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Elastic scattering of 6He based on a cluster description
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Elastic scattering observables (differential cross section and analyzing power) are calculated for the reaction
6He(p,p)6He at projectile energies starting at 71 MeV/nucleon. The optical potential needed to describe the
reaction is derived by describing 6He in terms of a 4He core and two neutrons. The Watson first-order multiple-
scattering ansatz is extended to accommodate the internal dynamics of a composite cluster model for the 6He
nucleus scattering from a nucleon projectile. The calculations are compared with recent experiments at the
projectile energy of 71 MeV/nucleon. In addition, differential cross sections and analyzing powers are calculated
at selected higher energies.
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I. INTRODUCTION

Traditionally, differential cross sections and spin observ-
ables played an important role in either determining the
parameters in phenomenological optical models for proton-
nucleus (p-A) scattering or in testing the accuracy and validity
of microscopic models thereof. Specifically, elastic scattering
of protons and neutrons from stable nuclei has led to a large
body of work on optical potentials in which the two-nucleon
interaction and the density matrix of the nucleus were taken as
input to ab initio calculations of first-order optical potentials,
in either a Kerman-McManus-Thaler (KMT) or a Watson
expansion of the multiple-scattering series, for which the
primary goal was a deeper understanding of the reaction
mechanism.

For exotic nuclei the theoretical emphasis is somewhat
shifted. A goal of microscopic reaction theory is a construction
of the scattering observables based on well-defined dynamical
and structure quantities in order to, for example, examine
structural sensitivities. Investigation of the structure of halo
nuclei, specifically 6He, has already inspired a large body of
work including few-body models [1], Green’s function Monte
Carlo methods [2], and no-core shell model calculations [3],
so that ground-state properties of 6He appear to be quite well
understood.

Recently, elastic scattering of 6He off a polarized proton
target has been measured for the first time at an energy
of 71 MeV/nucleon [4,5]. The experiment finds that the
analyzing power becomes negative around 50◦, which is not
predicted by simple folding models for the optical poten-
tials [6,7]. The same calculations nevertheless describe the
differential cross section at this energy reasonably well. This
apparent “Ay problem” conveys the inadequacy of using the
same models that describe p-A scattering from stable nuclei
for reactions involving halo nuclei. The obvious difference
is the nuclear structure. While the typical stable nuclei for
which folding models are very successful are mostly spherical,
6He can be understood in few-body models as a three-body
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system consisting of two neutrons (n) and a 4He core.
Implementation of this three-body structure in a cluster model,
specifically in a reaction calculation for proton (p) scattering
off 6He, was pioneered in Ref. [8] for calculating the reaction
p +6He at 717 MeV/nucleon, an energy at which the authors
could employ the Born approximation. Based on the KMT
formulation for the optical potential and more realistic wave
functions for 6He, differential cross sections and analyzing
powers were calculated in Ref. [9] at 297 MeV/per nucleon.
For describing the differential cross section and the analyzing
power at 71 MeV/nucleon, the authors of Ref. [4] suggested
a “cluster-folding” calculation having an explicit α core
described by a phenomenological p +4He optical potential.

In this work we want to extend the development of Ref. [8]
by incorporating the cluster structure in an optical potential for
the reaction p +6He in such a way that the transition amplitude
can be iterated to all orders (non-Born approximation). Our
derivation of the optical potential is based on the Watson
formulation for multiple-scattering theory, which not only
allows separate treatment of proton and neutron contributions
to the structure [10], but also lends itself naturally to taking
into account the contributions of the α core and the two
neutrons. The construction of an optical potential in which
the separate contributions from the clusters are treated in a
consistent fashion is achieved.

This article is organized as follows. In Sec. II we first
present a short summary of the Watson optical potential for
stable nuclei and then extend this paradigm to the 6He nucleus
consisting of an α core and two neutrons. In Sec. III we present
our calculation for 6He + p at 71 MeV/nucleon as well as at
several higher energies and discuss their implications. Our
conclusions are presented in Sec. IV. Three Appendixes are
devoted to the explicit derivation of the first-order optical
potential, the transformations between the different coordinate
systems used in our calculations, and the calculation of the
correlation densities between the clusters.

II. THE FOLDING-CLUSTER MODEL

In order to derive a cluster ansatz for the target (projectile)
and show how it can consistently be incorporated into a folding
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approach for the optical potential, we will for the convenience
of the reader give a summary of the essential ingredients and
underlying assumptions.

A. The Watson optical potential for single scattering

Let H = H0 + V be the Hamiltonian for the nucleon-
nucleus system [(A + 1)-body system], where the interaction
V = ∑A

i v0i consists of all two-nucleon interactions v0i

between the projectile (“0”) and a target nucleon (“i”).
The free Hamiltonian is given by H0 = h0 + HA, where h0

describes the kinetic energy of the projectile, while the target
Hamiltonian HA satisfies HA|�A〉 = EA|�A〉, with |�A〉 being
the ground state of the target.

The transition amplitude for the scattering of the projectile
from the target is then given by a Lippmann-Schwinger
equation T = V + V G0T , where the propagator G0 is an
(A + 1)-body operator given by

G0(E) = (E − h0 − HA + iε)−1, (1)

with E being the total energy of the system. One way to
tackle the many-body scattering problem is the spectator
expansion [11], in which the transition amplitude is written
as T = ∑A

i=1 T0i , so that

T0i = v0i + v0iG0(E)T . (2)

This allows the sum of all interactions between projectile 0
and nucleon i by a formal reordering of the multiple-scattering
series according to Watson,

T0i = τ̂0i + τ̂0iG0(E)
∑
j �=i

T0j , (3)

where

τ̂0i = v0i + v0iG0(E)τ̂0i . (4)

The term τ̂0i of Eq. (4) involves only the interaction between
pairs, namely, particles 0 and i, whereas the propagator G0(E)
is still an (A + 1)-body operator. The multiple-scattering series
of Eq. (3) can directly serve as starting point for constructing
the transition amplitude for elastic scattering, as shown in
Refs. [8,9,12].

When focusing on elastic scattering, the projection P onto
the ground state |�A〉 is introduced so that [G0(E), P ] =
0. Here we define P = |�A〉〈�A|

〈�A|�A〉 and P + Q = 1, where Q

projects onto the orthogonal space. This allows the separation
of the transition amplitude into two pieces,

T = U + UG0(E)PT, U = V + V G0(E)QU, (5)

with U being the optical potential operator. The transition
operator for elastic scattering may then be defined as Tel =
PT P , so that

Tel = PUP + PUPG0(E)PTel (6)

is a one-body integral equation. Of course, it requires
knowledge of PUP , which has to contain the complete
information about the many-body character of the problem.
The formulations for the transition matrix for elastic scattering,

given in Eqs. (3) and (5), are equivalent though truncations in
the expansions are not.

