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Background: The repulsive Coulomb force poses severe challenges when solving the three-body problem for
(d,p) reactions on intermediate mass and heavy nuclei. Recently, a new approach based on the Coulomb-distorted
basis in momentum space was proposed.
Purpose: In this work, we demonstrate the feasibility of using the Coulomb-distorted basis in momentum space
for calculating matrix elements expected in a wide range of nuclear reactions.
Method: We discuss the analytic forms of the Coulomb wave function in momentum space. We analyze the
singularities in the Coulomb-distorted form factors and the required regularization techniques. Employing a
separable interaction derived from a realistic nucleon-nucleus optical potential, we compute and study the
Coulomb-distorted form factors for a wide range of cases, including charge, angular momentum, and energy
dependence. We also investigate in detail the precision of our calculations.
Results: The Coulomb-distorted form factors differ significantly from the nuclear form factors except for the
very highest momenta. Typically, the structure of the form factor is shifted away from zero momentum due to
the Coulomb interaction. Unlike the Yamaguchi forms typically used in three-body methods, our realistic form
factors have a short high-momentum tail, which allows for a safe and efficient truncation of the momentum grid.
Conclusions: Our results show that the Coulomb-distorted basis can be effectively implemented.
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I. INTRODUCTION

Nuclear reactions are an important probe into the structure
of unstable nuclei. In particular, light probes offer a diverse
range of applicability, allowing us to explore shell evolution,
collectivity, and electromagnetic processes and to extract
astrophysical rates that are not directly accessible [1]. Among
the light probes, deuteron-induced reactions are particularly
attractive from an experimental perspective (since deuterated
targets are readily available and cross sections are often
advantageous), but also from a theoretical perspective, because
the scattering problem can then be reduced to an effective
three-body problem [2]. Although deuteron-induced single-
nucleon transfer (d,p) reactions have been traditionally used to
study shell structure in stable nuclei, experimental techniques
have been developed to apply the same approaches to exotic
beams (e.g., [3]). Deuteron-induced (d,p) or (d,n) reactions
in inverse kinematics are also useful for extracting neutron
or proton capture rates on unstable nuclei of astrophysical
relevance (e.g., [4]). Given the many ongoing experimental
programs worldwide using these reactions, a reliable reaction
theory for (d,p) reactions is critical.
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One of the most challenging aspects of solving the three-
body problem for nuclear reactions is the repulsive Coulomb
interaction. While the Coulomb interaction for light nuclei
is often a small correction to the problem, this is certainly
not the case for intermediate-mass and heavy systems [5].
Over the last decade, many theoretical efforts have focused
on advancing the theory for (d,p) reactions (e.g., [6,7])
and testing existing methods (e.g., [2,8,9]). Currently, the
most complete implementation of the theory is provided by
the Lisbon group [10], who solve the Faddeev equations
in the Alt, Grassberger, and Sandhas (AGS) [11] formulation.
The method introduced in [10] treats the Coulomb interaction
with a screening and renormalization procedure as detailed
in [12,13]. While the current implementation of the Faddeev-
AGS equations with screening is computationally effective for
light systems, as the charge of the nucleus increases technical
difficulties arise in the screening procedure [5]. Indeed, for
most of the new exotic nuclei to be produced at the Facility
of Rare Isotope Beams, the current method is not adequate.
One then has to explore solutions to the nuclear reaction
three-body problem where the Coulomb problem is treated
without screening.

In Ref. [6], a three-body theory for (d,p) reactions is
derived with explicit inclusion of target excitations, where
no screening of the Coulomb force is introduced. Therein,
the Faddeev-AGS equations are cast in the Coulomb-distorted
partial-wave representation, instead of the plane-wave basis.
In [6], a first term of this basis (for l = 0) is derived for a
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Yamaguchi interaction, for which there is an analytic solution.
For a practical implementation of the theory of [6], one needs
to be able to accurately compute the Coulomb-distorted form
factors used in the theory. In this work we generalize the
approach introduced in [6] to arbitrary angular momenta and
for nonanalytic complex interactions. After the form factors
have been obtained, the full Faddeev-AGS equations should be
solvable without screening, and from the resulting t matrices,
the transfer cross sections can be obtained.

Coulomb-distorted form factors in momentum space have
been considered before [14–16]. In Ref. [14] the authors
discuss the schematics on how to include the Coulomb
interaction in nuclear reactions, making use of the closed
analytic form for the Coulomb wave function in momentum
space. More details on the mathematical difficulties can be
found in [15] and a couple of practical calculations for
proton-proton scattering are available in [16].

The Padova group [17,18] introduced a rank-1 separable
interaction to represent the nuclear force up to a few MeV and
made use of the Coulomb-distorted basis to compute proton
elastic scattering on light nuclei. Our approach has similarities
with the work of the Padova group [17,18]. However, whereas
that group uses low-rank real Yamaguchi forms, our conviction
is that the nuclear form factors should reflect the density
distribution of the nucleus. Our implementation can handle
nonanalytic forms of the separable interactions, and our
applications make use of the separable complex nuclear
form factors developed in [19]. In that work, a separable
representation of a global realistic nucleon-nucleus optical
potential, of Woods-Saxon form, is performed by using a
generalization of the Ernst, Shakin, and Thaler (EST) scheme
for non-Hermitian interactions. Since we are interested in
processes around tens of MeV, a rank-1 separable interaction
is seriously insufficient (note that in [19] rank-5 interactions
were required for some partial waves). Because our ultimate
goal is to insert this basis in the Faddeev-AGS equations,
particular attention is paid to the computational efficiency of
the methods.

