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Abstract
Detailed theories of nuclear reactions now lead to and require extensive
computations. Only then can their results be used to make verifiable predictions
and to contribute to the development of nuclear physics. I focus on low-energy
reactions of nucleons and light clusters on heavier nuclei, and discuss the
computational challenges in the evaluation of coupled-channel theories of those
reactions.
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1. Roles of reaction theories

Reaction theories have been developed for a variety of reasons. One reason concerns the
use of reaction theory in analyzing experiments in order to learning something about the
structure of the participating nuclei. Reaction theories are necessary here because they are
an essential interface between structure and experiments. This connection is possible because
the predictions of reaction calculations depend on the structure information used as input.
This enables the physical accuracy of that structure information to be discerned by examining
how well the results of the calculations fit the cross sections that have been measured in
experiments. A second reason, no less important for nuclear physics, is to explore the novel
dynamical processes that occur when two nucleons or nuclei react together. We often need, for
example, to explore the interplay of elastic scattering, transfer reactions and breakup process
if a satisfactory account is to be given of any of these individually.

It used to be that reaction predictions were simpler, and depended linearly on structure
information such as spectroscopic factors, and that gave rise to the belief that ‘experimental
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spectroscopic factors’ could be determined by observations. Now, however, we have more
detailed reaction theories that necessarily depend on multiple aspects of the structure models
in such a way that there is no longer any linear dependence on specific structure aspects. In
this case—much more frequently found in recent years—the proper analysis of experiments
requires the construction of multiple structure models, preferably in some kind of family or
else from opposing assumptions. The role of reaction theories in this case is the make accurate
predictions from each of those structure models in turn, and test them by comparison with the
experimental measurements1. The ideal role of reaction theories, therefore, is in a sense to be
‘invisible’, so that the structure aspects are faithfully reflected in the predicted cross sections.
In that way, we hope, structure models can be properly tested experimentally. The need for
comprehensive structure models to start reaction calculations is now particularly great, since
new accelerators are producing varies species of nuclides for the first time. In such cases there
are no previous empirical scattering data to help in setting up the effective interaction or optical
potentials. In such case, the best quality structure theories of one or both of the participating
nuclei are essential.

For a reaction theory to be ‘invisible’, it should take into account all possible mechanisms
in given reaction. Strictly speaking, that is impossible. So reaction theory for now concentrates
mostly on including the relevant mechanisms following from the structure and substructure
of one of the participating nuclei. We call such theory a semi-microscopic reaction theory. It
will use, for one of the interacting nuclei, an extensive structure model of its ground state and
excited states, and of the transition mechanisms that couple them together. The name ‘semi’
indicates that the other participating nucleus is treated still as one body2. The challenges
described in this paper all come from the reaction theory trying to include more and more
complicated participating nuclei, and more and more complicated structures of those nuclei.

2. Types of reaction theory and their computational complexities

The simplest theory for the reaction of two nuclei consists of using an effective interaction
or optical potential between the two bodies. It will predict elastic scattering, polarization
observables if it has spin-dependent components, and absorption cross sections if it has an
imaginary component. Weak secondary channels may be calculated as perturbations from
elastic scattering, using what is called the distorted wave Born approximation.

2.1. Adiabatic approximations

To go beyond perturbation theory for the non-elastic channels, we have to consider further
degrees of freedom of the participating nuclei. If these other degrees of freedom are much faster
than elastic scattering, or either much slower than elastic scattering, then a variety of adiabatic
approximations become useful. The validity of these approximations may also be phrased in
terms of the ratio of excitation energies to the elastic energy. When the inelastic energies are
small compared with the beam energy, an adiabatic approximation can be used which calculates
the scattering from each inelastic configuration, and then averages the scatterings between the
initial and final configurations to predict the cross sections [1–4]. When, conversely, the beam

1 Ideally, there should be as little ‘post-processing’ of those experimental results as possible, to avoid possible
contamination from model dependence. For example, two-body cross sections can be unambiguously transformed
from laboratory to center-of-mass frames of references, but three-body (or more) final states can only be so transformed
if kinematically complete measurements have been recorded.
2 A theory which treated both nuclei as consisting of nucleons with defined interactions, would be called a fully-
microscopic reaction theory.
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energy is low compared with the excitations, then a kind of Born–Oppenheimer method can be
used which calculates a series of perturbed stationary states are various distances. These states
are then combined to make an ‘energy surface’ for generating the scattering cross sections [5].