The first-order term of U can be defined as

U =
A∑

i=1

Ui ≈
A∑

i=1

τ0i , (7)

with

τ0i = v0i + v0iG0(E)Qτ0i . (8)

Because of the appearance of the projection operator Q in
Eq. (7), the quantity τ0i cannot yet be related to a two-nucleon
interaction. Defining a transition operator τ̂0i , according to
Eq. (4), allows us to obtain the explicit relation to τ0i :

τ̂0i = v0i + v0iG0(E) [P + Q] τ̂0i

= τ0i + τ0iG0(E)P τ̂0i , (9)

so that one obtains the exact relations [10]

τ0i = τ̂0i − τ0iG0(E)P τ̂0i = τ̂0i − τ̂0iG0(E)Pτ0i . (10)

It is easy to take into account the isospin character of the target
nucleons instead of just summing over A nucleons by splitting
Eq. (7) into two parts under the assumption that the projectile
0 is a proton; Eq. (7) becomes

Up =
Z∑

i=1

τ
pp

0i +
N∑

i=1

τ
np

0i ≡ UZ
p + UN

p , (11)

where the integral Eq. (10) has to be solved separately for
proton-proton (pp) and neutron-proton (np) interactions. This
clearly indicates that the optical potential for the scattering
of a proton (Up) from a target nucleus differs from the
optical potential for the scattering of a neutron (Un) from
the same target. Moreover, and more important for the present
considerations, the folding with the proton and neutron density
matrices is cleanly separated, which is not the case if one uses
an optical potential in the formulation of Kerman, McManus,
and Thaler [13]. A numerical study for p +11Li comparin
a KMT formulation and Watson expansion of Eq. (3) has
been carried out in Ref. [12] with the finding that truncations
at the same order of the series, although similar at small
momentum transfer, show differences at the higher momentum
transfers. This should not be surprising when we consider the
nonlinear relation of the free two-nucleon t matrix, Eq. (10),
to the quantity τ0i entering the optical potential which is
the driving term of the final scattering integral equation,
Eq. (6). For the n + d system, for which exact solutions
of the Faddeev equations exist, optical potentials for elastic
scattering were constructed in Ref. [14], indicating that first-
order approximations are valid only for smaller momentum
transfers.

The propagator of Eq. (1) needs to be examined in more
detail since it still is an (A + 1)-body operator. Only if the
target Hamiltonian HA is approximated by a c number does
G0(E) become a one-body operator; then Eq. (4) can be
identified with the free nucleon-nucleon (NN) t matrix at
an appropriate energy E. Reduction of HA to a c number
is the standard impulse approximation (or extreme closure
approximation) which has been widely used throughout the
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literature. The impulse approximation is believed to be
a reasonable approximation in intermediate-energy nuclear
physics, i.e., in an energy regime where the kinetic energy
of the projectile is large compared to excitation energies of the
target; however, the validity of this assumption has to be tested
for individual cases under consideration.

B. First-order folding optical potential

In this section we will give the explicit expressions for the
“traditional” first-order Watson optical potential. Starting from
those expressions will lead in a straightforward fashion to an
optical potential where the nucleus is treated as a composite
of clusters. Based on Eqs. (6) and (7), the first-order optical
potential as a function of external momenta k and k′ is given
by

〈k′|〈φA|PUP |φA〉k〉
≡ Uel(k′, k) =

∑
i=N,P

〈k′|〈φA|τ̂0i(E)|φA〉k〉 ≡ 〈τ̂0i〉, (12)

where E is the energy of the system. The summation over i

indicates that one has to sum over N neutrons and Z protons.
The structure of Eq. (12) is graphically indicated by Fig. 1; ki

and k′
i are internal variables of the struck target nucleon, and p0

and p′
0 are external target variables. In the following derivation,

we will sum over A nucleons for clarity of presentation.
However it should be emphasized that in practice a sum over N

neutrons and Z protons, as indicated in Eq. (10), is done. The
energy of the τ̂0i operator, E , is a dynamical variable which
depends on the total energy of the system and the energy of
the spectator [15] as in a three-body problem. In this work the
common approximation to fix it at half the laboratory energy
will be used.

We consider a frame of reference in which k0 is the
momentum of the projectile and p0 is the momentum of the
target. The individual nucleons inside the target have momenta
(k1, k2, . . . , kA). Thus

〈k1k2k3k4 · · · kA|φA〉
= δ(k1 + k2 + k3 + k4 + · · · + kA − p0)

×〈ζ 1ζ 2ζ 3ζ 4 · · · ζA−1|φA〉, (13)

where the delta function determines the conservation of the
absolute momentum for the center of mass (c.m.) frame of
the nucleus, and ζ i represent the relative momenta of the
individual nucleons in the target. The reason for using relative

0 i k

Φ

k’

ΦA
p’ p0 0

kk’

A

τ^
4N,2Z

i=1

FIG. 1. Diagram for the standard optical potential matrix element
for the single-scattering approximation.

momenta is that the wave functions are naturally expressed in
such a basis to manifestly express Galilean invariance, so any
input into the theory will be in terms of the internal momenta
ζ i and not k. In first order, which is the concern of this work,
we need only the momentum of the struck nucleon, namely,
k1 = ζ 1 + p

A
. Changing integration variables from absolute

to relative momenta, only the single-particle density matrices
ρ(ζ ′

1, ζ 1) employed. They are used to describe the dependence
of one particle’s relative motion to the remaining (A − 1) core,

ρ(ζ ′
1, ζ 1) ≡

∫ A−1∏
l=2

dζ ′
l

∫ A−1∏
j=2

dζ j 〈φA|ζ ′
1ζ

′
2ζ

′
3ζ

′
4 · · · ζ ′

A−1〉

× 〈ζ 1ζ 2ζ 3ζ 4 · · · ζA−1|φA〉. (14)

The NN τ̂01 matrix can always be written in relative coordinates
as

〈q′
0q′

1|τ̂01(E)|q0q1〉
= δ(q′

0 + q′
1 − q0 − q1)

〈
1
2 (q′

0 − q′
1)

∣∣τ̂01(E)
∣∣ 1

2 (q0 − q1)
〉
,

(15)

where the δ function indicates the momentum conservation of
the two-nucleon pair. This leads to the following expression
for the optical potential of Eq. (12):

〈τ̂01〉 =
∫

dζ ′
1

∫
dζ 1δ(k′ + p′

0 − k − p0)

×
〈

1

2

(
k′ − ζ ′

1 − p′
0

A

) ∣∣∣∣τ̂01(E)