Expectation values with Coulomb wave functions in mo-
mentum space are also considered in Ref. [20]. Their calcu-
lations are performed in three dimensions, instead of using a
partial-wave representation. Furthermore, the singularity that
occurs when integrating over a Coulomb wave function is not
explicitly treated on the real axis, but rather on a path in the
complex plane. The value on the real axis is then obtained by an
iterative procedure based on continued fractions. As discussed
in Sec. II, and in contrast with [20], in our approach we use
partial wave decomposition as well as integration along the
real axis.

In this work, we will discuss the challenges of imple-
menting the Coulomb-distorted basis in momentum space
for the realistic nucleon-nucleus case. In Sec. II, we provide
the theoretical framework with supplementary information
gathered in Appendices A and B. Coulomb-distorted form
factors are discussed in Sec. III, where we first show results
for the rank-1 Yamaguchi test case (Sec. III A), followed by
a detailed study of the Coulomb-distorted form factors for
realistic cases (Sec. III B). Our results cover a wide variety
of cases, including charge dependence, angular momentum

dependence, as well as incident energy dependence. Finally,
in Sec. IV, we summarize our findings and discuss our
results.

II. THEORETICAL FRAMEWORK

In order to treat charged-particle scattering in momentum
space without employing a screening procedure for the
Coulomb force, it is possible to formulate the scattering
problem in a momentum-space Coulomb basis instead of
a plane-wave basis. This was proposed in Ref. [6] for the
generalized Faddeev-AGS equations in which two of the
three particles have charge. In order for such an approach
to be numerically practical, one needs reliable techniques to
calculate expectation values in this basis.

Thus, the starting point is the analytic expression for the
Coulomb wave function in momentum space, which, after a
partial-wave decomposition, can be written as (see [21] and
Appendix A)

ψC
l,p(q) = −2π eηπ/2

pq
lim

γ→+0

d

dγ

{[
q2 − (p + iγ )2

2pq

]iη

× (ζ 2 − 1)−i η
2 Q

iη
l (ζ )

}

. (1)

Here, p is the magnitude of a fixed asymptotic momentum
and ζ = (p2 + q2 + γ 2)/2pq. The Sommerfeld parameter is
given as η = Z1Z2e

2µ/p, where Z1 and Z2 are the charges
of the two bodies involved and µ is the reduced mass
of the two-body system under consideration. The spherical
function Q

iη
l (ζ ) in Eq. (1) can be expressed in terms of

hypergeometric functions 2F1 [14]; however, care must be
taken in its evaluation, since there are specific limits of validity
of the various expansions. Specific difficulties together with
the expressions implemented in this work are discussed in
detail in Appendix A.

When carrying out calculations in a momentum-space
Coulomb basis, it is necessary to evaluate matrix elements
of operators in this basis. In general, such operators can be
functions of different momenta p and p′ related to the bra-
and ket basis vectors. When expressing the Faddeev-AGS
equations in the Coulomb basis as in Ref. [6], the operators
for the interactions in the two-body subsystems are assumed
to be of separable form. In this case, the evaluation of
matrix elements consists of integrals over the Coulomb wave
function and a smooth function (real or complex valued)
of a single momentum representing the nuclear operator
(form factor).

These nuclear form factors should be chosen according to
the physical properties of the two-body system under consid-
eration. While for the neutron-proton interaction traditionally
a superposition of Yamaguchi form factors is used [22,23],
one cannot expect the same form to be valid for describing
the nucleon-nucleus interaction. Indeed, phenomenological
optical potentials have Woods-Saxon forms. Recently, we
developed separable representations for optical potentials
based on a generalization of the EST scheme for complex
potentials [19]. These representations of up to rank 5 for nuclei

014615-2



COULOMB PROBLEM IN MOMENTUM SPACE WITHOUT . . . PHYSICAL REVIEW C 90, 014615 (2014)

as heavy as 208Pb are phase equivalent to the optical potentials
based on Woods-Saxon parametrizations (in our case the CH89
global phenomenological optical potential [24]).

The separable partial-wave t-matrix operator for a fixed
energy E given in Ref. [19] has the form

tl(E) =
∑

i,j

u
∣∣fl,kEi

〉
τij (E)

〈
f ∗

l,kEj

∣∣u, (2)

where fl,kEi
is the unique regular radial wave function

corresponding to a complex potential u and asymptotic energy
Ei = !2k2

Ei
/(2µ) (where µ is the reduced mass), and f ∗

l,kEi

is the unique regular radial wave function corresponding
to u∗. This choice is necessary to preserve time-reversal
symmetry in case of complex potentials, as discussed in [19].
Evaluating its momentum-space matrix elements ⟨p|tl(E)|p′⟩
in a plane-wave basis gives the nuclear form factors

⟨p|u
∣∣fl,kE

〉
= tl(p,kE ; EkE

) ≡ ul(p),
(3)〈

f ∗
l,kE

∣∣u|p′⟩ = tl(p′,kE ; EkE
) ≡ ul(p′),

where the tl(p,kE ; EkE
) are the half-shell two-body t matrices

obtained as a solution of a momentum-space Lippmann-
Schwinger equation with the complex potential u.

The corresponding Coulomb-distorted form factors are
obtained by replacing the plane-wave basis state by a Coulomb
basis state |ψC

l,p⟩, leading to

〈
ψC

l,p

∣∣u
∣∣fl,kE

〉
=

∫ ∞

0

dq q2

2π2
ul(q)ψC

l,p(q)⋆ ≡ uC
l (p), (4)

〈
f ∗

l,kE

∣∣u
∣∣ψC

l,p

〉
=

∫ ∞

0

dq q2

2π2
ul(q) ψC

l,p(q) ≡ uC
l (p)†. (5)

When η → 0, Eqs. (4) and (5) tend to Eq. (3).
Equations (4) and (5) are a generalization of the form

introduced in Ref. [6] to account for complex interactions.
In [6], uC

l (p) was obtained for l = 0 and a rank-1 real
Yamaguchi interaction. In that case, an analytic expression
for the integral of Eq. (4) can be derived. We will mostly
concentrate on presenting results obtained with the complex
optical potentials developed in [19]. For the sake of numeri-
cally testing our approach, we will also present calculations
based on Yamaguchi-type form factors.

