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Open shell effects in a microscopic optical potential for elastic scattering of 6(8)He
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Elastic scattering observables (differential cross section and analyzing power) are calculated for the reaction
6He(p, p)6He at projectile energies starting at 71 MeV/nucleon. The optical potential needed to describe the
reaction is based on a microscopic Watson first-order folding potential, which explicitly takes into account that the
two neutrons outside the 4He core occupy an open p shell. The folding of the single-particle harmonic oscillator
density matrix with the nucleon-nucleon t matrix leads for this case to new terms not present in traditional folding
optical potentials for closed shell nuclei. The effect of those new terms on the elastic scattering observables is
investigated. Furthermore, we study the influence of an exponential tail of the p-shell wave functions on the
scattering observables, as well as the sensitivity of the observables to variations of matter and charge radius.
Finally, elastic scattering observables for the reaction 8He(p, p)8He are presented at selected projectile energies.
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I. INTRODUCTION

The exotic helium isotopes have been extensively studied,
both experimentally and theoretically. The charge radii of
6He and 8He are experimentally very well known [1–3]. The
nucleus 6He is of particular interest since it constitutes the
lightest two-neutron halo nucleus with a 4He core. Investigat-
ing its structure already inspired a large body of work including
effective few-body models [4–6], multicluster methods [7–9],
Green’s function Monte Carlo (GFMC) methods [10], and
no-core shell-model calculations [11–13], so that ground-state
properties of 6He appear to be quite well understood. Similarly,
the ground-state properties of 8He have been explored with
different theoretical methods [14,15].

Recently, elastic scattering of 6He [16,17] as well as 8He
[18] off a polarized proton target has been measured for the
first time at a laboratory kinetic energy of 71 MeV/nucleon.
The experimental results indicate that for 6He the analyzing
power Ay becomes negative around 50◦, whereas for 8He it
stays positive. Specifically, the behavior of Ay for 6He is not
predicted by simple folding models for the optical potentials
[19,20], though the calculations reproduce the differential
cross section at this energy reasonably well.

This apparent “Ay problem” conveys the inadequacy of
using the same methods which describe p-A scattering from
stable nuclei for reactions involving halo nuclei. The obvious
difference is the nuclear structure. Traditionally, microscopic
folding models are developed for closed shell nuclei, such
as 16O, 40Ca, or 208Pb. Though 6He and 8He are both
spin-0 nuclei, their outer p shell is not fully occupied. In
the case of 6He, two neutrons occupy the p shell. This
structure suggests describing 6He with three-body cluster
models, as pioneered in Refs. [21,22] for higher energies.
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For describing the differential cross section and the analyzing
power at 71 MeV/nucleon, the authors of Refs. [16,23] use
“cluster-folding” calculations with still only limited success at
resolving the Ay problem.

The focus of this work is to extend traditional microscopic
folding models to take the valence neutrons in 6(8)He explicitly
into account. In order to facilitate this calculation, we assume
a simple harmonic oscillator model ansatz for 6(8)He. In Sec. II
we derive the formulation for a microscopic optical potential
which takes into account the partially occupied p shell of
6He, and we show the resulting effect on the differential cross
section and the analyzing power at different energies. Since we
use a model based on oscillator wave functions, we investigate
in Sec. III whether this specific functional form of the wave
functions has an effect on the scattering observables at energies
of 71 MeV/nucleon and higher. Specifically, we study whether
there is a difference at these energies between wave functions
that fall off exponentially in coordinate space or harmonic
oscillator wave functions. In Sec. IV we study the sensitivity
of the scattering observables to the charge and matter radii of
6He. In Sec. V we study the open shell effects in the optical
potential on the scattering observables for 8He. We conclude
in Sec. VI.

II. OPEN SHELL EFFECTS IN THE OPTICAL
POTENTIAL FOR 6He

Let H = H0 + V be the Hamiltonian for the nucleon-
nucleus system in which the interaction V =∑A

i=1 v0i consists
of all two-nucleon interactions v0i between the projectile (“0”)
and a target nucleon (“i”). The free Hamiltonian is given
by H0 = h0 + HA, where h0 describes the kinetic energy
of the projectile, while the target Hamiltonian HA satisfies
HA|�A〉 = EA|�A〉, with |�A〉 being the ground state of the
target. If we focus on elastic scattering, the transition operator
is given by

PT P ≡ Tel = PUP + PUPG0(E)PTel, (1)
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FIG. 1. (Color online) Diagram for the folding optical potential
matrix element in the single-scattering approximation.

where P = |�A〉〈�A|
〈�A|�A〉 is the projection operator onto the ground

state |�A〉 with P + Q = 1, where Q projects onto the
orthogonal space, and G0(E) = (E − h0 − HA + iε)−1 is the
propagator, which here will be treated in the impulse approx-
imation. The Watson first-order optical potential operator for
scattering of protons is given by [24] and Appendix A of
Ref. [23] as

Up =
Z∑

i=1

τ
pp
0i +

N∑
i=1

τ
np
0i ≡ UZ

p + UN
p , (2)

where the two-body transition operators τ
pp(np)
0i are related

to the proton-proton (pp) and neutron-proton (np) t matrices
τ̂

pp(np)
0i via [24]

τ
pp(np)
0i = τ̂

pp(np)
0i − τ̂

pp(np)
0i G0(E)Pτ

pp(np)
0i . (3)

As a function of the external momenta k and k′ the first-order
optical potential is given by

〈k′|〈φA|PUP |φA〉|k〉 ≡ Uel(k′, k)

=
∑

i=N,P

〈
k′|〈φA|τ̂0i(E)|φA〉|k〉 , (4)

where E is the energy of the system. In this work the common
approximation of fixing E at half the laboratory energy will
be used. The summation over i indicates that one has to sum
over N neutrons and Z protons. The structure of Eq. (4) is
schematically indicated in Fig. 1, where p and p′ are the
internal variables of the struck target nucleon, which enter into
the two-body t matrices as well as the single-particle densities.