∣∣∣∣1

2

(
k − ζ 1 − p0

A

)〉

× ρ(ζ ′
1, ζ 1)δ

(
ζ ′

1 − ζ1 − A − 1

A
(k − k′)

)
, (16)

which explicitly gives the relation

ζ ′
1 − ζ 1 = A − 1

A
(k − k′) (17)

relating the relative variables ζ directly to the external
variables. For convenience, in the practical calculation, the
following definitions are used:

K ≡ 1

2
(k′ + k), q ≡ k′ − k = A

A − 1
(ζ 1 − ζ ′

1),
(18)

P ≡ 1

2
(ζ ′

1 + ζ 1),

where q is the momentum transfer and K is orthogonal to it.
After a series of variable transformations, which are outlined in
Appendix A, one obtains for the folding single-particle optical
potential

Uel(q, K) =
∑
i=n,p

∫
dPτ̂0i

(
q,

1

2

(
A + 1

A
K − P

)
, E

)

× ρi

(
P − A − 1

2A
q, P + A − 1

2A
q
)

. (19)

The above expression shows that one has to carry out a three-
dimensional integration over the NN t matrix and the nuclear
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density matrix. We employ Monte Carlo methods for the actual
computation.

C. Cluster model for the target nucleus

Halo nuclei exhibit the distinctive feature of a usually
tightly bound core and loosely bound valence nucleons. For
exploring bound-state properties a cluster model has been quite
successful (see, e.g., [1,16]). Here we propose to employ
a cluster model for the optical potential of 6He, and thus
view 6He as a cluster of a tightly bound α particle and two
valence neutrons. As explained in the previous sections, the
first-order folding optical potential uses the single-nucleon
density as a basic ingredient. This means, in the standard
formulation of the optical potential, that one deals with one
active nucleon at a time and then sums over all active nuclei.
This paradigm can be naturally extended to a cluster model.
The only additional consideration which needs to be taken into
account is that now there is an intrinsic motion between the
different pieces of the cluster. In order to accommodate this
let us define a Jacobi momentum pj , representing the relative
momentum of the active cluster and the spectator clusters,
as

pj i
= 1

A
(Asipi − Aips i), (20)

where the index i characterizes a particular cluster and the
index si represents the spectators for the ith cluster. Since
this is a Jacobi momentum it is invariant in all frames. The
underlying belief is that there is a strongly peaked active cluster
momentum, centered about pi , which is different from the
other spectator cluster momentum, ps i . If the nucleons are
assumed to be largely independent of each other, as in a single-
particle picture, then pj i

= 0, and the single-particle optical
potential reemerges.

With these additional momenta we can define a correlation
density similar to the traditional density of Eq. (14):

ρcorr(pj 1, pj
′
1)≡

∫ Nc∏
l=2

dpj
′
l

∫ Nc∏
m=2

dpj m

〈
φA

∣∣pj
′
1pj

′
2 · · · pj

′
Nc

〉

× 〈
pj 1pj 2 · · · pj Nc

∣∣φA

〉
, (21)

where Nc is the number of total clusters in the target. For
the 6He system studied here Nc = 3. The particular view in
this model is that nucleons within a specific cluster move
with the same c.m. momentum, which in turn is correlated
with the momentum of the spectator clusters. This product of
densities must conserve the overall momentum in the intrinsic
frame of the nucleus. It further follows that the sum of all
relative momenta in the cluster must be zero. In this work, we
choose to work with the three-body cluster orbital shell model
approximation (COSMA) density [17,18].

In order to match the choice of momenta to those of the
optical potential of the previous section, we define

Pj i
= pj i

+ pj
′
i

2
, (22)

which is similar to the definitions of P and K in Eq. (18). Thus,
the new cluster optical model provides an additional sum over
the number of clusters,

Uel(q, K) =
∑

c=1,Nc

∑
i=nc,pc

∫
dP dPj c

ρcorr
(
Pj c

)

× τ̂0i

(
q,

1

2

(
A + 1

A
K − P

)
, E

)

× ρci

(
P − A − 1

2A
q, P + A − 1

2A
q
)

, (23)

where each cluster now defines its own optical potential. With
this, the optical potential for 6He consists of two pieces as
indicated in Fig. 2, an optical potential for the α core and one
for each of the two neutrons, both linked by the correlation
density between the clusters,

6HeUel(q, K) = Uα + 2Un

=
∑

i=N,P

∫
dP dPj α

ρcorr
(
Pj α

)
τ̂0i

(
q,

1

2

(
A + 1

A
K − P

)
, E

)
ραi

(
P − A − 1

2A
q, P + A − 1

2A
q
)

+ 2
∫

dP dPj n
ρcorr

(
Pj n

)
τ̂0i

(
q,

1

2

(
A + 1

A
K − P

)
, E

)
ρn

(
P − A − 1

2A
q, P + A − 1

2A
q
)

. (24)

The cluster optical potential involves now a six-dimensional
integration, which we again carry out with Monte Carlo
methods. In addition, care must be taken to evaluate each
cluster in the c.m. frame between projectile and cluster, since
the scattering takes place in intrinsically different frames
as dictated by the variable Pj . However, the final optical
potential for the nucleus 6He must be evaluated in the c.m.
frame of the target + projectile system. Thus, the initial
step in the calculation involves first the evaluation of each

cluster optical potential separately, and then boosting each
to the target + projectile system. The explicit details of these
transformations are given in Appendix B.

Furthermore, it is important to note that each clus-
ter optical potential contains the correlation density.
Through its variable Pj the momenta of the active
particles are constrained. An explicit derivation of the
correlation density for the 6He nucleus is given in
Appendix C.
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FIG. 2. Diagram for the cluster optical potential for 6He based on
the single-scattering approximation.

III. RESULTS AND DISCUSSION

In this section we evaluate the differential cross section
and the analyzing power for elastic scattering of 4He and
6He using nonlocal optical potentials in first order in the
Watson multiple-scattering expansion. Specifically, we want
to test the influence of the cluster formulation presented in
Sec. II C on those observables, compared to single-particle
optical potentials of the same order in the multiple-scattering
expansion. We start with considering the recent experimental
data for 6He at 71 MeV/nucleon [4]; then we continue our
investigation at slightly higher energies in order to gain some
insight into the behavior of the elastic scattering observables
as functions of projectile energy.

As a nucleon-nucleon interaction we use the nonlocal
Nijm-I potential of the Nijmegen group [19], which describes
the NN data below 350 MeV laboratory energy with a
χ2 ≈ 1. For the density matrix of 6He the COSMA density of
Refs. [17,18] is used. This density consists of harmonic
oscillator wave functions for the s and p shells. The parameters
are fitted such that 6He has a charge radius of 1.77 fm and a
matter radius of 2.57 fm.