2.2. Coupled-channel calculations

Because, however, all these semi-microscopic theories describe reactions at high, low and
middle energies, with many types of couplings, each with a range of strengths, it is difficult
or impossible to decide in advance which couplings can safely be treated as perturbations,
which are fast or slow, and which need treatment to all orders. Moreover, there may be
intermediate channels which combine coherently, so the smallness of a certain exit channel
does not always imply that it is needed only to first order3. Most often, therefore, the theories to
be here described use a coupled-channels framework, in which all couplings are included to all
orders. In particular, it becomes straightforward to include the couplings between non-elastic
channels which are treated (approximately), in the adiabatic models. The above adiabatic cases
can be considered as approximations to the full coupled-channels treatment when specific
simplifications are made concerning either the relative motion energy operator, or else the
energy of the internal degrees of freedom of the nuclei.

The challenges described below concern the generation of the couplings between all pairs
of elastic and non-elastic channels, and then how to solve accurately the resulting set of coupled
equations. Radial wave functions ψα(R) for α = 1 · · · M are needed, where each partial-wave
channel α consists of specific states of the interacting nuclei and their parts, of orbital partial
waves between those parts, and of specific intermediate quantum numbers. These ψα(R) are
constrained by satisfying at large distances (outside Rm) their matching boundary conditions

ψα(R) →R!Rm

i
2

[
H (−)

α (kαR) − SJπ
α:α0

H (+)
α (kαR)

]
, (1)

where α0 is the incoming channel, and H (±)
α are the Coulomb wave functions. The SJπ

α:α0
are

the elements of the scattering S matrix, and are used to calculate the cross section angular
distributions. A coupled-channel calculation consists of selecting in turn each total spin J and
parity π , and then solving as a complete set of all the M partial-wave channels that couple up
to Jπ .

When solving the coupled set of equations, there is a large difference in complexity
between having only local couplings, and having at least some non-local couplings. A local
coupling can be represented by a potential V (R) such that the result of its action on a wave
function ψ (R) is simply the product V (R)ψ (R). A non-local coupling, by contrast, must be
represented by a two-dimensional kernel function V (R, R′) such that the result at R of its
action on the wave function is the integral

∫
V (R, R′)ψ (R′)dR. Local potentials may be stored

numerically as a vector, but non-local potentials need to be represented by a matrix.
When there are only local couplings, such as result from most optical potentials and

from inelastic excitation mechanisms, the coupled equations are a set of ordinary differential
equations, and regular solutions can be found by progressive or ‘shooting’ methods. These
integrate out from the origin a set of linearly-independent solutions, and then take a
superposition of those to satisfy the boundary conditions of equation (1).

When there are non-local couplings, such progressive methods cannot be used as we
have a set of integro-differential equations. The equations can either be solved iteratively
(if the non-local couplings are not too strong), or else basis-function methods must be used
which expand the channel wave functions as linear combinations of those basis functions.

3 Such a rule fails obviously for closed intermediate channels, as they have zero exit cross sections.
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These expansion methods are generally more time consuming, not least from the time for the
solving an NM-square set of linear equations if there are N basis functions used to expand
each channel. The basis functions methods do facilitate a fully antisymmetrized treatment of
reactions, which turns out to be practical for reactions of light nuclei [6].

2.3. Parallelism in coupled-channel calculations

As the size M of coupled-channels sets become larger, it becomes advantageous to speed up
the overall duration of the calculations by means of parallel computation. It is a general rule in
quantum mechanics, in fact, that the calculations for any conserved quantum number may be
generated in parallel. The results for any uncoupled quantities may be calculated at the same
time.

The most obvious parallelism for coupled-channels calculations is to solve the channel
sets simultaneously for each combination Jπ of total spin and parity. These are the principal
conserved quantum numbers in such calculations. In the adiabatic models there are many more
uncoupled quantities (the internal configurations in the first adiabatic method, or the energy
surface at each point in the second method) and so more parallelism may be employed in these
cases.