Let us first consider the nucleon-nucleon (NN) t matrix.
On the energy shell, the NN scattering-amplitude matrix
M(p′

NN, pNN ) is related to the on-shell transition matrix
element as M(p′

NN, pNN ) = −4π2μNN 〈p′
NN |τ̂0i |pNN 〉, where

μNN is the reduced mass of the two-nucleon system. The
off-shell Wolfenstein [25] parametrization of M(p′

NN, pNN ) is
given by

M = AI + iC(σ (0) ⊗ I + I ⊗ σ (i)) · n̂NN

+M(σ (0) · n̂NN ) ⊗ (σ (i) · n̂NN )

+ (G + H )(σ (0) · K̂NN ) ⊗ (σ (i) · K̂NN )

+ (G − H )(σ (0) · q̂NN ) ⊗ (σ (i) · q̂NN )

+D((σ (0) · q̂NN ) ⊗ (σ (i) · K̂NN )

+ (σ (0) · K̂NN ) ⊗ (σ (i) · q̂NN )). (5)

The spin-momentum operators of Eq. (5) are invariant with
respect to rotations and spin exchange. They are time-reversal
invariant with the exception of the last operator, which changes
sign and thus is paired with a coefficient function D, which

is odd in |p′
NN |2 − |pNN |2 and thus vanishes on-shell. The

Wolfenstein amplitudes are functions of the vector variables
p′

NN and pNN and can be either calculated directly as such [26]
or obtained from partial wave sums. The momentum vectors
are defined as qNN = p′

NN − pNN , KNN = p′
NN + pNN , and

nNN = p′
NN × pNN and are given in the two-nucleon intrinsic

frame.
For the calculation of the optical potential of Eq. (4) the

expectation values of these spin-momentum operators need
to be calculated in the plane-wave basis for the projectile
characterized by σ (0) and in a nuclear basis for the struck
nucleon characterized by σ (i).

A. Model for the single-particle density of 6He

Since our goal is to explore the folding optical potential
for a nucleus with an open shell structure, we first need to
consider the explicit angular momentum and spin structure
of the single-particle density that enters the folding optical
potential. Without loss of generality we assume nucleon “1”
is the struck target nucleon, so that

ρI,MI ;I,M ′
I
(1, 1′) =

∫ A−1∏
l=2

dζ ′
l

∫ A−1∏
j=2

dζj〈φI,MI
|ζ ′

1ζ
′
2ζ

′
3ζ

′
4

· · · ζ ′
A−1〉〈ζ1ζ2ζ3ζ4 · · · ζA−1|φI,M ′

I
〉

≡ 〈φI,MI
|ψ†(1)ψ(1′)|φI,MI

〉, (6)

where I is the total angular momentum of the ground state and
MI its projection. All internal variables integrate out, and one
is left with an operator ψ†(1) that creates a nucleon with given
quantum numbers “1”, e.g., momentum and spin, which can
then be expanded in terms of single-particle wave functions
φnljm(1) as

ψ†(1) =
∑
nljm

φnljm(1)(anljm)†. (7)

Expanding the single-particle wave function explicitly into
spin, orbital angular momentum, and radial parts leads to

ρI,MI ;I,M ′
I
(1, 1′) =

∑
C

l 1
2 j

λms m C
l′ 1

2 j ′

λ′ m′
s m′Y

λ
l (1)χms

(1)Rnlj (1)

× Y ∗λ′
l′ (1′)χ∗

m′
s
(1′)R∗

n′l′j ′(1′)
×〈φI,MI

|(anljm)†an′l′j ′m′ |φI,M ′
I
〉. (8)

Here the sum is taken over all quantum numbers occurring in
the sum. This expression exhibits the spin eigenfunctions of
the struck nucleon, but it is not yet in a form best suited for
evaluation of matrix elements. Let us define a tensor operator
τks ,qs

(s = 1
2 ) for which ks = 0 or 1 with

τ00 = 1, τ10 = 2σz, τ1±1 = 1√
2
∓(σx ± iσy), (9)

where σi are the usual spin projections. The matrix elements
of this operator can be written as

〈sms |τks ,qs
(s)|sm′

s〉 =
√

2ks + 1 C
s ks s
m′

s qs ms
. (10)
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Inserting Eq. (10) into Eq. (8) and recoupling the angular
momenta leads to

ρI,MI ;I,M ′
I
(1, 1′)

=
∑

kl ,ql ,ks ,qs ,k,q,...