In addition the elastic scattering observables for proton
scattering off 4He are calculated. The proton and neutron
density matrices for 4He are obtained from the microscopic
Hartree-Fock-Bogoliubov (HFB) calculation of Ref. [20],
which uses the Gogny D1S finite-range effective interaction
[21]. The HFB calculation produces a mean-field potential,
which in turn is used to modify the free NN interaction inside
the nucleus [22,23]. This modification of the free NN t matrix
has proved to be important in the description of closed-shell
nuclei at projectile energies below 150 MeV.

Let us first concentrate on the scattering of 6He at
71 MeV/nucleon. In Fig. 3 we show the differential cross
section Fig. 3(a)] and the analyzing power [Fig. 3(b)] for
elastic scattering of 6He at 71 MeV/nucleon. For more detail
we show the differential cross section in a linear scale in
Fig. 4. The solid (black) line represents the calculation with a
single-particle optical potential as outlined in Sec. II B based
on the COSMA density. On the logarithmic scale of Fig. 3
the differential cross section looks reasonably well described.
However, the linear scale of Fig. 4 reveals that for the small
angles, the single-particle optical potential overpredicts the
differential cross section. The analyzing power stays positive
for all angles, similar to the predictions in Ref. [6]. Our
calculation based on the cluster model using again the COSMA
density is represented by the short-dashed (blue) line. The

10-3

10-2

10-1

100

101

102

103

dσ
/d

Ω
 (m

b/
sr

)

(a)

-1.0

-0.5

0.0

0.5

1.0

 0  20  40  60  80  100

A y

c.m. angle (deg)

(b)

FIG. 3. (Color online) The angular distribution of the differential
cross section dσ/d (a) and the analyzing power Ay (b) for
elastic scattering 6He at projectile energy 71 MeV/nucleon as a
function of the c.m. angle. The calculations are performed with an
optical potential obtained from the Nijmegen I potential [19] for the
NN interaction. All optical potentials are folding, nonlocal optical
potentials described in the text. The solid line (black) represents the
calculation based on a single-particle optical potential employing
the COSMA density of Ref. [17]. For the short-dashed line (blue)
the cluster ansatz together with the COSMA density is used. The
dash-double-dotted line (green) represents a calculation based on
the cluster formulation; however, the NN t matrix for the core
optical potential is modified by a mean field obtained from a HFB
[20,21] calculation. The short-dashed line (pink) represents the same
calculation, but neglects correlation of the clusters. The data are taken
from Refs. [4,28].

differential cross section is not very sensitive to the explicit
cluster calculation with the exception of the forward angles,
where the cluster calculation gives a lower cross section, in
better agreement with the data. The analyzing power, however,
does not show any improvement though the minimum is
slightly shifted to smaller angles; it stays positive, whereas
the data indicate a negative sign. The folding for the optical

 50

 100

 150

 200

 250

 300

 5  10  15  20  25  30  35

dσ
/d

Ω
 (m

b/
sr

)

c.m. angle (deg)

FIG. 4. (Color online) As Fig. 3 except that the angular distribu-
tion of the differential cross section (dσ/d) is plotted with a linear
scale. The data are from Ref. [28].
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potentials with the COSMA density are carried out with the
free NN t matrix as input. As has been shown in Ref. [24]
for a variety of heavier nuclei, at energies lower than ∼150
MeV projectile energy, the free NN t matrix experiences a
modification due to the nuclear medium, which can be treated
as an additional force represented by a mean field acting on
the two active nucleons during the scattering process [23]. The
dash-double-dotted (green) curves in Figs. 3 and 4 include a
modification of the free NN t matrix through a HFB mean field
for the α cluster only. One advantage to this cluster paradigm
is that the calculation can utilize the influence of a mean field
on the free NN interaction where it is most appropriate, i.e.,
for the strongly bound α core. The results of this calculation
produce an analyzing power that turns negative at 60◦ and
captures the shape of the last two measured angles. However, it
still overpredicts the measured analyzing power at the smaller
angles. The overall shape of the differential cross section is not
modified. Only for the very forward angles is the cross section
slightly lowered compared to the cluster calculation with the
COSMA density, as can be seen in Fig. 4.

It is further instructive to investigate the importance of
the correlation density ρcorr(Pj c

) in Eq. (21) for the cluster
optical potential. This can be done by realizing that setting
ρcorr(Pj c

) = 1 omits the correlations. In Figs. 3 and 4 the
dash-double-dotted (green) curve represents the calculation
based on the cluster formulation whereas the short dashed
(pink) line represents the same calculation with the correlation
density set to 1. The effect on the analyzing power, Fig. 3,
is relatively small. However, the differential cross section for
small angles, Fig. 4, shows visible sensitivity. Indeed, one can
conclude that the lowering of the differential cross section
for the forward angles is dominated by the influence of the
correlation density.

The upgrade of the RIKEN facility will in principle allow
measurement of the angular distribution of the analyzing power
for the elastic scattering of 6He at somewhat higher energies.
Thus we want to investigate the predictions for the elastic
scattering observables as functions of the projectile energy
using a cluster ansatz for the optical potential for 6He. As
test energies we choose 100 and 200 MeV/nucleon. First,
we show in Figs. 5 and 6 the angular distributions of the
differential cross section and the analyzing power for proton
scattering off 4He as functions of the momentum transfer. The
calculations for the projectile energy of 200 MeV show that
here an optical potential description of the scattering process
is quite good up to 2.5 fm−1 for both differential cross section
and analyzing power. In Figs. 5 and 6 two calculations are
shown: For the solid line a folding calculation of the optical
potential has been carried out using the free NN t matrix,
whereas for the dashed line a NN t matrix modified by a HFB
mean field has been used. At 200 MeV a folding with the free
NN t matrix is adequate. At the two lower energies, a single
scattering optical potential describes the differential cross
section only up to a momentum transfer of about 1.75 fm−1. For
higher momentum transfers multiple-scattering contributions
are expected to become important. However, only for a
deuteron target have multiple-scattering contributions been
investigated systematically [25,26] over a wide range of
projectile energies. Thus, we can only speculate about the
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FIG. 5. (Color online) The angular distribution of the differential
cross section (dσ/d) for elastic proton scattering off 4He at
projectile energies 71, 100, and 200 MeV as a function of the
momentum transfer. The calculations are performed with an optical
potential based on the Nijmegen I potential [19] for the NN
interaction. For the α core a HFB density according to Refs. [20,21] is
employed. The solid lines (black) show the calculations based on the
free NN t matrix, while the dotted (red) lines are based on calculations
modifying the NN t matrix with a mean field consistent with the HFB
α core. The data are from Refs. [29–32].