The main challenge in computing the integrals of Eq. (4) is
the oscillatory singularity in the integrand for q = p, which is
of the form

S(q − p) = lim
γ→+0

1
(q − p + iγ )1+iη

. (6)

This type of singularity cannot be numerically evaluated
by using the familiar principal value subtractions but rather
needs to be treated by using the scheme of Gel’fand and
Shilov [25], as proposed in [6,14]. In Appendix B, we discuss
the nature of the singularity and present a generalization of
the regularization scheme of [6] adequate for complex form
factors, a critical point in this work. The essence of the
Gel’fand and Shilov scheme is to subtract as many terms as
needed of the Laurent expansion in a small region around the
pole so that the oscillations around the pole become small, and
the integral becomes regular. We want to point out that our

numerical calculations are entirely performed along the real
axis, in contrast to the approach chosen in Ref. [20].

III. THE COULOMB-DISTORTED FORM FACTORS

To our knowledge, this work represents the first attempt
to numerically obtain Coulomb-distorted matrix elements for
realistic nucleon-nucleus interactions where the nucleus has
a relatively large charge. Given the challenge of accurately
calculating the partial-wave Coulomb wave functions as well
as handling their oscillating singularity, it is critical to demon-
strate the numerical accuracy of our computations uC

l (p) of
Eq. (4). For this reason we first study the Coulomb-distorted
nuclear form factors for the separable Yamaguchi interaction
as used in Refs. [6,18] before turning to form factors derived
from Woods-Saxon interactions. In all our final results below,
we used the two-term regularization technique of Appendix B.

A. Tests with a Yamaguchi form factor

Using a Yamaguchi form factor as a test case has the
advantage that calculations can be performed not only nu-
merically but also semianalytically, in our case using the
MATHEMATICA R⃝ [26] software. The Coulomb-distorted form
factors uC,Y

l (p), calculated as an integral over the Coulomb
wave function given in Eq. (1), and the Yamaguchi form
factor from [6] are depicted in Fig. 1, where our numerical
results (labeled FortY) are compared with those produced by
MATHEMATICA R⃝ [26] (labeled MathY). The top panels (a) and
(b) concern protons on 12C and the bottom panels (c) and (d)
refer to protons on 208Pb. On the left (right) we show the real
(imaginary) parts of uC,Y

l (p). Both l = 0 and l = 4 are shown.
There are a number of general features that can immediately

be highlighted. The stronger the Coulomb interaction is, the
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FIG. 1. (Color online) The partial-wave Coulomb form factors
uC

l (p) obtained with a Yamaguchi interaction as a function of
the external momentum p for selected angular momenta l. Com-
parison between our numerical evaluation (solid lines) and the
MATHEMATICA R⃝ [26] results (symbols): (a) real part uC

l (p) for
p + 12C; (b) imaginary part of uC

l (p) for p + 12C; (c) real part uC
l (p)

for p + 208Pb; (d) imaginary part of uC
l (p) for p + 208Pb.
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larger the shift of the distribution away from p = 0. This shift is
clearly most pronounced for large-charge targets, such as Z =
82 for 208Pb. As expected, uC,Y

l (p) follows a normal hierarchy;
the higher partial waves decrease in magnitude compared to the
lower partial waves, providing good convergence properties
when computing observables. Since the Coulomb functions
are real functions multiplied by eiσl (see Appendix B 2) and
the Yamaguchi form factor is also a real function of the
momentum p, the real parts of uC,Y

l (p) contain essentially
the same information as the imaginary parts. A characteristic
feature of the Yamaguchi form factors is a slow fall-off for
large momenta, which is a consequence of the behavior of the
Yukawa interaction at r = 0. Thus, Coulomb-distorted form
factors extend out to large momentum (as far as 10 fm−1 in the
case of 208Pb). In order to perform a meaningful comparison
between the numerical and semianalytical calculations, we
concentrate on the behavior of the form factor in the window
p ∈ [0,4] (fm−1), where the obtained uC,Y

l (p) reach their
maximum values. Indeed, as we shall see in Sec. III B, realistic
form factors fall off much faster as a function of p than
the Yamaguchi ones, and in this comparison we prefer to
concentrate on the relevant momentum regions.

Given the numerical difficulties involved in computing
the Coulomb-distorted basis, we would like to address the
accuracy of our calculations. We first compared the accuracy of
our numerical implementation of the Coulomb wave functions
with the corresponding results provided by MATHEMATICA R⃝.
The agreement found was on the order of 10 significant digits.
Next, we compared the accuracy of the integration given by
Eq. (4) and found that our numerical calculation agreed with
the corresponding MATHEMATICA R⃝ calculation for about six
significant figures. As shown in Fig. 1, the Coulomb-distorted
Yamaguchi form factors obtained with our numerical imple-
mentation (lines) agree perfectly with the results obtained
with MATHEMATICA R⃝ (symbols). This demonstrates that our
numerical implementation of the Coulomb wave functions,
the integration, and regularization techniques, as discussed
in Appendix B, provides a reliable method for calculating
form factors involving Coulomb wave functions in momentum
space.