N 〈φI,MI
|(anljm)†an′l′j ′m′ |φI,M ′

I
〉

× (−1)j
′−m′

C
j j ′ k
m−m′ q (−1)l

′−λ′
C

l l′ kl

λ−λ′ ql
Ckl ks k

ql qs q

⎧⎨⎩ll′kl

ssks

jj ′k

⎫⎬⎭
×Yλ

l (1) Rnlj (1) Y ∗λ′
l′ (1′) R∗

n′l′j ′ (1′), (11)

where all constants are collected in the number N and only
the newly introduced quantum numbers are shown in the sum.
From this expression, the terms related to the orbital angular
momentum can be extracted as

Lll′
klql

(1, 1′) ≡
∑
ll′

(−1)l
′−λ′

C
l l′ kl

λ−λ′ ql
Y λ

l (1) Y ∗λ′
l′ (1′). (12)

For evaluating the matrix element 〈φI,MI
|(anljm)†

an′l′j ′m′ |φI,M ′
I
〉 let us consider

Qk,q ≡ 〈φI,MI
|
∑
mm′

(−1)j
′−m′

C
j j ′ k
m−m′ q (anljm)†an′l′j ′m′ |φI,M ′

I
〉

= CI k I
M ′

I q MI
〈φI,MI

||ρk(nlj ; n′l′j )||φI,M ′
I
〉, (13)

where the reduced matrix element consists of complex num-
bers and is independent of MI , q, and M ′

I .
Thus, the angular momentum and spin structure of the

single-particle density matrix is schematically given as

ρI,MI ;I,M ′
I
(1, 1′)

�
∑

kl ,ql ,ks ,qs ,k,q,...

N Qq,k Lll′
klql

(1, 1′) Rnlj (1) R∗
n′l′j ′ (1′)

×〈sms |τksqs
(s)|sm′

s〉 Ckl ks k
ql qs q

⎧⎨⎩ ll′kl

ssks

jj ′k

⎫⎬⎭ . (14)

For a spin-zero target, I = MI = M ′
I = 0, the Clebsch-

Gordan coefficient in Eq. (13) requires k = q = 0. Conse-
quently, the Clebsch-Gordan coefficient of Eq. (14) requires
ks = kl . Thus, for l = 0 only ks = 0 is possible, i.e., the s shell
can not have any spin-dependent contribution.

For the consideration of 6He we make the assumption of
an occupied s shell, the α core, and the valence neutrons
occupying the p shell. We approximate the density matrix
by two harmonic oscillator terms. The one-particle s-wave
harmonic oscillator wave function is given by

�m
s (p) =

(
4√
πν3

s

)1/2

e−p2/2νs Y
1
2 ,m

0 (p̂)

≡ fs(p) Y
1
2 ,m

0 (p̂), (15)

and the one-particle p-wave harmonic oscillator wave function
is given by

�m
p (p) =

⎛⎝ 8

3
√

πν5
p

⎞⎠1/2

p e−p2/2νp Y
3
2 ,m

1 (p̂)

≡ fp(p) Y
3
2 ,m

1 (p̂). (16)

Both wave functions are normalized to one. The functions
Yj=l± 1

2 ,m

l (p̂) represent the total angular momentum wave
functions. The α core consists of a filled s-shell contribution for
protons as well as neutrons. According to Eq. (14) the s-wave
single-particle density matrix is a scalar function given by

ρs(p, p′) = �∗
s (p)�s(p′) =

(
1

πνs

) 3
2

e− p2+p′2
2νs , (17)

where the sum over m has been carried out.
For the p shell we make the assumption that the valence

neutrons occupy the lowest possible state, the p3/2 shell.
According to Eq. (14), kl = 1, and both ks = 0 and ks = 1 are
possible. Evaluating the ks = 0 part for l = l′ = 1 according
to Eq. (14) leads to

ρp(p, p′) = 2

3

(
1

π3ν5
p

) 1
2

p · p′ e
− p′2+p2

2νp . (18)

The contribution according to ks = 1 leads to a spin-dependent
piece, which will enter in the explicit calculation of the
expectation values of spin-momentum operators in Sec. II B
and Appendix A.

Changing variables in Eq. (18) to

q = A

A − 1
(p − p′), P = 1

2
(p + p′) (19)

results in

p · p′ = P 2 −
(

A − 1

2A

)2

q2,

p2 + p′2 = 2P 2 + 2

(
A − 1

2A

)2

q2. (20)

With these variables the single-particle density matrices of
Eqs. (17) and (18) become

ρs(q, P) =
(

1

πνs

) 3
2

e− 1
νs

(P 2+( A−1
2A

)2q2),

ρp(q, P) = 2

3

(
1

π3ν5

) 1
2
(

P 2 −
(

A − 1

2A

)2

q2

)
× e

− 1
νp

(P 2+( A−1
2A

)2q2)
. (21)

From this we obtain the spin-independent single-particle
density matrix of 6He as

ρ6He(q, P) = 4ρs(q, P) + 2ρp(q, P). (22)

Integrating over the momentum P leads to the diagonal density

ρ6He(q) = 4e−( A−1
2A

)2 q2

νs + 2

(
1 − q2

6νp

)
e
−( A−1

2A
)2 q2

νp . (23)

It remains to determine the oscillator parameters for the two
helium isotopes. The charge radii for 6He [2] and 8He [3] are
very well measured and are used to determine the oscillator
parameters for the s shell according to〈

r2
ch

〉 = 3

2νs

. (24)

The matter radius is determined by taking the expectation
value of the radius with the total wave function. Using the
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TABLE I. The charge and matter radii rch and rmat used to
determine the oscillator parameters for the density matrices of 6He
and 8He.

rch (fm) rmat (fm) νs (fm2) νp (fm2)

6He 1.955 [2] 2.333 [28] 0.393 0.289
8He 1.885 [3] 2.53 [33] 0.422 0.270

prior determined s-shell oscillator parameter we obtain the
matter radius of 6He by〈

r2
mat

〉 = 1

6

(
5

νp

+ 6

νs

)
(25)

and from this the value for νp. The experimental extractions of
the matter radii used for our calculations are given in Table I.
The so-obtained diagonal density for 6He is shown in Fig. 2 as a
function of the momentum transfer. The density is normalized
such that ρ6He(0) = 6.