increasing importance of multiple-scattering contributions at
higher momentum transfer. The analyzing power at 71 MeV
projectile energy is not well described for small momentum
transfers. This is very likely the reason for our overprediction
of the analyzing power of 6He for small momentum transfer
at this energy [27].
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FIG. 6. (Color online) The angular distribution of the analyzing
power for elastic proton scattering off 4He at projectile energies 71,
100, and 200 MeV as a function of the momentum transfer. The
meaning of the curves is the same as in Fig. 5. The data are from
Refs. [29–32].
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FIG. 7. (Color online) The angular distribution of the differential
cross section (dσ/d) for elastic scattering of 6He at projectile
energies 71, 100, and 200/nucleon as a function of the momentum
transfer. The calculations are performed with optical potential based
on the Nijmegen I potential [19] for the NN interaction. For the solid
(black) line the COSMA density [17] has been used as the single-
particle density. The short-dashed (blue) line incorporated the cluster
structure into the optical potential using the COSMA density for all
clusters. For the dash-double-dotted (green) line the free NN t matrix
has been modified with the HFB mean field. The data are taken from
Refs. [4,28].

In Figs. 7 and 8 we present predictions for elastic
scattering of 6He at 100 and 200 MeV/nucleon. The solid
lines represent the calculations with a single-particle optical
potential, whereas the short-dashed and dash-double-dotted
lines are based on the cluster formulation discussed in Sec. II C.
The short-dashed line uses a free NN t matrix for every

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5

A y

q (fm-1)

[a] (71 MeV) + 1

[b] (100 MeV)

[c] (200 MeV) - 1

FIG. 8. (Color online) The angular distribution of the the analyz-
ing power (Ay) for elastic scattering 6He at projectile energies 71,
100, and 200 MeV/nucleon as a function of the momentum transfer.
The meaning of the lines is the same as in Fig. 7. The data are taken
from Refs. [4,28].
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FIG. 9. (Color online) The angular distribution of the the spin-
rotation function Q for elastic scattering 6He at projectile energies 71,
100, and 200 MeV/nucleon as a function of the momentum transfer.
The meaning of the lines is the same as in Fig. 7.

piece of the optical potential, whereas the dash-double-dotted
line incorporates a NN t matrix modified by a HFB mean-
field potential for the α core. As in the 4He calculations,
at 200 MeV/nucleon the modification of the NN t matrix
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FIG. 10. (Color online) The angular distribution of the differ-
ential cross section dσ/d for elastic proton scattering off 4He
(short-dashed red line) and 6He (dash-double-dotted green line) at
projectile energies 71 (a) and 200 MeV/nucleon (b) as a function
of the momentum transfer. Both calculations are performed with an
optical potential based on the Nijmegen I potential [19] for the NN
interaction, which for 4He (in the 6He case the 4He core) is modified
by the HFB mean field. For the 6He calculations the single-particle
nucleons are described by the COSMA density, and the cluster
ansatz is used. For the 4He calculations the HFB density [20,21] is
employed.

044617-7



S. P. WEPPNER AND CH. ELSTER PHYSICAL REVIEW C 85, 044617 (2012)

-1

-0.5

 0

 0.5

 1

A y

(a) (4He 71 MeV)

(6He 71 MeV) 

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5

A y

q (fm-1)

(b)

(4He 200 MeV)

(6He 200 MeV) 

FIG. 11. (Color online) The angular distribution of the analyzing
power for elastic proton scattering off 4He (short-dashed red line) and
6He (dash-double-dotted green line) at projectile energies 71 (a) and
200 MeV/nucleon (b) as a function of the momentum transfer. The
meaning of the curves is the same as in Fig. 10.

becomes irrelevant. As discussed for the 71 MeV/nucleon
calculations, the cluster model lowers the predictions for
the differential cross section for small momentum transfers
(angles). This feature seems independent of the employed
projectile energy. For the analyzing power at small momentum
transfer, the contribution of the valence neutrons is not large
enough to change the contribution of the α-core part of the
optical potential. For the 100 MeV calculation the modification
of the free NN t matrix through the nuclear medium is still
quite pronounced at ∼2 fm−1 momentum transfer, whereas the
200 MeV/nucleon calculations exhibit very little difference
from each other. In Fig. 9 we show the spin-rotation function
Q for elastic scattering of 6He at the same energies. Obviously,
this observable has no chance of being measured. However,
since it is an independent observable, we consider it instructive
to study whether it exhibits differences similar to the ones in
the analyzing power between a cluster paradigm for the optical
potential and a single-particle optical potential. It is interesting
to note that Q is very insensitive to any of the modifications
introduced, even at 71 MeV/nucleon.

In order to investigate whether the difference of the
observables for elastic scattering of 4He and 6He changes with
increasing energy, we plot in Figs. 10 and 11 the differential
cross sections and analyzing powers for the two nuclei together
at 71 and 200 MeV as functions of the momentum transfer.
One could speculate that when a cluster model for the 6He
nucleus is employed, at higher energies the piece of the optical
potential due to the α core might dominate the observables
(possibly the analyzing power). However, this does not seem to
be the case; the behavior of the differential cross section is very
similar at the two energies. Even the shift of the minima in the
analyzing power between the two nuclei is the same for both
energies, namely, roughly 0.25 fm−1. Obviously, experimental

information will have to decide if a cluster ansatz as presented
here captures a major part of the underlying physics.

IV. SUMMARY AND OUTLOOK

In this work we introduced a cluster formulation for the
optical potential for calculating scattering observables for
elastic scattering of three-body halo nuclei. We first reviewed a
traditional single-particle full-folding optical potential in first
order in the Watson multiple-scattering expansion, and then
showed how one can naturally extend this optical potential
to introduce the cluster structure of a halo nucleus. Here we
concentrate on the 6He nucleus. However, the formulation
we introduced can be further extended to four- or five-
body clusters, e.g., to 8He. For our calculations we used
the density matrix of the three-body cluster orbital shell
model approximation introduced in Refs. [17,18] for the 6He
nucleus. This density matrix is based on single-harmonic-
oscillator wave functions for the s and p shells of 6He and
allows a straightforward calculation of the required correlation
densities needed for the optical potential. The resulting folding
optical potential contains a six-dimensional integration over
internal vector momenta, which is calculated via Monte Carlo
integration.