Within each of the above concurrent calculations, more parallelism is possible. The
couplings between all the different channel pairs may well be computed in parallel. The
calculations of the M linearly-independent solutions in the progressive method are logically
independent and therefore available for parallel generation. The solution of the linear equations
to satisfy the boundary conditions of equation (1) is not naturally parallel in the same sense, but
parallel libraries exist already to accelerate the method of Gaussian elimination to solve linear
systems. Finally, the calculation of cross sections for each exit channel can be performed
concurrently. All of these methods can be used in the standard coupled-channels code
FRESCO [7].

Of these proposed parallel schemes, only those of the Jπ sets and of the cross sections
are particularly effective. That is because the generation of all the pairwise couplings usually
requires many elements in common such as potentials and form factors of structure states. If
these common elements are too numerous then the time spent in calculating these locally, or
else calculating them once and distributing the results, is too large compared with the time
saved by the parallelism. This problem is even more acute for the M linearly-independent
solutions, as they all require exactly the same diagonal and off-diagonal coupling factors.
Generating the independent solutions, therefore, is best done with ‘local’ parallelism such as
that offered by OPENMP. This is efficient provided computational threads are available that
are not already used for the ‘global’ parallelism given by the MPI framework.

3. Nucleon–nucleus reactions

The most recent comprehensive calculations of reactions of neutrons or protons at low and
medium energies have focused either on the excitation of rotational bands, or on the excitation
of single-particle degrees of freedom. First we look at challenges in the calculation of rotational
bands, then of particle excitations.

3.1. Excitation of rotational bands

Coupled-channels calculations for neutron scattering on actinide nuclei found to need more
excited states for convergence than was previously believed [4]. The poor convergence shows
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Figure 1. Ratio of compound-nucleus production cross sections for initial excited to
initial ground states, with neutrons incident on 239Pu. The lines are for different sizes of
coupled-channels sets. The right figure is an enlargement for 10–15 coupled levels.

up especially when calculating the total and the compound-nucleus production cross sections
below 1 or 2 MeV incident neutron energy. This was first discovered [4] when trying to predict
the compound nucleus (fusion or absorption) cross sections for neutrons incident on excited
states in 239Pu, following the earlier results of [8]. We found the ratios of excited-state to
ground-state cross sections shown in figure 1, and were astonished by the large fluctuations
of the results with increasing the number s of levels in the coupled channels sets. We define
s by s = 3 for the ground state and two excited states, for example. Calculations with s = 3
(as has been commonly used in applications such as [9]) give this ratio nearly to 2.0 (figure 1,
left side), whereas converged results (figure 1, right side) differ from unity only by 0.03%.
We conclude in general that even–even nuclei (in their K = 0 bands) need coupled-channels
sets of s = 6 levels, whereas even–odd nuclei (with half-integer K bands) require up to 12
levels for accuracy. Since the number of partial-wave channels is 156 for a K = 1/2 band with
s = 12, but only 66 for a K = 0 band with s = 6, and the computational time rises as the cube
of the number of such channels. The accuracy is particularly critical in the fast-neutron energy
range between 0.1 and 1 MeV incident energy.

3.2. One-particle–one-hole mean-field excitations of heavy nuclei

For spherical closed-shell nuclei, a successful account of elastic nucleon–nucleus scattering
has to include the effects from the excitation of non-elastic degrees of freedom, such as
vibrational and particle–hole (p–h) excitations, along with transfer reactions to intermediate
deuteron states. Nobre et al [10, 11] included in coupled-channels calculations (using FRESCO

[7]) all the open channels that can be reached in one step from elastic scattering. An initial
HFB calculation gave the particle and hole levels of a given nucleus and fixed the p–h basis
states for generating excited states within the framework of (Q)RPA, thus accounting for
correlations caused by the residual interactions within the target. To generate sets of excited
states, they used RPA and quasi-particle RPA (QRPA) structure models for finite nuclei, which
start from HFB structure models based on energy-density functionals. For each excited state,
they calculated the one-body transition density and corresponding transition potential by the
methods of [12, 13], in addition to which couplings to all pickup channels were included.

