials for $\mathrm{p}+$ Nucleus Scattering

First step: separate potential $\quad \mathrm{W}=\mathrm{V}^{\mathrm{c}}+\mathrm{V}^{\mathrm{s}}$
into long-range point Coulomb potential V^{c}

Short-range Coulomb contribution

Fourier transform:

$$
\left(V^{c d}-V^{c}\right)(r)=\alpha_{e} Z_{p} Z_{t}\left[\frac{1}{2 R_{0}}\left(3-\frac{r^{2}}{R_{0}^{2}}\right)-\frac{1}{r}\right]
$$

$$
\begin{aligned}
&\left(V^{c d}-V^{c}\right)\left(\mathbf{q}^{\prime}, \mathbf{q}\right)= \text { Charged sphere wi } \\
&-\frac{\alpha_{e} Z_{p} Z_{t}}{2 \pi^{2} k^{2}} \frac{1}{\left(k R_{0}\right)^{3}}\left[\left(k R_{0}\right)^{3}+3 k R_{0} \cos \left(k R_{0}\right)-3 \sin \left(k R_{0}\right)\right] \\
& \mathbf{k} \rightarrow 0 \quad\left(V^{c d}-V^{c}\right)\left(\mathbf{q}^{\prime}, \mathbf{q}\right) \rightarrow-\frac{\alpha_{e} Z_{p} Z_{t}}{20 \pi^{2}} R_{0}^{2}
\end{aligned}
$$

Separation of Contributions:

$$
T=\hat{T}^{c}+\hat{\Omega}^{c(-)} V^{s} \Omega^{(+)}
$$

In partial wave form:

$$
\begin{aligned}
& \quad\left\langle k_{0}\right| T_{l}(E)\left|k_{0}\right\rangle=\left\langle k_{0}\right| \hat{T}_{l}^{c}(E)\left|k_{0}\right\rangle+\left\langle\hat{\Phi}_{l}^{c(-)}\left(k_{0}\right)\right| V^{s}\left|\Psi_{l}^{c(+)}\left(k_{0}\right)\right\rangle \\
& \text { with } \quad\left\langle\hat{\Phi}_{l}^{c(-)}\left(k_{0}\right)\right|=e^{2 i \sigma_{l}(E)}\left\langle\hat{\Phi}_{l}^{c(+)}\left(k_{0}\right)\right| \\
& \left\langle k_{0}\right| T_{l}(E)\left|k_{0}\right\rangle=\left\langle k_{0}\right| \hat{T}_{l}^{c}(E)\left|k_{0}\right\rangle+e^{2 i \sigma_{l}(E)}\left\langle\hat{\Phi}_{l}^{c(+)}\left(k_{0}\right)\right| V^{s}\left|\Psi_{l}^{c(+)}\left(k_{0}\right)\right\rangle
\end{aligned}
$$

Full scattering state in Coulomb basis
Multiply with $\left\langle\Phi_{l}^{c(+)}\left(k_{0}\right)\right| V^{s}$

$$
\left|\Psi_{l}^{c(+)}\left(k_{0}\right)\right\rangle=\left|\hat{\Phi}_{l}^{c(+)}\left(k_{0}\right)\right\rangle+\hat{g}_{c}(E) V^{s}\left|\Psi_{l}^{c(+)}\left(k_{0}\right)\right\rangle
$$

Channel resolvent:

$$
\hat{g}_{c}(E)=\left(E-\hat{H}^{c}+i \varepsilon\right)^{-1}
$$

$$
\hat{H}^{c}=H_{0}+V^{c} .
$$

LS equation for matrix elements

Elster, Liu, Thaler
J. Phys. G 19, 2123 (1993)
$\left\langle\Phi_{l}^{c(+)}\left(k_{0}\right)\right| V^{s}\left|\Psi_{l}^{c(+)}\left(k_{0}\right)\right\rangle=\left\langle\Phi_{l}^{c(+)}\left(k_{0}\right)\right| V^{s}\left|\hat{\Phi}_{l}^{c(+)}\left(k_{0}\right)\right\rangle+\left\langle\Phi_{l}^{c(+)}\left(k_{0}\right)\right| V^{s} \hat{g}_{c}(E) V^{s}\left|\Psi_{l}^{c(+)}\left(k_{0}\right)\right\rangle$
define

$$
\begin{aligned}
\left\langle\Phi_{l}^{c(+)}\left(k^{\prime}\right)\right| V^{s}\left|\hat{\Phi}_{l}^{c(+)}(k)\right\rangle & \equiv\left\langle k^{\prime}\right| u_{l}\left|k^{\prime}\right\rangle \\
\left\langle\Phi_{l}^{c(+)}\left(k_{0}\right)\right| V^{s}\left|\Psi_{l}^{c(+)}\left(k_{0}\right)\right\rangle & \equiv\left\langle k^{\prime}\right| \tau_{l}\left|k^{\prime}\right\rangle
\end{aligned}
$$

LS equation:

$$
\langle k| \tau_{l}\left|k_{0}\right\rangle=\langle k| u_{l}\left|k_{0}\right\rangle+\int\langle k| u_{l}\left|k^{\prime}\right\rangle \frac{4 \pi k^{\prime 2} d k^{\prime}}{E-E^{\prime}+i \varepsilon}\left\langle k^{\prime} \tau_{l} \mid k_{0}\right\rangle
$$