We calculated the angular distribution of the differential
cross section and the analyzing power at 71, 100, and
200 MeV/nucleon and compared our results with experimental
data at 71 MeV/nucleon [4,28]. We find that the cluster model
lowers the cross section for the small angles and brings it
closer to the data. Although we do not describe the very
small analyzing power at the small angles, we find that the
cluster formulation together with a “hybrid” ansatz, in which
the optical potential for the α core is calculated with a NN
t matrix modified by a mean field of the α particle is able
to produce a negative analyzing power at larger angles, as
suggested by the data. Our predictions for the higher energies
indicate that the lowering of the differential cross section for
small momentum transfers (angles) using a cluster paradigm
remains visible. The cluster ansatz for the optical potential
continues to predict a negative analyzing power at larger
momentum transfer. Eventually experimental information
should be become available to see if these predictions capture
the bulk of the physics of the reaction at higher energies,
or if there are additional theoretical pieces necessary to
understand this reaction, preferably as a function of scattering
energy.
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APPENDIX A: FIRST-ORDER FULL-FOLDING
OPTICAL POTENTIAL

In this Appendix we will give explicit steps for arriving
at the “traditional” first-order Watson optical potential of our
calculations. The complete derivation is given in Ref. [15];
however, for the convenience of the reader we want to give a
shorter summary here.

Using the δ function of Eq. (13), which determines the
conservation of the absolute momentum for the center-of-mass
frame of the nucleus and the relative momenta of the individual
nucleons in the target, we obtain for the optical potential of
Eq. (12)

〈τ̂01〉 ≡ 〈k′|〈φA|τ̂0i(E)|φA〉|k〉

=
∫ A∏

j=1

dk′
j

∫ A∏
l=1

dkl 〈φA|ζ ′
1ζ

′
2ζ

′
3ζ

′
4 · · · ζ ′

A−1〉

× δ(p′ − p′
0) 〈k′k′

1|τ̂01(E)|kk1〉

×
A∏

j=2

δ(k′
j − kj )δ(p − p0) 〈ζ 1ζ 2ζ 3ζ 4 · · · ζA−1|φA〉,

(A1)

where p = ∑A
i=1 ki , p′ = ∑A

i=1 k′
i . Without losing generality,

we consider for now that nucleon 1 is the active nucleon in
the target. The additional δ function arises because the target
nucleons are independent of τ̂01. A Galilean-invariant choice
of internal variables are the Jacobi coordinates,

k1 = ζ 1 + p
A

,

k2 = ζ 2 − ζ 1

A − 1
+ p

A
,

k3 = ζ 3 − ζ 1

A − 1
− ζ 2

A − 2
+ p

A
,

(A2)
...

kA = ζA −
A−1∑
j=1

ζ j

A − j
+ p

A
.

In first order, which is the concern of this work, we need only
the momentum of the struck nucleon, namely, k1 = ζ 1 + p

A
.

A change in integration variables from absolute to relative
momenta in Eq. (A1) results in

〈τ̂01〉 =
∫ A−1∏

j=1

dζ ′
j dp′

∫ A−1∏
l=1

dζ ldp〈φA|ζ ′
1ζ

′
2ζ

′
3ζ

′
4 · · · ζ ′

A−1〉

× δ(p′ − p′
0)

〈
k′, ζ ′

1 + p′

A

∣∣∣∣ τ̂01(E)

∣∣∣∣k, ζ 1 + p
A

〉

×
A−1∏
j=2

δ(ζ ′
j − ζ j )δ

(
A − 1

A
p′ − ζ ′

1 − A − 1

A
p + ζ 1

)

× δ(p − p0)〈ζ 1ζ 2ζ 3ζ 4 · · · ζA−1|φA〉. (A3)

Equation (A3) indicates that one needs only the single-particle
density matrices ρ(ζ ′

1, ζ 1), describing the dependence of one
particle’s motion relative to the remaining (A − 1) core, and

given in Eq. (14). Inserting ρ(ζ ′
1, ζ 1) into Eq. (A3) and

evaluating δ(p − p0) and δ(p′ − p′
0) leads to

〈τ̂01〉 =
∫

dζ ′
1

∫
dζ 1

〈
k′ ζ ′

1 + p′
0

A

∣∣∣∣ τ̂01(E)

∣∣∣∣k ζ1 + p0

A

〉

× ρ(ζ ′
1, ζ 1)δ

(
A − 1

A
p′

0 − ζ ′
1 − A − 1

A
p0 + ζ 1

)
.

(A4)

Inserting the NN τ̂01 matrix of Eq. (15) and taking advantage
of its conservation of the c.m. momentum, Eq. (A4) becomes

〈τ̂01〉 =
∫

dζ ′
1

∫
dζ 1δ(k′ + p′

0 − k − p0)

×
〈

1

2

(
k′ − ζ ′

1 − p′
0

A

)∣∣∣∣ τ̂01(E)

∣∣∣∣1

2

(
k − ζ1 − p0

A

)〉

× ρ(ζ ′
1, ζ 1)δ

(
A − 1

A
p′

0 − ζ ′
1 − A − 1

A
p0 + ζ 1

)
.

(A5)

The first δ function describes the overall momentum conser-
vation, which can be used to reduce the integral of Eq. (A5)
to three dimensions, i.e., the integral given in Eq. (16). In
our practical calculations we use the variables q, K, and
P, which are given in Eq. (18). The inverse relations are
given by

k = K − 1

2
q, k′ = K + 1

2
q,

(A6)

ζ 1 = P + A − 1

2A
q, ζ ′

1 = P − A − 1

2A
q.

Substituting those variables into Eq. (16) leads to

〈τ̂01〉 =
〈

1

2

(
K − P + 2A − 1

2A
q − p′

0

A

) ∣∣∣∣τ̂01(E)

×
∣∣∣∣1

2

(
K − P − 2A − 1

2A
q − p0

A

) 〉

× ρ

(
P − A − 1

2A
q, P + A − 1

2A
q
)

. (A7)

Here we dropped the overall momentum-conserving δ func-
tion, which is carried out when evaluating the cross section.
Since the preceding derivation based on the projectile particle
0 and active target particle 1 is general, and thus can be
repeated for all N target neutrons and Z target protons, one
obtains as the final expression for the full-folding optical
potential

Uel

(
K + 1

2
q, K − 1

2
q
)

=
∑

i=N,P

∫
dP

〈
1

2

(
K − P + 2A − 1

2A
q − p′

0

A

) ∣∣∣∣τ̂0i(E)

×
∣∣∣∣1

2

(
K − P − 2A − 1

2A
q − p0

A

) 〉

× ρi

(
P − A − 1

2A
q, P + A − 1

2A
q
)

. (A8)
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From Eq. (A8) we can read off the momenta of the NN t matrix
as

kNN = 1

2

(
K − P − 2A − 1

2A
q − p0

A

)
,

(A9)

k′
NN = 1

2

(
K − P + 2A − 1

2A
q − p′

0

A

)
.

For numerical calculations we prefer

qNN = k′
NN − kNN = k′ − k = q,

(A10)

KNN = 1

2

(
k′

NN + kNN
) = 1

2

(
K − P − p0 + p′

0

2A

)
.