B. Expectation values of the spin-momentum
operators for the target nucleon

Having established a basis for the nuclear single-particle
density matrix allows the calculation of the matrix elements
of the optical potential given in Eq. (4). When considering the
first Wolfenstein amplitude in Eq. (5), we encounter the unit
matrix between the plane wave and the nuclear basis states.
After a series of variable transformations (which are given in
detail in Ref. [23]), this leads to the central part of the optical
potential:

UA(q, K) =
∫

d3P A

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

× ρi

(
P − A − 1

2A
q, P + A − 1

2A
q
)

=
∫

d3P A

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

ρs(p)(q, P),

(26)

0 1 2 3
q (fm-1)

0

1

2

3

4

5

6

ρ(
q)

s shell 
p shell 
s+p shell

FIG. 2. (Color online) The diagonal density of 6He normalized
to the total particle number. The s shell (dashed) and p shell (dash-
dotted) are given separately.

where q is the momentum transfer, K is the momentum
orthogonal to it, and P is the total momentum of the struck
nucleon. The second line contains the explicit expressions for
the single-particle densities of Eq. (21) and should be read as
the sum over the s- and p-shell contributions.

The next term in Eq. (5) is proportional to (σ (0) ⊗ I + I ⊗
σ (i)) · n̂NN , containing the spin of the projectile as well as the
spin of the struck nucleon tensorized with the unit matrix in
the respective space of the other nucleon. The term containing
the spin of the projectile leads to the well known spin-orbit term

iσ (0) · n̂NN UC(q, K)

= iσ (0) · n̂NN

∫
d3P C

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

× ρi

(
P − A − 1

2A
q, P + A − 1

2A
q
)

= iσ (0) · n̂
∫

d3P C

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

× ρs(p)(q, P). (27)

All other terms in Eq. (5) contain the scalar products of the
spin operator of the struck nucleon with a momentum vector,
which needs to be evaluated in the nuclear intrinsic basis.
For closed shell nuclei, the sum over all possible magnetic
quantum numbers of the total angular momentum adds up to a
zero contribution of those terms, as, e.g., for 16O with filled s
and p shells [27]. The α core of 6He consists of a filled s shell;
thus the optical potential for the s shell only has a standard
central and spin-orbit term. For the p shell, the considerations
are more involved.

The evaluation of the spin-momentum operators for the
target nucleon require several steps. In principle they should be
evaluated in the target intrinsic (TI) frame; however, the NN t
matrix is given in its own NN frame. For the momentum vectors
given in the target intrinsic frame we find for the expectation
values of σ (i) with the p3/2 ground-state wave function

〈�p(p)|σ (i) · q̂T I |�p(p′)〉 = 0,

〈�p(p)|σ (i) · P̂T I |�p(p′)〉 = 0,

〈�p(p)|σ (i) · n̂T I |�p(p′)〉 = −i
2

9

|p × p′|√
π3ν5

p

exp

(
−p2 + p′2

2νp

)
.

(28)

The momentum transfer q has a special role, since it is invariant
in all frames. Thus the scalar product (σ (i) · q) will always give
a zero contribution. Next, the expectation values of Eq. (28)
need to be projected into the NN frame, where the Wolfenstein
amplitudes are defined. The details are given in Appendix A
and are summarized as

〈�p(p)|σ (i) · q̂NN |�p(p′)〉 = 0,

〈�p(p)|σ (i) · n̂NN |�p(p′)〉 = −i
2

9

|p × p′|√
π3ν5

p

cos β e− p2+p′2
2 ,

〈�p(p)|σ (i) · K̂NN |�p(p′)〉 = −i
2

9

|p × p′|√
π3ν5

p

cos α e− p2+p′2
2 ,

(29)

where cos β = n̂T I · n̂NN and cos α = n̂T I · K̂NN .
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Considering the expression for the NN t matrix of
Eq. (5), we note that terms that contain (σ (i) · q̂) vanish.
This corresponds to the term proportional to (G − H ) and
one term proportional to D. The remaining terms will in
principle all contribute to the optical potential for the valence
neutrons.

Let us first consider the term of the scattering amplitude,
Eq. (5), proportional to iC(I ⊗ σ (i)) · n̂NN . Inserting the
expectation value of Eq. (29) and transforming to the variables
q and K in the nucleon-nucleus frame leads to a term

i UC
A (q, K) = i

∫
d3P C

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

× ρ̃p(q, P) cos β, (30)

with

ρ̃p(q, P) = −iNp

2

9

1√
π3ν5

p

|q × P| e
− 1

νp
(P 2+( A−1

2A
)2q2)

. (31)

Here Np denotes the number of valence neutrons in the p3/2

shell. Equation (30) does not contain any spin dependence and
thus contributes to the central part of the optical potential.
Comparing ρ̃p(q, P) with the p-shell single-particle density
matrix of Eq. (21) reveals that ρ̃p(q, P) is reduced by a factor of
3 and contains the cross product q × P. The latter corresponds
to the structure expected from Eq. (12) for kl = 1.