In order to explore the importance of the region around
the singularity, we have performed additional calcula-
tions where we removed a region q ∈ [p − ),p + )] around
the pole q = p from the integral of Eq. (4). In Fig. 2 we show
the fractional contribution from the pole, namely, the absolute
value of the relative difference between the results uC,Y

l (p,)),
obtained by removing the pole region, and the full integral
uC,Y

l (p), i.e., the quantity

D()) =
∣∣uC,Y

l (p) − uC,Y
l (p,))

∣∣
∣∣uC,Y

l (p)
∣∣ , (7)

for fixed values of p. We choose p = 0.6 fm−1 (with center-
of-mass energy Ec.m. = 8.1 MeV) for 12C and p = 1.1 fm−1

(with center-of-mass energy Ec.m. = 7.5 MeV) for 208Pb, as
examples. For each of these values of p, the nuclear form
factor is far from any node. In Fig. 2 the calculations of the
above defined quantity D()) are shown as function of ) for
p+12C in panel (a) and for p + 208Pb in panel (b) for the
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( ∆
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l = 4
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∆ (fm-1)

100

101

102 (b)208Pb

FIG. 2. (Color online) The fractional contribution of the pole
D()) for the Yamaguchi form factors of Fig. 1 at specific momenta:
(a) p + 12C at p = 0.6 fm−1 and (b) p + 208Pb at p = 1.1 fm−1.
Shown are l = 0 (dot-dashed line) and l = 4 (dashed line) partial
waves.

l = 0 (dot-dashed lines) and l = 4 (dashed lines). In case of
12C we find that the relative difference is always around 10%
or larger, independent of the ) used and independent of the
partial wave. As expected, the situation for 208Pb is worse;
discrepancies are about two orders of magnitude for l = 0 and
one order of magnitude for l = 4. The demonstration given in
Fig. 2 emphasizes the importance of the pole region.

B. Coulomb-distorted form factors
for nuclear optical potentials

When considering nucleon scattering off a heavy nucleus,
a rank-1 Yukawa-type interaction is not suitable. Instead, the
effective nucleon-nucleus interaction, usually referred to as the
optical potential, is parametrized with Woods-Saxon forms
and their derivatives (i.e., [24,27,28]). With this in mind, a
separable representation based on Woods-Saxon-type optical
potentials was derived in a generalized EST scheme [19], and
nuclear form factors were obtained for a variety of nuclei.
This separable interaction is better suited to describe the
processes we are interested in. For 48Ca and 208Pb, we use
the nuclear form factors presented in [19], which are based on
the CH89 global optical potential [24]. For 12C, we choose to
compute nuclear form factors based on the Weppner-Penney
phenomenological optical potential [27], which is valid in this
mass region. Table I gives the support points used for the
separable representation of the 12C optical potential presented
in this work. Within the framework of the EST-based separable
potentials, the form factors ul(p) correspond to the half-shell t
matrices calculated at given fixed scattering energies, namely,
the EST support points.

After having established the numerical procedures to
compute Coulomb-distorted form factors using a Yukawa-
type function, we now turn to studying the Woods-Saxon
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TABLE I. EST support points at center-of-mass energies Eki

used for constructing the separable representation of the partial wave
S matrix of the n + 12C system described by the Weppner-Penney
phenomenological optical potential [27].

Partial wave(s) Rank EST support point(s) (MeV)

l = 0,1,2,3,4 4 4, 13, 30, 46
l = 5,6 3 12, 28, 46

n + 12C l = 7,8 2 14, 32
l ! 9 1 28

type form factors. One difference here is that the latter are
only given as tabulated functions, and thus they need to be
interpolated during the integration process. The other is that
the potentials have an imaginary part. The generalization of
the regularization proposed in [6] for complex potentials is
described in detail in Appendix B.

In Figs. 3 and 4 we present the real and imaginary
parts of the nuclear form factor ul(p) (left panels) and the
corresponding Coulomb-distorted nuclear form factors uC

l (p)
(right panels) calculated according to Eq. (4). We show
results for protons on 12C [panels (a) and (b)], 48Ca [panels

(c) and (d)], and 208Pb [panels (e) and (f)] for different
angular momenta. The form factor for 12C corresponds to
the fixed support point Ec.m. = 30 MeV, the one for 48Ca to
the support point Ec.m. = 36 MeV, and the one for 208Pb to
Ec.m. = 36 MeV (except for l = 8, where it is 39 MeV). The
choice of the support points is dictated by the overall quality
of the separable representation of the scattering amplitude for
the corresponding system, and we made sure to use support
points in the same energy range for our illustration.

Let us first turn our attention to the real parts of the
form factors (Fig. 3). At zero momentum, the nuclear form
factors are finite for l = 0 while going to zero as pl for
all higher angular momenta as dictated by the partial-wave
decomposition of the two-body t matrix from which they are
derived. In contrast, the Coulomb-distorted form factors are
zero for l = 0 at p = 0. This is identical to the finding in
Sec. III A and is associated with the existence of a repulsive
barrier at the origin. Comparison of the left and right panels
of Fig. 3 also shows that the Coulomb interaction generally
pushes the structure of the form factors from lower momenta
to higher momenta. In addition, we observe that the heavier
the nucleus, the more structure the corresponding form factors
exhibit. However, it is interesting to note that, for all nuclei
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FIG. 3. (Color online) The real parts of the partial-wave nuclear form factors ul(p) (left panels) and the Coulomb-distorted nuclear form
factors uC

l (p) (right panels) as function of the the external momentum p for selected angular momenta l: (a) ℜeul(p) for n + 12C; (b) ℜeuC
l (p)

for p + 12C; (c) ℜeul(p) for n + 48Ca; (d) ℜeuC
l (p) for p + 48Ca; (e) ℜeul(p) for n + 208Pb; (f) ℜeuC

l (p) for p + 208Pb. The form factors for
12C correspond to the fixed support point Ecm = 30 MeV, that for 48Ca is at a fixed support point Ecm = 36 MeV, while the nuclear form factors
for 208Pb are at a fixed support point Ecm = 36 MeV for l = 0,4 and Ecm = 39 MeV for l = 8.
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FIG. 4. (Color online) Same as Fig. 3, but for the imaginary parts of the nuclear form factors ul(p) (left panels) and Coulomb-distorted
nuclear form factors uC

l (p) (right panels).

under consideration, the nuclear form factor goes to zero
already at 3 to 4 fm−1. This is a property of the underlying
Woods-Saxon ansatz. This is clearly different from the results
shown in Sec. III A for the Yamaguchi-type form factor, which
at those momenta is still near its maximum values. This feature
turns out to be important in the efficiency of our calculations,
since it reduces the required grid sizes for the integration.