Since q is a momentum transfer, it is invariant under Galilean
transformations, i.e., qNN = q. Rewriting the optical potential
in terms of q and K, we obtain

Uel(q, K)

=
∑

i=N,P

∫
dPτ̂0i

(
q,

1

2

(
K − P − p0 + p′

0

2A

)
, E

)

× ρi

(
P − A − 1

2A
q, P + A − 1

2A
q
)

. (A11)

Rewriting Eq. (A11) in variables of the NA c.m. system
requires that k + p0 = k′ + p′

0 = 0. Thus, the dependence of
p0 drops out, and one obtains for the full-folding single-particle
optical potential of Eq. (19)

Uel(q, K)

=
∑
i=n,p

∫
dPτ̂0i

(
q,

1

2

(
A + 1

A
K − P

)
, E

)

× ρi

(
P − A − 1

2A
q, P + A − 1

2A
q
)

. (A12)

APPENDIX B: TRANSFORMING THE
OPTICAL POTENTIAL

We first want to calculate the optical potential for a nucleon
scattering off a cluster i in the c.m. frame of the projectile (e.g.
cluster i could be the α particle within the 6He nucleus). Let us
use the subscript Ci to denote that frame, whereas quantities
without subscripts should be interpreted as given in the A + 1
c.m. frame. The overall conservation of momentum for the
c.m. cluster frame assumes

kCi
+ k1Ci

= k′
Ci

+ k′
1Ci

≡ 0, (B1)

where kCi
is the projectile and k1Ci

is a typical target nucleon
inside the nucleus, within the ith cluster.

Starting with the definition of the density given in Eq. (A2)
in the A + 1 frame,

ζ 1 = k1 − p
A

,

this becomes in a specific cluster frame

ζ 1 = k1Ci
− pCi

A
. (B2)

The momentum ζ 1 does not carry a cluster subscript since it is
defined in the traditional intrinsic frame of the single-particle
density. Equation (B2) defines how this intrinsic variable is
related via a Galilean transformation to the cluster frame.
Using the notation of Eq. (20), this can be broken up into
the active particle and the spectator,

ζ 1 = k1Ci
− piCi

+ ps iCi

A
. (B3)

In this center-of-mass frame one has kCi
= −piCi

, where kCi

is the momentum of the projectile in the cluster frame. Then
using Eq. (B3), this result, and the understanding that the
spectator momentum does not change during the collision, we
can calculate the difference

ζ 1 − ζ 1
′ = (

k1Ci
− k′

1Ci

) −
(

k′
Ci

− kCi

A

)
= A − 1

A
q,

(B4)

remembering that q, the relative momentum transfer, is
invariant in all frames. If we allow the same definition for
the average momentum of the target nucleon, Eq. (18),

P ≡ 1
2 (ζ1

′ + ζ 1), (B5)

then the inverse equations of Eq. (A6),

ζ 1 = P + A − 1

2A
q, ζ1

′ = P − A − 1

2A
q, (B6)

have the same form. This makes sense, since q is invariant and
P is written in the intrinsic frame of the nucleus.

The momentum arguments of the τ̂0i matrix are defined
in Eq. (A9) for the A + 1 frame. However, we also need to
redefine them in the cluster frame Ci . Rewriting Eq. (A9) and
using Eqs. (B3) and (B6), we can write the relative momentum
between the projectile, kCi

, and the struck nucleon, k1Ci
, as

kCi
− k1Ci

= kNNCi
= kCi

− ζ 1 + kCi
− ps iCi

A
. (B7)

The primed momentum is similarly given as

k′
Ci

− k′
1Ci

= k′
NNCi

= k′
Ci

− ζ ′
1 +

k′
Ci

− p′
s iCi

A
. (B8)

The difference between Eqs. (B7) and (B8) gives the momen-
tum transfer q as expected. We can define the sum of the
momenta of the τ̂0i matrix as the sum of Eqs. (B7) and (B8) as

KNNCi
= kNNCi

+ k′
NNCi

2
= A + 1

2A

(
kCi

+ k′
Ci

)

− 1

2
(ζ 1 + ζ 1

′) − ps iCi

A
, (B9)

remembering that the spectator momentum does not change
during the collision. In the spirit of Eq. (18) we can define the
sum of the cluster momenta as KCi

= 1
2 (kNNCi

+ k′
NNCi

) and
then rewrite Eq. (B9) as

KNNCi
= kNNCi

+ k′
NNCi

2
= A + 1

A
KCi

− P − ps iCi

A
. (B10)

Examining Eqs. (A9) through (19), we see that the momentum
argument KNN of the τ̂0i matrix has picked up an extra term
involving the spectator momentum in the cluster frame. The
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rationale for this is simple: the struck nucleon is acted upon
in a specific cluster, but the total density contains both cluster
and spectators.

We can rewrite KNN in terms of the correlation momentum
Pj i

by multiplying KNNCi
by the number of nucleons in the

ith cluster, Ai ,

AiKNNCi
= Ai

A + 1

A
KCi

− AiP − Ai

ps iCi

A
. (B11)

After some manipulation as well as using the definition of Pj i

found in Eq. (21), one finds

AiKNNCi
= (Ai + 1)KCi

− AiP + Pj i
, (B12)

so a cleaner definition of the average momentum can be written
as

KNNCi
= Ai + 1

Ai

KCi
− P + Pj i

Ai

. (B13)

Thus, for a specific cluster frame we can write the optical
potential as

Uel(q, K)Ci
=

∑
t=n,p

∫
dP dPj i

ρcorr
(
Pj i

)

× τ̂0t

(
q,

1

2

(
Ai + 1

Ai

KCi
− P + Pj i

Ai

)
, E

)

× ρi

(
P − A − 1

2A
q, P + A − 1

2A
q
)

. (B14)

In the case of 6He this is the optical potential for a proton on the
α core (or for the proton projectile on one of the neutrons). We
have not worried about the correlation density transformation
since this is based on a relative momentum Pj i

and is thus
invariant during a frame transformation, as are P and q, the
variables of the traditional single-particle density.