The Wolfenstein amplitude M is proportional to (σ (0) ·
n̂NN ) ⊗ (σ (i) · n̂NN ) and thus leads to the same expectation
value ρ̃p(q, P) when evaluated for the struck nucleon,

σ (0) · n̂NN UM (q, K) = σ (0) · n̂NN

∫
d3P M

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

ρ̃p(q, P) cos β. (32)

The remaining nonvanishing terms of M in Eq. (5) have a slightly different character; they are proportional to (σ (0) · K̂NN )
and (σ (0) · q̂NN ) as far as the projectile is concerned. These scalar products need to be projected on spin-flip and non-spin-flip
amplitudes in order to classify them as terms which contribute to the central (non-spin-flip) and to the spin-orbit (spin-flip) terms
in the optical potential for scattering of a spin-0 from a spin-1/2 particle. The projection of the Wolfenstein amplitude (G + H )
on the central and spin-orbit term leads to

UG+H
A (q, K) =

∫
d3P

{
G

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

+ H

(
q,

1

2

(
A + 1

A
K − P

)
, E
)}

× 1

2|KNN | (|kNN | + |k′
NN | cos γNN ) cos α ρ̃(q, P),

σ (0) · n̂NN UG+H
C (q, K) = σ (0) · n̂NN

∫
d3P

{
G

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

+ H

(
q,

1

2

(
A + 1

A
K − P

)
, E
)}

× (−i)

2|KNN | |k
′
NN | sin γNN cos α ρ̃(q, P). (33)

Here the angle γNN is the angle between the momenta kNN and k′
NN in the NN frame. The vector KNN is defined in the same

way as the vector P of Eq. (19).
The nonvanishing term of the Wolfenstein amplitude D leads to

UD
A (q, K) =

∫
d3P D

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

1

|q| (|k′
NN | cos γNN − |kNN |) cos α ρ̃(q, P),

(34)
σ (0) · n̂NN UD

C (q, K) = σ (0) · n̂NN

∫
d3P D

(
q,

1

2

(
A + 1

A
K − P

)
, E
)

(−i)

|q| |k′
NN | sin γNN cos α ρ̃(q, P).

The explicit calculation of the integrals of Eqs. (33) and (34)
reveals that the contributions of UG+H and UD vanish since
the integrands of Eqs. (33) and (34) are odd functions of one
of the integration angles. Elements of the explicit proof of this
result are given in Appendix B. The physical interpretation of
this result may stem from the fact that the amplitudes G, H ,
and D are related to the NN tensor force. Since we work with
one oscillator wave function in the p shell, we have l = l′ = 1
in Eq. (12), which excludes contributions of the tensor force.

C. Elastic scattering observables for 6He

In Sec. II A we derived a model single-particle density for
the 6He nucleus consisting of a filled s shell, the α core, and

two valence neutrons in the p3/2 subshell, coupled to a total
spin zero. In this case, the contributions proportional to the
Wolfenstein amplitudes (G + H ) and D vanish, leading to an
optical potential of the form

U (q, K) = UA(q, K) + iUC
A (q, K)

+ i σ (0) · n̂{UC(q, K) − i UM (q, K)}. (35)

The terms UA(q, K) and UC(q, K) contain the contributions
from the s as well as the p shell and have been traditionally
calculated for microscopic optical potentials for closed shell
nuclei. The terms UC

A (q, K) and UM (q, K) result from the
explicit evaluation of spin-momentum operators of the struck
target nucleons in the p3/2 subshell.
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FIG. 3. (Color online) The angular distribution of the differential
cross section, dσ

d�
, for elastic scattering of 6He at projectile ener-

gies of (a) 71 MeV/nucleon, (b) 100 MeV/nucleon/40, and (c)
200 MeV/nucleon/400 as function of the momentum transfer. The
calculations are performed with an optical potential based on the
CD-Bonn potential. The solid line represents the full calculations,
while the dash-dotted line represents the calculations omitting open
shell effects. The data are taken from Refs. [16,35].

The oscillator parameters of the single-particle nuclear
density matrix are fitted to the charge radius [2] and the
matter radius [28] of 6He. For this specific ground-state
configuration we calculate the additional terms that arise
from explicitly evaluating the expectation values of the spin-
momentum operators of the struck target nucleon with these
ground-state wave functions. We find that this particular choice
of ground-state wave functions leads to two additional terms
in the optical potential, one that is spin independent and pro-
portional to the Wolfenstein amplitude C, adding to the central
part of the optical potential, and one spin-dependent term
proportional to the Wolfenstein amplitude M , adding to the
spin-orbit part.

In order to study the effect of those two additional term we
first calculate the differential cross section, dσ/d�, and the
analyzing power, Ay , for scattering of 6He from a polarized
proton target using a folding optical potential based only on the
traditionally used central and spin-orbit terms corresponding
to the Wolfenstein amplitudes A and C. Those calculations are
shown by the dashed lines in Fig. 3 for the differential cross
section and Fig. 4 for the analyzing power. Our calculations are
carried out for 71, 100, and 200 MeV per nucleon and use the
CD-Bonn potential [29] as the NN interaction. Then we add
the two additional contributions from the valence neutrons to
the optical potential and show those calculations as solid lines
in Figs. 3 and 4. First we notice that the differential cross
section is completely insensitive to the additional terms.
This might be expected since the expectation value ρ̃ is an
order of magnitude smaller than the single-particle density
matrix. However, the effect of an additional contribution to
the spin-orbit potential through the Wolfenstein amplitude M
is also very small. We note that there is also a small effect
on Ay through the change in the central potential. However,
both effects are so small that they do not warrant being shown
separately.
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FIG. 4. (Color online) The angular distribution of the analyzing
power (Ay) for elastic scattering of 6He at projectile energies of
(a) 71 MeV/nucleon, (b) 100 MeV/nucleon, and (c)
200 MeV/nucleon as a function of the momentum transfer.
The values for (a) and (c) are shifted as indicated in the figure. The
meaning of the lines is the same as in Fig. 3. The data are taken from
Refs. [16,36].