The primary purpose of these calculations was to predict the reaction cross section, by
employing the doorway approximation, which takes the total flux leaving the elastic channel to
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Figure 2. Total reaction cross section as a function of the incident energy for p + 40Ca, p +
48Ca and p + 58Ni. The results are shown for couplings to the inelastic states lying below
30 MeV (dashed lines), to the inelastic and transfer channels (dash–dotted lines) and to
the inelastic and transfer channels with non-orthogonality corrections (solid lines). The
Koning–Delaroche [14] optical model calculations are shown as short–dashed lines.
The lines serve as guidance to the eye as calculations were performed only for Elab =
10, 20, 30 and 40 MeV. Data from [15–20]. Reproduced with permission from Nobre
et al [10], copyright (2010) by the American Physical Society.

all possible first-order channels to be independent of what happens afterwards: a nucleon later
might escape as a free nucleon, the flux might equilibriate to compound-nuclear resonances,
etc. A summary of the results for protons on 40,48Ca and 58Ni is given in figure 2, where the best
predictions were the solid lines. The largest of these calculations included 1420 natural-parity
excited states of the target up to spin 10, and this required 7234 partial-wave coupled channels.

These calculations were simplified by the observation that the couplings between inelastic
states where found to be insignificant above about 10 MeV incident beam energy. This implies
that the same results for elastic scattering can be obtained by calculating separately each
second-order non-local operator V0eGeVe0 for excitation to state e. The local Ve0 = V0e are
the inelastic transition densities, and the non-local Ge is the Green’s function propagator
in the eth inelastic state. That enables the effect of all inelastic states to be summed to a
full Feshbach operator VFesh(R, R′, E, L) that is non-local, energy-dependent and angular-
momentum dependent. Compared with a full coupled-channels calculation, nevertheless, its
evaluation is relatively simple. Now up to 21 000 excited states have been included, requiring
a second-order summation over 261 000 partial waves.
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One procedure used in [11] was to evaluate the effect of all the inelastic states by means
of such a VFesh operator, and include that operator in a multi-step basis-function calculation
that furthermore included all the transfer channels. Such an combined approach yielded the
final results shown in figure 2.

3.3. Combining collective and single-particle modes

As yet, no systematic treatment exists that combines collective and single-particle modes
during reactions. A first attempt by Dupuis et al [21] begins this modeling, but so far only
in the multi-step Born approximation without yet the collective couplings in the entrance
and exit channels. There is not yet a comprehensive model of nucleon–nucleus collisions
on deformed nuclei: one which will couple both collective and single-particle degrees of
freedom, not to mention the rotational bands that are built on each separate single-particle
intrinsic configuration. The availability of deformed-QRPA structural models will provide
reaction theory with an important tool for such developments.

4. Two-body projectiles

When one of the interacting nuclei is a two-body cluster nucleus, then a great many excited
states of that nucleus may be easily calculated by solving one-channel scattering equations,
and used as a basis set for the reactions of such nuclei. The deuteron is the prime candidate
for such a treatment, and, because of the widespread use of (d,p) transfer reactions to probe
the neutron structure of heavy nuclei, such a treatment of deuteron excited states has become
standard. Since all the excited states of a deuteron are in the continuum, such modeling has
furthermore become a widely-used test bench for the treatment of breakup states during from
or during nuclear reactions. The same techniques can be applied to 6Li = α+d or 7Li = α+t,
not to mention all the weakly-bound and one-nucleon halo nuclei such as 8B, 11Be, and 17,19C.

Some technique is need to regularize the continuum, since standard mono-energetic
scattering states extend out to infinity, and are not square integrable. This lack of integrability
does not show up in transitions to or from bound states, but only when transitions between
scattering states need to be calculated. This need was spectacularly shown by Nunes and
Thompson [22] for 8B→7Be + p breakup at low energies.

4.1. Continuum-discretized coupled channels (CDCC)

In order to have square integrable basis states, the most common treatment is to used continuum
bins, which are integrals ũp(r) of the true scattering wave function uk(r) over some section
[kp−1, kp] of the continuum (with some weight function gp(k)):

ũp(r) =
√

2
πNp

∫ kp

kp−1

gp(k)uk(r) dk. (2)

The normalization constant is Np =
∫ kp

kp−1
|gp(k)|2 dk to make the ũp(r) form an orthonormal set

when all the (kp−1, kp) are non-overlapping continuum intervals, and so are suitable as a basis
for breakup calculations. The resulting bin wave functions {ũp(r)} from their construction have
a simple form of overlap with the physical scattering states. Coupled channels calculations
that use these bins are called coupled discretized continuum channels (CDCC). The need for
breakup was shown by Johnson and Soper [23], and later developments by Rawitscher [24] and
Austern [25–27] helped to introduce the more realistic CDCC representation of the continuum.
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The method has been generalized [28, 29] (XCDCC) to include possible excitations of one of
the clusters.