In order to be useful, Eq. (B14) must be transformed from
each individual cluster frame back to the nucleon-nucleus
frame, so that it can be summed with the other clusters
that make up the target nucleus. Scattering observables can
then be calculated in the c.m. frame of the A + 1 system
following Eq. (24). As it stands, each cluster has its own
unique c.m. frame, and thus they cannot be summed until
they are transformed back to the unique A + 1 c.m. frame.
The only argument of concern, because it is not invariant, is
the momentum KCi

in the τ̂0i operator.
Employing conservation of momentum in both frames, we

can define how the cluster frame relates to the nucleon-nucleus
A + 1 frame. Setting relative velocities equivalent in the two
different frames leads to

Aik − pi = AikCi
− piCi

= (Ai + 1)kCi
, (B15)

where the last equivalence is given because in the c.m. of
the cluster frame kCi

= −piCi
. A second relation between the

two frames is gained by examining the Jacobi momentum of
Eq. (20) in the A + 1 frame,

pj i
= 1

A
(Asipi − Aips i). (B16)

Rearranging gives

pi = Ai

A
(pi + ps i) + pj i

= −Ai

A
k + pj i

, (B17)

where again the last equivalence is found by recognizing
that in the A + 1 frame the c.m. momentum is defined as
k + pi + ps i = 0. Inserting the result for pi from Eq. (B17)
into Eq. (B15), we can after some manipulation compare the
momenta between the two frames:

k = A

A + 1

1

Ai

[
(Ai + 1)kCi

+ pj i

]
. (B18)

The same relationship can be developed for the primed
momentum,

k′ = A

A + 1

1

Ai

[
(Ai + 1)k′

Ci
+ p′

j i

]
. (B19)

Adding these two equations gives

K = A

A + 1

1

Ai

[
(Ai + 1)KCi

+ Pj i

]
. (B20)

This relation is the transformation prescription for K from the
cluster frame to the A + 1 frame. Solving for KCi

in Eq. (B20)
and plugging it into the optical potential in the cluster frame of
Eq. (B14), we are then able to express this potential completely
using invariants or nucleon-nucleus A + 1 variables,

Uel(q, K)Ci
=

∑
t=n,p

∫
dP dPj i

ρcorr
(
Pj i

)

×τ̂0t

(
q,

1

2

(
A + 1

A
K − P

)
, E

)

× ρi

(
P − A − 1

2A
q, P + A − 1

2A
q
)

. (B21)

This is Eq. (24) from Sec. II C for the cluster optical potential
in the nucleon-nucleus frame.

APPENDIX C: CORRELATION DENSITY FOR THE
CLUSTER APPROACH

The cluster approach developed in this work uses a
correlation density relating the clusters, which is given in
Eq. (21),

ρcorr
(
pj1 , p′

j1

)≡
∫ Nc∏

l=2

dp′
j l

∫ Nc∏
m=2

dpj m

〈
φA

∣∣p′
j 1

p′
j 2

· · · p′
j Nc

〉

× 〈
pj 1pj 2 · · · pj Nc

∣∣φA

〉
. (C1)

This density correlates the momenta between the various
clusters and elevates the this approach beyond the independent-
single-particle picture. For the explicit derivation, let us start
from the definition given in Eq. (20):

pj i
= 1

A
(Asipi − Aips i). (C2)

This definition is invariant from the frame of consideration.
Thus it can be applied in the frame of the intrinsic density,
where it describes the difference in momenta between cluster
i and its analogous spectator particles, ps i , in the laboratory
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frame. In this same frame the total momentum between active
and spectator particles should add up to zero, at least before the
collision. Thus, pi = −ps i , and therefore pj i

= pi and p′
ji =

pi − q. Again, in the intrinsic frame of the nucleus one has

Pj i
=

pj i
+ p′

ji i

2
= pj i

− q
2
. (C3)

For the 6He nucleus consisting of three clusters, we can
write the correlation density as

ρcorr
(
pj 1, p′

j 1

)

≡
∫

d3psi 1d(ẑ · p̂i)d
3p′

si 1
d3psi 2d

3p′
si 2

×�
(
psi 1

)
�

(
psi 2

)
�

(
p′

si 1

)
�

(
p′

si 2

)
× fcorr

(
�s1 ,�s2

)
δ
(
pi − psi 1 − ipsi 2

)
× δ

(
psi 1 − p′

si 1

)
δ
(
psi 2 − p′

si 2

)
, (C4)

where the two spectator momenta are labeled psi 1 and psi 2.
The integration variables are over the momenta (before and
after the scattering) of the two spectators. We also integrate
over the relationship of the active particle’s momentum to
the quantization axis of 6He. The first momentum-conserving
δ function preserves the c.m. momentum (the last spectator
therefore need not be integrated over), the momenta of active
and spectator particles must add up to zero. The remaining
two δ functions require that the momenta of the spectator
clusters do not change. In practice, Eq. (C4) is for 6He a
four-dimensional integral. In this work, the wave functions are
the single-particle wave functions, where the momentum is
converted to single-particle form by simply dividing by the
cluster mass. If one had a density defined using both a cluster
and a single-particle paradigm, then this formulation would
allow for increased dynamical detail. The angular correlation
function fcorr gives the correlation weighting, assuming that
the spectator neutrons are in a given orbital shell, where
(�s1 ,�s2 ) are the solid angles subtended by the spectator
valence nucleons, in this case the p 3

2
shell.

For calculation the correlation density we assume, that the
two valence neutrons are in the p 3

2
shell, and the total angular

wave function can be written as

ψp 3
2

= 1
2 (1 − P12)Y

3
2

1
2

1 (ζ̂ 1)Y
3
2 − 1

2
1 (ζ̂ 2)

+ 1
2 (1 − P12)Y

3
2

3
2

1 (ζ̂ 1)Y
3
2 − 3

2
1 (ζ̂ 2), (C5)

whereYjmj

l (ζ̂ ) are the traditional spin spherical harmonics and
ζ is the single-particle intrinsic momentum. The antisymmetric
form of the wave function with respect to the two neutrons
is given by the operator (1 − P12). The correlation function
fcorr(�s1 ,�s2 ) defined in Eq. (C4) can, with the help of
Eq. (C5), be defined as

fcorr = ψ∗
p 3

2

(ζ̂ 1, ζ̂ 2)ψp 3
2
(ζ̂ 1, ζ̂ 2). (C6)

This defines the angular probability for the two spectator
neutrons when the α core is active. This local correlation
function is also used as the approximate probability when
a neutron is the active particle, i.e., when the full calculation
is in fact off shell. The α core has an unweighted angular
distribution, approximated by the COSMA density as being
completely in the s orbital.

Explicitly inserting the spherical harmonics into Eq. (C5),
we obtain

fcorr = 1

32π2
[2 cos θ1 cos θ2 − sin θ1 sin θ2 cos(φ1 − φ2)]2

+ 1

32π2
[sin2 θ1 cos2 θ2 + cos2 θ1 sin2 θ2

− sin 2θ1 sin 2θ2 cos(φ1 − φ2)]. (C7)

The first term is the result if the total spin projection of the two
neutrons add up to zero and the second term is due to the total
spin projection being 1.

Once the four-dimensional integral for the cluster cor-
relation, Eq. (C4), is calculated, it is normalized to 1 and
then used to augment the definition of the optical potential.
De facto, it constrains the momentum of the c.m. of the active
cluster relative to the spectators.
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