The imaginary parts of uC
l (p) exhibit features similar to

the real parts. Because the original optical potentials contain
an important imaginary component, which accounts for the
absorption to all the nonelastic channels in the scattering
process, the magnitude of the imaginary parts shown in Fig. 4
are as relevant as the real parts. This, of course, was not the
case for the Yamaguchi forms factors of Fig. 1. As for the real
parts, the number of partial waves with a significant Im[uC

l (p)]
increases with the size of the system, and, the higher the charge
of the target nucleus, the larger is the momentum shift away
from zero momentum of the structure of the form factor. We
choose to show the form factors only for momenta up to
4.5 fm−1. However, we should point out that, the larger the
charge is, the further out in momenta one has to go before the
Coulomb-distorted form factor approaches the pure nuclear
one within, e.g., three significant figures. In the case of 12C,
this occurs at about 4–5 fm−1, whereas for 48Ca one has to go
out to 5–6 fm−1. For 208Pb, this occurs beyond 8 fm−1.

Since there is a qualitative difference between the Ya-
maguchi form factor studied in Sec. III A and the more
realistic ones for heavy nuclei, we see it warranted to again
carefully study the role of the pole region in the integral of
Eq. (4). We again perform the integration, but we leave out a

region of momenta around the pole q ∈ [p − ),p + )] when
computing the integral. In Fig. 5 we compare the complete
calculation of the real part of the l = 0 Coulomb-distorted
form factor uC

0 (p), for p + 12C, with calculations of the same
integral in which a region ) around the pole at p was removed.
In Fig. 6 we show the identical calculations for the real part of
the l = 0 form factor, but now for the p + 208Pb form factor.
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FIG. 5. (Color online) The real part of the l = 0 Coulomb-
distorted nuclear form factors uC

0 (p) as function of the external
momentum p for 12C at Ecm = 30 MeV. The solid (black) line shows
the full results, while for all other curves an interval of the size )

has been cut out left and right of the pole p while performing the
integration.
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FIG. 6. (Color online) The real part of the l = 0 Coulomb-
distorted nuclear form factors uC

0 (p) as function of the external
momentum p for 208Pb at the fixed support point Ecm = 36 MeV.
The solid (black) line shows the full results, while for all other curves
an interval of the size ) has been cut out left and right of the pole p

while performing the integration.

We find that for large ) (say ) = 0.1 fm−1) the form factor
has little resemblance to the exact one. As ) becomes smaller,
there is an approach to the mean value but with shorter and
shorter periods, a characteristic feature of Fourier transforms.

To obtain some qualitative insight into this behavior, one has
to consider the functional form of the Coulomb wave function
ψC

l,p(q), and particularly its dependence on the Sommerfeld
parameter η. For small η, the Coulomb wave function is
more evenly distributed around the pole q = p and there are
important cancellations. This is the case of p + 12C shown
in Fig. 5. In the case of p + 208Pb, shown in Fig. 6, η is
large and ψC

l,p(q) is much larger for q < p than for q > p.
Consequently, cancellation effects are smaller and one is not
as sensitive to ). As Figs. 5 and 6 clearly demonstrate, it is
of utmost importance to carefully treat the pole region in the
integral of Eq. (4), since major contributions to this integral
come from the region around the pole.

IV. SUMMARY AND DISCUSSION

In this work we developed numerical methods to obtain
the Coulomb-distorted nuclear form factors in momentum
space, which will serve as a basis for Faddeev-AGS three-body
calculations of (d,p) reactions. First, we tested our implemen-
tation for Yamaguchi form factors, which have been widely
used by the few-body community. Our implementations were
compared to results obtained with the MATHEMATICA R⃝ [26]
software and we achieved agreement of at least six significant
figures in the Coulomb-distorted form factors. Next, we
used a multirank separable nuclear interaction built from
phenomenological optical potentials using a generalized EST
scheme. The resulting Coulomb-distorted form factors differed
considerably from those obtained with the Yamaguchi form,
particularly in the momentum tail, which for the realistic
interaction is strongly reduced. The general effect of the
Coulomb force is to shift the structure of the form factors away

from zero momentum. We also considered the dependence
of the resulting Coulomb-distorted form factors on angular
momentum and external momentum, as both are relevant to
the applications we have in mind.

Now that a numerically feasible method has been developed
to calculate Coulomb-distorted nuclear form factors, we need
to think of a test case, preferably in the two-body system,
where we can compare our calculation with an independently
obtained coordinate-space calculation. Calculations of elastic
scattering of protons from nuclei with local as well as
nonlocal folding optical potentials in momentum space have
relied either on screening techniques [29] or on solving the
Lippmann-Schwinger equation in the Coulomb basis [30,31]
to avoid screening. However, the integral equation for elastic
scattering in the momentum-space Coulomb basis for an
arbitrary potential vl(p′,p) leads to a pinch singularity when
both momenta p′ and p approach the on-shell external
momentum at the same time. In Refs. [30,31] this problem
was circumvented by calculating the Coulomb distortions in
coordinate space and then carrying out a Fourier transform to
momentum space.