In closing this section, we want to comment on final-state
interactions resulting from the breakup of 6He during the
scattering process. The effect of final-state interactions in a
proton-nucleus optical potential was studied in Ref. [30] for
closed shell nuclei, with 16O being the lightest nucleus, for
projectile energies between 65 and 200 MeV. In this study it
was concluded that for projectile energies of 100 MeV and
above there was no effect, and that at 65 MeV the effect is
very small. We expect that this conclusion will also hold in
the case of 6He scattering off a proton target, since in this case
the breakup of 6He would lead to a np final-state interaction,
which is strongest when the np system is in an s wave and
the relative energy of the np pair is less than 10 MeV. Even
the lowest energy we consider, namely, 71 MeV, is sufficiently
high that we are quite certain that np final-state interactions
are too small to affect the results of our calculations.

III. SENSITIVITY OF THE 6He SCATTERING
OBSERVABLES TO THE FUNCTIONAL FORM
OF THE WAVE FUNCTION FOR LARGE RADII

In the previous section we calculated additional contribu-
tions to the optical potential for 6He due to the two valence
neutrons occupying the p3/2 ground state, and we found
that their effect on the observables for elastic scattering is
very small. We use a very simple ansatz for the single-
particle density matrix, namely, only two harmonic oscillator
functions, which may lead to this very small contribution.
A further point of concern is the asymptotic behavior of the
harmonic oscillator wave functions, which do not correctly
capture the halo character of the 6He nucleus. Therefore, we
need to investigate whether the behavior of the wave functions
for large values of r , i.e., the tail of the coordinate-space
wave function, can be seen in the scattering observables at
the energies we consider. For the calculation of S factors, i.e.,
at very low energies, it is well known that the asymptotic form
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TABLE II. Parameters for matching an exponential tail to the
p-shell harmonic oscillator wave function. The detailed explanation
of the parameters is given in Sec. III.

Rm s p μ norm rmat

(fm) shell (%) shell (%) (fm−1) B (fm−3) (p shell) (fm)

2.8 89.6 52.5 0.453 0.833 3.05 2.89
3.2 95.5 68.6 0.613 1.347 2.35 2.55
3.5 97.8 78.6 0.727 1.970 2.17 2.44
3.8 99.0 86.2 0.836 2.936 2.08 2.39

of the nuclear wave functions is very important [31]. We need
to carry out a similar investigation for our calculations.

Considerations about the asymptotic behavior of the single-
particle wave functions are most naturally carried out in co-
ordinate space, thus we will have to define some “equivalent”
in momentum space. Following a similar line of thought as
in Ref. [31] we define the radial part of the p-shell wave
function as

�radial
p (r) =

(
2

√
1

6

r ν
5/4
p

π1/4
e(− r2 νp

2 )

∣∣∣∣
r�Rm

+ B e−μ r

∣∣∣∣
r>Rm

)
.

(36)

Here Rm is the matching radius, at which we match the
harmonic oscillator p wave and its derivative with an
exponential tail. The parameter μ should in principle be
close to the two-nucleon separation energy of the valence
neutrons. The oscillator parameters are νs = 0.392 fm−1 and
νp = 0.289 fm−1.

For determining reasonable values for Rm we want to
assume that the α core of 6He shall not be significantly affected
by changing the behavior of the p wave. Thus we ensure that
for fixed Rm the integral over the s-wave harmonic oscillator
function contains most of the mass of the α core. The s-shell
probability is given in Table II as a function of Rm. The
values for the s-shell probability show that for Rm � 3.2 fm
more than 95% of the α core is described by the s-wave
oscillator function, and thus the core is minimally affected by
the matching procedure. For Rm = 3.2 fm about 69% of the
probability for the valence neutrons is described by the p-shell
oscillator wave function, with the remaining being attributed
to the exponential tail. Normalizing this hybrid p wave leads
to a norm of 2.35, and we have to renormalize the p wave to 2,
the number of neutrons in the p shell. Choosing Rm = 3.5 fm
leaves almost the entire α core unmodified, describes about
79% of the valence neutrons by the harmonic oscillator p
wave, and gives a norm of 2.17. Table II shows in addition
those values for Rm = 2.8 fm and Rm = 3.8 fm. The small
value of Rm gives a p shell norm of 3, which means that there
would be three valence neutrons. For this reason we consider
Rm = 2.8 fm as too small a matching radius. The highest
value in Table II is Rm = 3.8 fm, which we consider a bit
large for studying effects of a change in the p-wave tail. We
included the values in the table to support our arguments for
choosing Rm = 3.2 fm and Rm = 3.5 fm for our study of the
sensitivity to an exponential tail of the p wave on the scattering
observables. The coordinate-space p-shell wave functions for
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FIG. 5. (Color online) The coordinate-space p-shell wave func-
tion of 6He. The solid (red) lines represent harmonic oscillator wave
functions. For the dashed (black) line in panel (a) an exponential
function was matched at Rm = 3.2 fm, while for the dash-dotted (blue)
line in panel (b) an exponential function was matched at Rm = 3.5 fm.

those two cases are shown in Fig. 5 in comparison with the
original harmonic oscillator p wave. For completeness Table II
also lists the matter radii rmat calculated with the modified p
waves. Once the parameters μ and B for the exponential tail
are determined through matching the logarithmic derivative at
Rm and renormalizing the p-wave probability to two neutrons,
the matter radius is a predictive quantity.