Following the EST scheme in the Coulomb basis (rank-1)

$$
\begin{gathered}
t(E) \equiv\left|h_{k}\right\rangle \tau(E)\left\langle h_{k}\right| \quad \tau(E)=\left[\frac{1}{\lambda}-\left\langle h_{k}\right| \hat{g}_{c}^{(+)}(E)\left|h_{k}\right\rangle\right]^{-1} \\
\left\langle h_{k}\right| \hat{g}_{c}^{(+)}(E)\left|h_{k}\right\rangle=\int d k^{\prime} k^{\prime 2} \frac{\left\langle h_{k} \mid \Phi^{c}\left(k^{\prime}\right)\right\rangle\left\langle\Phi^{c}\left(k^{\prime}\right) \mid h_{k}\right\rangle}{E-E^{\prime} \neq i \varepsilon}
\end{gathered}
$$

Similar suggestion by Cattapan, Pisent, Vanzani, NPA 241, 204 (1975)

For generalized EST scheme: $\mathbf{U}=\frac{u\left|\Psi^{(+)}\left(k_{0}\right)\right\rangle\left\langle\Psi^{(-)}\left(k_{0}\right)\right| u}{\left\langle\Psi^{(-)}\left(k_{0}\right)\right| u\left|\Psi^{(+)}\left(k_{0}\right)\right\rangle}$:
Separable t-matrix in Coulomb basis

$$
\left\langle\Phi^{c}\left(p^{\prime}\right)\right| t(E)\left|\Phi^{c}(p)\right\rangle=\frac{\left\langle\Phi^{c}\left(p^{\prime}\right)\right| u\left|\Psi_{k_{E}}^{(+)}\right\rangle\left\langle\Psi_{k_{E}}^{(-)} \mid u \Phi^{c}(p)\right\rangle}{\left\langle\Psi_{k_{E}}^{(-)}(p)\right| u-u g_{c}(E) u\left|\Psi_{k_{E}}^{(+)}\right\rangle}
$$

$$
\left\langle\Phi^{c}(p)\right| u\left|\Psi_{k_{E}}^{(+)}\right\rangle \quad \text { are Coulomb distorted form factors }
$$

and e.g. $\left\langle\Psi_{k_{E}}^{(-)}\right| u g_{c}(E) u\left|\Psi_{k_{E}}^{(+)}\right\rangle=\int d p p^{2} \frac{\left\langle\Psi_{k_{E}}^{(-)} u \mid \Phi^{c}(p)\right\rangle\left\langle\Phi^{c}(p) \mid u \Psi_{k_{E}}^{(+)}\right\rangle}{E-\frac{p^{2}}{2 \mu}+i \varepsilon}$
Matrix elements:

$$
\left\langle\Psi_{k_{E}}^{(-)} u \mid \Phi^{c}(p)\right\rangle=\int d p^{\prime \prime} p^{\prime \prime 2} t\left(p^{\prime \prime}, k_{E} ; E_{k}\right) \Phi^{c}\left(p^{\prime \prime}\right) \equiv t^{c}\left(p, k_{E} ; E_{k_{E}}\right)
$$

Then all calculations of the separable t-matrix should be the same

Calculation of Coulomb distorted form factors (half-shell t-matrices):

Lengthy and another talk!
Soon to come:

Check if the p+nucleus calculations work

Not necessary for (d, p) reactions, But nice if they do

Roadmap:

(d,p) Reactions as 3-Body Problem applicable for heavy (and light) nuclei

- Formulation of Faddeev equations in Coulomb basis (no screening):
A.M. Mukhamedzanov, V. Eremenko, A.I. Sattarov (PRC 86 (2012) 034001)
- Construction of separable optical potentials ($\mathrm{n}+{ }^{12} \mathrm{C},{ }^{48} \mathrm{Ca},{ }^{132} \mathrm{Sn},{ }^{208} \mathrm{~Pb}$) :
L. Hlophe (Ohio U) and TORUS collaboration (manuscript ready)

0 Formulation of practical implementation of Coulomb distorted nuclear matrix elements with Yamaguchi test potential :
N. Uphadyay (MSU / LSU) and TORUS collaboration

- Numerical implementation with realistic separable nuclear potential :
V. Eremenko (OU) and TORUS collaboration

TORUS: Theory of Reactions for Unstable iSotopes

A Topical Collaboration for Nuclear Theory
http://www.reactiontheory.org/

- Ch. Elster, V. Eremenko ${ }^{\dagger \ddagger}$, and L. Hlophe ${ }^{\dagger}$: Institute of Nuclear and Particle Physics, and Department of Physics and Astronomy, Ohio University, Athens, OH 45701.
- F. M. Nunes and N. J. Upadhyay ${ }^{\dagger}$: National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824.
- G. Arbanas: Nuclear Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
- J. E. Escher and I. J. Thompson: Lawrence Livermore National Laboratory, L-414, Livermore, CA 94551.
\dagger Post-Docs or Grad Students.
\ddagger M. V. Lomonosov Moscow State University, Moscow, 119991, Russia.