Inspired by the work of [18] and [32], we considered an
example in which we can compare our momentum calcu-
lation with a corresponding coordinate-space calculation. In
Ref. [18], proton elastic scattering from 12C and 16O is studied
with a rank-1 separable potential. In Ref. [32], proton-proton
(pp) elastic scattering is considered with a separable potential
of rank 2. In both cases Yamaguchi-type form factors are used,
only low angular momenta are calculated, and Yamaguchi
parameters are fitted to describe experimentally extracted
proton phase shifts. The form factors we employed in Sec. III
are derived within a generalized EST scheme [19] and are
essentially the half-shell n − A t matrices calculated from
the CH89 phenomenological global optical potential [24].
If we intend to compare our momentum-space calculation
with a corresponding coordinate-space calculation, we need to
identify situations in which not only on-shell but also off-shell
t matrices of the CH89 and its separable representation are
reasonably close to each other. The off-shell t matrices for
l = 0,1,2,3 obtained with the EST scheme are too different
from those of the original CH89 interaction to be used as
test cases. For this reason, we considered the partial waves
l = 4 through l = 10 for proton elastic scattering from 48Ca
at 38 MeV laboratory kinetic energy, and we used the
formulation that was described in Ref. [32] to compute S
matrices using our Coulomb-distorted momentum-space basis.
For this calculation one needs to integrate over the external
momentum of the Coulomb wave function. Figure 7 shows the
real (a) and imaginary (b) parts of the partial-wave S matrices
corresponding to J = L + 1/2, as a function of angular
momentum. The coordinate-space calculations including the
Coulomb interaction are represented by crosses, while the
results of our momentum-space calculations are given by
pluses. For reference, we also show the coordinate-space
calculation when the Coulomb force is switched off (solid
circles). By comparing the coordinate-space calculation with
and without the Coulomb force, we can see that Coulomb
distortions are still important up to l = 8. In those cases the
momentum-space calculation taking into account Coulomb
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FIG. 7. (Color online) The real (a) and imaginary (b) parts of the
partial-wave S matrix SL+1/2, for the p + 48Ca system obtained from
the CH89 [24] phenomenological optical potential as a function of the
angular momentum l at a projectile incident kinetic energy of 38 MeV.
The solid (green) circles indicate the coordinate-space calculation for
which the contribution due to the Coulomb force is omitted. The
(black) X symbols correspond to the coordinate-space calculation
including the Coulomb force, The (red) + symbols give the
momentum-space calculation based on the separable representation
of the CH89 potential [19] including the Coulomb force.

distortions agrees with the corresponding coordinate-space
calculation. This gives us further confidence that our numerical
calculations of Coulomb-distorted form factors are correct and
reliable.

Since our form factors are half-shell two-body t matri-
ces obtained as solutions of a momentum-space Lippman-
Schwinger equation, they do not contain parameters that can be
adjusted to reproduce the phase shifts as was done in Ref. [32].
If one wanted to apply an EST scheme in order to describe
proton elastic scattering, one would need to start from the
solution of the Lippmann-Schwinger equation, as was done in
Ref. [30], to obtain the Coulomb-distorted half-shell t matrices
which enter an EST scheme. However, elastic proton scattering
is not the focus of this work, and therefore we are satisfied with
the consistency checks for selected situations, as well as the
checks described in Sec. III A.

To our knowledge, this is the first time that Coulomb-
distorted realistic nucleon-nucleus form factors have been
computed in the context of separable interactions. A major
challenge in solving this problem is the nature of the oscilla-
tory singularity due to the momentum-space Coulomb wave
function. We implemented an appropriate method to handle
the singularity and have studied carefully the impact in our
calculations.

Our results demonstrate that we are able to accurately
compute the integrals leading to the Coulomb-distorted form
factors. Now that these challenging form factors have been
obtained, they can be introduced into the Faddeev-AGS
equations to solve the three-body problem without resorting
to screening. Our expectation is that solutions to the Faddeev-
AGS equations written in the Coulomb-distorted basis can be

obtained for a large variety of n + p + A systems, without a
limitation on the charge of the target. From those solutions,
observables for (d,p) transfer reactions should be readily
calculated. Work along these lines is now in progress.
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APPENDIX A: PARTIAL-WAVE COULOMB WAVE
FUNCTION IN MOMENTUM SPACE

A closed analytic form for the Coulomb function in momen-
tum space was first presented in Ref. [33] and introduced in the
field of nuclear reactions by Dolinskii et al. [14], where also its
partial-wave decomposition was introduced. In this Appendix
we discuss specific aspects regarding our implementation of
these Coulomb functions.

The procedure starts with the Fourier transform of the
Coulomb wave function in coordinate space. For our work,
the most convenient final expression is given in Eq. (A.2) of
Ref. [14]:

ψC
p⃗ (q⃗) = −4π exp−ηπ/2 *(1 + iη)

× lim
γ→+0

d

dγ

{
[q2 − (p + iγ )2]iη

[γ 2 + |q⃗ − p⃗|2]1+iη

}
, (A1)

where q⃗ = q q̂. It should be pointed out that the definition
of the Fourier transform of Eq. (A1) differs from the one in
Ref. [14] by a factor of 1/(2π )3.

Following Ref. [14], one performs the partial-wave de-
composition and, after some nontrivial mathematical ma-
nipulations, obtains the expression of Eq. (1). The expres-
sion in Eq. (1) is the most general explicit form of the
partial-wave Coulomb wave function in momentum space.
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Unfortunately, this general form does not allow a direct
numerical implementation and analysis due to the nature of the
spherical functions Q

iη
l (ζ ). Following Ref. [14], the spherical

functions can be expressed in terms of the hypergeometric
functions 2F1(a,b; c; z). These hypergeometric functions de-
pend on the angular momentum l, the strength of the Coulomb
potential η, and a dynamic variable related to the momenta ζ
as defined below Eq. (1).