Alternative methods have used sets of Gaussians (often shifted or deformed in various
ways), and also the ‘pseudo-states’ which come from a diagonalization of the two-body
potential within some finite basis set [30, 31]. In principle all these methods should yield the
same results when fully converged. The pseudo-state methods have fewer input specifications
since the {kp} do not all need to chosen in advance. If the basis determined by the pseudo-state
method are sufficient for convergence (as in [32, 33], for example), then all is well. Otherwise,
it is an advantage of the CDCC that we can choose the bin widths for modeling (say) breakup
to specific energy regions. The breakup to low relative energies is often needed, for example, to
estimate the reverse process of low-energy capture to the ground state of a two-cluster system.

The computation challenges in CDCC calculations are of two kinds. First we note that
the storage requirements are mitigated in many applications where only breakup needs to be
predicted, since in that case the channels wave functions for the cluster-target scattering do
not need to be stored: only the S matrix calculated at the matching point by solving equation
(1). The parallel computation of different Jπ combinations is the principal and most useful
speedup available, in [7] for example.

If, on the other hand, the breakup channels are the intermediate channels before a transfer
reaction, then the channel wave functions do need to be stored even if the transfer is calculated
just to first order in a coupled-channels Born approximation scheme. That is because the
transfer operator is necessarily non-local, and thus requires, in (d,p) reactions, the deuteron
channel wave functions at all radii before any transfer source term can be completely generated.
This requirement considerably pushes up the storage demands on each node.

If the transfer couplings are to be included to all orders, then a serious challenge remains
that is as yet unsolved. The physics side of this all-order-transfer case is also problematic,
since there is a significant non-orthogonality between even a single transfer state and the
cumulative set of all the breakup states. This physics problem requires ideally a full three-body
model expressed by means of the Faddeev equations. Bound states in multiple rearrangement
partitions may then be handled as standard. Such models are well established for few-nucleon
problems. The presence of Coulomb forces, however, leads to difficulties for transfer reactions
on heavier nuclei. The most successful method to date is that of [34], where the Coulomb
potentials are cut off after some screening radius so that the nuclear contribution may be
calculated as the difference between the results for screened-Coulomb and screened-Coulomb
+ nuclear interactions. For light nuclei this difference converges as the screening radius
increases, giving confidence in the results there, but convergence is difficult for nuclei heavier
than A ∼ 40. Mukhamedzhanov [35], however, formulates a three-body model in a momentum
space constructed not from plane waves but from Coulomb-distorted waves. Recent work
[36] shows how to regularize the needed overlap integrals of nuclear form factors with the
Coulomb-momentum-space wave functions with their singularities.

5. Three-body projectiles

There has been less work on the scattering of three-body projectiles. Most of the results
come from the groups of Rodrı́guez-Gallardo [37] and of Kamimura [38]. These both used
the pseudo-state methods, this time for three-body systems, to define the ground and excited
states of 6He in a model space using either hyper-spherical [37] or Gaussian [38]. expansions.
Both groups calculated all the transition densities between pairs of states, and solved [39–41]
the coupled-channels set with all these couplings. At the low energies around the Coulomb
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barrier, the actual solution of the coupled equations took less time overall than the coordinate
transformations and folding of all the three-body pseudo-states with the effective interaction
for the target.

6. Conclusions

We see that there has been substantial progress in recent years in formulating and solving
reaction theory problems that take into account a largest possible set of degrees of freedom
that are excited in nuclear reactions. These models have been developed by solving various
computational challenges, but many more challenges remain for the future. We need in the near
future work toward a comprehensive model even of nucleon–nucleus collisions on deformed
nuclei: one which will couple both collective and single-particle degrees of freedom, not to
mention the various rotational bands. Another idea is to use the energy-density-functional
methods that have been very successful for nuclear bound states across most of the periodic
table. A recent proposal [42] is to extend those methods to the very lightest projectiles, so
that basis states for projectile-on-target scattering can be generated by the mean field, and we
might thus begin to have a unified nuclear theory of both bound and scattering states.
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