For the momentum-space calculations we need to Fourier
transform the wave functions and renormalize them to the
number of nucleons in 6He. The resulting momentum-space
p waves are shown in Fig. 6 together with the original
harmonic oscillator p wave. This figure also indicates that
an exponential tail in coordinate space leads to a modification
of the momentum-space wave function for small momenta.
From these wave functions we construct the single-particle
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FIG. 6. (Color online) The momentum-space p-shell wave func-
tion of 6He. The solid (red) line represents a harmonic oscillator wave
function, while for the dashed (black) line an exponential function
was matched at Rm = 3.2 fm, and for the dash-dotted (blue) line an
exponential function was matched at Rm = 3.5 fm.
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FIG. 7. (Color online) The angular distribution of the differen-
tial cross section, dσ

d�
, for elastic scattering of 6He at projectile

energies of (a) 71 MeV/nucleon, (b) 100 MeV/nucleon/40, and
(c) 200 MeV/nucleon/400 as a function of the momentum transfer.
The calculations are performed with an optical potential based on
the CD-Bonn potential. The solid (red) line represents the full
calculations based on harmonic oscillator densities, while the dashed
(black) line represents a calculation in which the p-shell neutron wave
functions have been matched at Rm = 3.2 fm with an exponential
wave function. For the dash-dotted (blue) line this matching radius is
Rm = 3.m fm. The data are taken from Refs. [16,35].

density matrix and calculate the microscopic folding optical
potential.

The calculations of the differential cross section for 71,
100, and 200 MeV per nucleon are shown in Fig. 7. The figure
shows that the different exponential tails of the p wave have no
effect on this observable. In Fig. 8 we show the corresponding
calculations of the angular distribution of the analyzing power.
Again, the exponential form of the p-wave tail has no effect
on this observable.

The different functional form of the tail of the coordinate-
space p wave translates into differences in the p wave for small
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FIG. 8. (Color online) The angular distribution of the analyzing
power (Ay) for elastic scattering of 6He at projectile energies of (a)
71 MeV/nucleon, (b) 100 MeV/nucleon, and (c) 200 MeV/nucleon
as a function of the momentum transfer. The values for (a) and (c)
are shifted as indicated in the figure. The meaning of the lines is the
same as in Fig. 7. The data are taken from Refs. [16,36].

momenta for the momentum-space p wave. Our calculations
of the scattering observables for projectile energies from 71 to
200 MeV per nucleon show that for these energies the affected
small momenta of the single-particle density have no effect on
the observables. This conclusion is quite different from the one
in Ref. [31] in which the extraction of S factors from reactions
below 1 MeV was investigated. These two finding are not
in contradiction, since, at very low energies, reactions are
expected to be mostly sensitive to the long-range part of wave
functions, whereas, for the higher energy regime considered
in this work, the asymptotic part of the wave functions and
thus single-particle density matrices should play a lesser role.

IV. SENSITIVITY OF THE SCATTERING OBSERVABLES
TO THE CHARGE AND MATTER RADII OF 6He

After establishing that at the scattering energies under
consideration the fall-off behavior of the wave functions in
coordinate space has no significant effect on the scattering
observables, we should study whether other input parameters
into our model lead to discernible effects. In Sec. II C we
presented calculations for the differential cross section and
the analyzing power using oscillator parameters from Table I.
Over the past few years there have been several measurements
of the charge radius of 6He. Our model density uses the
charge radius to determine the oscillator parameter νs for
the s-shell single-particle density according to Eq. (24). The
s-shell single-particle density determines the size of the α core
in our model, and therefore we want to test how sensitive the
elastic scattering observables are to changes in 〈r2

ch〉. As limits
for this check we use the measurement of Ref. [1], in which a
charge radius of 1.894 fm was obtained as a lower limit and
the value of 1.996 fm [2] as upper limit.

The sensitivity to the variation in 〈r2
ch〉, which translates to

a variation of νs , is shown in Fig. 9 for the differential cross
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FIG. 9. (Color online) The angular distribution of the differential
cross section, dσ

d�
, for elastic scattering of 6He at projectile energies

of (a) 71 MeV/nucleon, (b) 100 MeV/nucleon/40, and (c) 200 MeV/

nucleon/400 as a function of the momentum transfer. The solid (red)
line corresponds to the same calculation as the solid line in Fig. 3,
which gives a charge radius rch = 1.955 fm and a matter radius
rmat = 2.33 fm. The shaded region shows the variation of the charge
radius from 1.89 to 1.99 fm. The data are taken from Refs. [16,35].
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FIG. 10. (Color online) The angular distribution of the analyzing
power (Ay) for elastic scattering of 6He at projectile energies of (a)
71 MeV/nucleon, (b) 100 MeV/nucleon, and (c) 200 MeV/nucleon
as a function of the momentum transfer. The values for (a) and (c)
are shifted as indicated in the figure. The meaning of the lines is the
same as in Fig. 9. The data are taken from Refs. [16,36].

section as a function of momentum transfer for the different
scattering energies. Since the difference between the measured
values of the charge radius is quite small, the variations in the
differential cross section are also quite small. Since the charge
radius also enters into the relation between the parameters νs

and νp and the matter radius 〈r2
mat〉, Eq. (25), we keep the

matter radius constant at 2.33 fm. The angular distribution
of the analyzing power is shown in Fig. 10 as function of
the momentum transfer for the same three scattering energies.
Here a larger sensitivity to the size of the charge radius is
visible for momentum transfers q � 2 fm−1, as indicated by
the shaded region. The sensitivity is larger for the higher
scattering energies, indicating that at those energies more of
the interior, i.e., the α core of 6He is probed. Nevertheless, the
variations are relatively small even at 200 MeV/nucleon and
probably not experimentally accessible.