For ζ ≈ 1 we use Eq. (8.773.2) from Ref. [34],

Q
iη
l (ζ ) = e−πη

2

{

*(iη)
(

ζ + 1
ζ − 1

)iη/2

× 2F1

(
−l,l + 1; 1 − iη;

1 − ζ

2

)

+*(−iη)
*(l + iη + 1)
*(l − iη + 1)

(
ζ − 1
ζ + 1

)iη/2

× 2F1

(
−l,l + 1; 1 + iη;

1 − ζ

2

)}
. (A2)

This expression is consistent with that presented in Eq. (21)
of Ref. [14]. Note however that, to improve the numerical
accuracy, we transform this hypergeometric functions using
Eq. (9.131.1) from Ref. [34]. This transform leads to stable
and faster computation of the hypergeometric functions for
ζ ≈ 1.

The constraint ζ ≈ 1 translates to the condition q ≈ p.
However, when p and q are sufficiently different, then ζ ≫ 1,
and Eq. (A2) is not valid. In this situation we have to consider
an alternate expansion, namely, Eq. (8.703) of [34], which is
given as

Q
iη
l (ζ ) = e−πη*(l + iη + 1)*(1/2)

2l+1*(l + 3/2)
(ζ 2 − 1)iη/2 ζ−l−iη−1

× 2F1

(
l + iη + 2

2
,
l + iη + 1

2
; l + 3

2
;

1
ζ 2

)
.

(A3)

From Fig. 8, it can be seen that Eq. (A3) is well behaved at
low and high momenta, where the original expression Eq. (A2)
is ill defined. Equation (A2) is valid around the singularity
point q = p. Thus, it is important to switch to the appropriate
expansion depending on the value of ζ .

This switch should happen when the fourth arguments of
the hypergeometric functions in the two different expansions
are equal:

1
ζ 2

= ζ − 1
ζ + 1

. (A4)

This equation has only one real root: ζ = 1.83928655 . . . . It
is better to have this condition formulated in terms of p and q.
From the definition of ζ , we obtain

q1,2 = (ζ ∓
√

ζ 2 − 1)p. (A5)

Good estimates for the roots of this implicit equation are q1 ≈
0.3p and q2 ≈ 3.4p. Since the two expansions of Q

iη
l (ζ ) are

equally valid around the transition points, our implementation
uses these estimates. More details can be found in Ref. [35].
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FIG. 8. (Color online) Comparison of two expansions of the
spherical function Q

iη
l (ζ ) as a function of momentum. Results are

shown for the real part of Q
iη
l (ζ ) with parameters evaluated for 12C

at p = 0.67 fm−1, for l = 0 (top panel) and l = 4 (lower panel).

APPENDIX B: THE REGULARIZATION PROCEDURE

The difficulty with handling the singularity of Eq. (6)
was clearly indicated in Ref. [6]. Therein the idea of using
the Gel’fand and Shilov regularization was introduced. In
this Appendix, we generalize the formulation of Ref. [6] for
complex functions and present a detailed description of the
method, bearing in mind our physical applications.

1. General formulation of the Gel’fand
and Shilov regularization

When calculating matrix elements in the Coulomb basis,
one encounters integrals of the following form, containing a
singular point at x = 0:

I = lim
γ→0

∫ )

−)

φ(x) dx

(x ± iγ )1±iη
≡

∫ )

−)

φ(x) dx

(x ± i0)1±iη
, (B1)

where φ(x) is a smooth, well-defined function in the domain
x ∈ [−),)], and φ(0) ̸= 0, φ′(0) ̸= 0. The leading singularity
of the integrand is given by

S±(x) = 1
(x ± i0)1±iη

. (B2)

The exponent 1 ± iη in the denominator of Eq. (B2) leads
to oscillations with an amplitude increasing to infinity and a
period limiting to 0, as x → 0. Thus, in order to compute the
integral I , one has to regularize it.

By using the regularization scheme proposed by Gel’fand
and Shilov [25], the integral from 0 to ) can be written as

∫ )

0

φ(x) dx

(x ± i0)1±iη
=

∫ )

0

φ(x) dx

x1±iη

=
∫ )

0
dx

φ(x) − φ(0) − φ′(0)x
x1±iη

± iφ(0)
η

)∓iη + φ′(0)
1 ∓ iη

)1∓iη. (B3)
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FIG. 9. The singularity
∣∣ℑm[Ja,b,c(y)]

∣∣ according to Eq. (B2)
near the on-shell point y = 0: (a) unregularized, (b) with principal
value regularization, and (c) with Gel’fand-Shilov regularization. The
precise definition of the function Ja,b,c(y) in each panel is defined in
the text.

Noticing that

1
(−x ± i0)1±iη

= (e∓iπ )∓iη

x1±iη
= e−πη

x1±iη
for (x > 0)

(B4)
one obtains the following relation:

∫ 0

−)

φ(x) dx

(x ± i0)1±iη
= −e−πη

∫ )

0

φ(x) dx

x1±iη
. (B5)

This leads to the following expression for the integral I :

I = (1 − e−πη)
[∫ )

0
dx

φ(x) − φ(0) − φ′(0)x
x1±iη

± iφ(0)
η

)∓iη + φ′(0)
1 ∓ iη

)1∓iη

]
. (B6)

Now, all terms in Eq. (B6) are regular; i.e., the integral I is
regularized and well behaved.

The effect of the regularization procedure is illustrated in
Fig. 9, where we plot the magnitude of the imaginary part
of the first integrand in Eq. (B6) at different stages of the
regularization. For this illustration, φ(y) = 1 + y + y2 so that
φ(0) = 1 and φ′(0) = 1, where y is dimensionless. In Fig. 9(a),
the unregularized function Ja(y) ≡ φ(y)S+(y) is presented.
Figure 9(b) then shows the behavior of Jb(y) ≡ {φ(y) −
φ(0)}S+(y), i.e., the behavior when the singular point is
subtracted. The amplitude of the oscillations now is finite, but
the integral is still irregular. In Fig. 9(c) the behavior of the fully
regularized integrand Jc(y) ≡ {φ(y) − φ(0) − φ′(0)y}S+(y)
is presented. Though the oscillations are still present, the
amplitude is linearly decreasing, making the integral sums for
this integrand converge monotonically with increasing number
of points (terms). Thus, the corresponding integral becomes
regular.

In case ) is small, Eq. (B6) may be simplified. The first term
becomes of O()2), and the last one of O()). By neglecting
both of them, one gets

I |)→+0 ≈ ±i(1 − e−πη)φ(0))∓iηη. (B7)

This expression is used in our implementation.

2. Application to integrals involving the Coulomb
wave function in momentum space

Around the point q = p, rearranging Eq. (A2), one can
write the wave function ψC

l,p(q) in the following form:

ψC
l,p(q) = A(p,l,η)

[
B(q,p,l,η)

(q − p + i0)1+iη

− B(q,p,l,η)∗

(q − p − i0)1−iη

]
, (B8)

where the auxiliary functions are defined as

A(p,l,η) = 2π i exp(iσl − πη/2)/(4p)l ,

B(q,p,l,η) = *(1 + iη) exp(−iσl)(q + p)2l−1+iηq−(l+1)

× 2F1(−l,−l−iη; 1−iη; ρ(q,p)),
(B9)

ρ(q,p) = (q − p)2(q + p)2,

exp(2iσl) = *(l + 1 + iη)
*(l + 1 − iη)

so σl = arg *(l + 1 + iη).

Note that, apart from the Coulomb phase exp(iσl), the
Coulomb wave function ψC

l,p(q) is a real-valued function. From
Eq. (B8) one can see that the wave function ψC

l,p(q) is singular
at the point q = p with the leading singularity S±(x) as in
Eq. (B2), where

x = p − q. (B10)

Thus, we consider a function Fl(p),

Fl(p) = 1
2π

(
I

p−)
0 + I

p+)
p−) + I∞

p+)

)
, (B11)

where

I b
a =

∫ b

a

dq q2fl(q)ψC
l,p(q). (B12)

For the applications of Sec. III, fl(q) ∈ C is a smoothly varying
function of q. The singular behavior of the wave function
ψC

l,p(q) must be addressed when computing Fl(p). Since this
singularity only causes a problem in some region around q =
p, we now focus on this specific region. For the remaining
part of the Appendix, only the integral I

p+)
p−) will be discussed,

namely,

I
p+)
p−) = A(p,l,η)

∫ p+)

p−)

dq q2fl(q)

×
[

B(q,p,l,η)
(q − p + i0)1+iη

− B(q,p,l,η)∗

(q − p − i0)1−iη

]
. (B13)

By introducing

ϕ(x) = (p − x)2 B(p − x,p,l,η), (B14)

and changing variables to x = p − q in the denominators,

1
(q − p + i0)1+iη

= (eiπ )−1−iη

(x + i0)1+iη
= −eπη

(x + i0)1+iη
,

(B15)
1

(q − p − i0)1−iη
= (e−iπ )−1+iη

(x − i0)1−iη
= −eπη

(x − i0)1−iη
,
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the integral splits into two terms,

I
p+)
p−) = −A(p,l,η) eπη

[∫ )

−)

dx
fl(p − x)ϕ(x)
(x + i0)1+iη

−
∫ )

−)

dx
fl(p − x)ϕ∗(x)

(x − i0)1−iη

]
. (B16)

If in Eq. (B16) we consider fl(p − x) to be a real function, then the second term in square brackets in Eq. (B16) becomes the
complex conjugate of the first. Because z − z∗ = 2iℑm z, the number of integrals to be regularized and computed in Eq. (B16)
is then reduced to one. In order to arrive at Eq. (A12) of Ref. [6], one needs to replace fl(q) by the Yamaguchi form factor and
apply Eq. (B6).

In this work we focus on complex form factors fl(q) ∈ C. In this case both terms in Eq. (B16) must be treated separately.
This means Eq. (B6) is applied twice, so we obtain

I
p+)
p−) = A(p,l,η) (1 − eπη)

{∫ )

0
dx

fl(p − x)ϕ(x) − fl(p)ϕ(0) − [f ′
l (p)ϕ(0) + fl(p)ϕ′(0)]x

x1+iη
+ ifl(p)ϕ(0)

η
)−iη

+ f ′
l (p)ϕ(0) + fl(p)ϕ′(0)

1 − iη
)1−iη −

∫ )

0
dx

fl(p − x)ϕ∗(x) − fl(p)ϕ∗(0) − [f ′
l (p)ϕ∗(0) + fl(p)(ϕ∗)′(0)]x

x1−iη

+ ifl(p)ϕ∗(0)
η

)iη − f ′
l (p)ϕ∗(0) + fl(p)(ϕ∗)′(0)

1 + iη
)1+iη

}
. (B17)

To further simplify Eq. (B17), we proceed in a similar fashion as done in Eq. (B7). By choosing ) small enough (e.g.,
10−6 fm−1), we obtain

I
p+)
p−) = i

η
A(p,l,η) (1 − eπη)fl(p) [ϕ(0))−iη + ϕ∗(0))iη] = 2i

η
A(p,l,η) (1 − eπη) fl(p)p2 ℜe{ B(p,p,l,η) )−iη}. (B18)

Note that B(p,p,l,η) has a simple form because ρ(p,p) = 0. The expression Eq. (B18) is finally used to compute the regularized
part of the integral of Eq. (B13). For the physical applications we discuss in the main text, {Fl = [uC

l ]⋆, fl = u∗
l } or {Fl = uC

l ,
fl = ul}.
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