The matter radius is an extracted quantity and less well
known than the charge radius. For testing the sensitivity of
the scattering observables to the matter radius we keep the
charge radius fixed at 1.995 fm. As a lower limit for the matter
radius we choose the value of 2.24 fm extracted in Ref. [13]
and as an upper limit the value of 2.6 fm used in Ref. [32].
The sensitivity of the differential cross section to the variation
of the matter radius in these limits is shown in Fig. 11 for
three different scattering energies. Here it is interesting to note
that the lowest scattering energy, 71 MeV/nucleon, shows the
strongest sensitivity in the region between 1.5 and 2 fm−1,
indicated by the shaded region. This most likely results from
the fact that the matter radius is dominated by the two outer
valence neutrons. The figure further indicates, as far as our
model is concerned, that the data favor the smaller values
of the matter radius. In Fig. 12 we show the sensitivity of the
analyzing power to the same variation of the matter radius. It is
interesting to observe that the analyzing power is less sensitive
to the variation of the matter radius than is the differential
cross section. However, this may be an artefact of our model,
which puts the valence neutrons into the p3/2 shell. Again
the two higher energies show considerably more sensitivity
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FIG. 11. (Color online) The angular distribution of the differential
cross section, dσ

d�
, for elastic scattering of 6He at projectile energies

of (a) 71 MeV/nucleon, (b) 100 MeV/nucleon/40, and (c) 200 MeV/

nucleon/400 as a function of the momentum transfer. The solid (red)
line corresponds to the same calculation as the solid line in Fig. 3,
which gives a charge radius rch = 1.955 fm and a matter radius
rmat = 2.33 fm. The shaded region shows the variation of the matter
radius from 2.24 to 2.60 fm. The data are taken from Refs. [16,35].

to variations in the matter radius for momentum transfers
q � 2 fm−1, as indicated by the shaded region in Fig. 11.

V. OPEN SHELL EFFECTS IN THE
OPTICAL POTENTIAL IN 8He

The single-particle density of 6He introduced in Sec. II A
can be readily extended to the single-particle density of 8He.
The p3/2 shell can be occupied by four valence neutrons
coupled to total spin zero. Both helium isotopes have an α
core; thus the relation between the s-shell oscillator parameter
νs and the charge radius of Eq. (24) is the same. The parameter
νs determined from the measured charge radius [3] for 8He is
given in Table I. The relation between the matter radius and
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FIG. 12. (Color online) The angular distribution of the analyzing
power (Ay) for elastic scattering of 6He at projectile energies of (a)
71 MeV/nucleon, (b) 100 MeV/nucleon, and (c) 200 MeV/nucleon
as a function of the momentum transfer. The values for (a) and (c)
are shifted as indicated in the figure. The meaning of the lines is the
same as in Fig. 11. The data are taken from Refs. [16,36].
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FIG. 13. (Color online) The angular distribution of the differential
cross section, dσ

d�
, for elastic scattering of 8He at projectile energies

of (a) 71 MeV/nucleon, (b) 100 MeV/nucleon/40, and (c) 200 MeV/

nucleon/400 as a function of the momentum transfer. The calculations
are performed with an optical potential based on the CD-Bonn
potential. The solid line represents the full calculations, while
the dash-dotted line represents the calculation omitting open shell
effects.

the parameters νs and νp is modified for 8He to

〈r2
mat〉 = 1

8

(
10

νp

+ 6

νs

)
. (37)

Our calculations use the value of 2.53 fm from Ref. [33] as
the matter radius. Since in 8He the p3/2 shell is occupied
by double the amount of neutrons as the one in 6He, one
may speculate that the effect of the extra terms in the
microscopic optical potential resulting from these neutrons is
larger compared to 6He. To investigate this we first calculate the
microscopic optical potential using only the terms generated by
the Wolfenstein amplitudes A and C, and then compare to the
corresponding calculations based on the expression of Eq. (35).
In Fig. 13 this comparison is shown for the differential cross
section for scattering of 8He off a proton target as a function of
the momentum transfer for three selected energies. The effect
of the additional terms in Eq. (35) is here vanishingly small.
The corresponding comparison for the analyzing power as
function of the momentum transfer is depicted in Fig. 14. The
figure shows that the additional terms in the optical potential
due to the four valence neutrons of 8He are of the same order
of magnitude as shown in Fig. 4 for the analyzing power of
6He. The reason may here be also that our model for the
single-particle density with only two oscillator wave functions
is too simple.

VI. SUMMARY AND CONCLUSIONS

In this work we extended the traditionally employed
formulation of the first-order microscopic optical potential
for elastic scattering from closed shell nuclei to nuclei with
partially filled shells. The complete full-folding integral for
this first-order optical potential has been carried out with the
simplifying assumption that the single-particle density matrix
for 6He and 8He is given by a simple harmonic oscillator
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FIG. 14. (Color online) The angular distribution of the analyzing
power (Ay) for elastic scattering of 8He at projectile energies of
(a) 71 MeV/nucleon, (b) 100 MeV/nucleon, and (c) 200 MeV/

nucleon as a function of the momentum transfer. The values for (a)
and (c) are shifted as indicated in the figure. The meaning of the lines
is the same as in Fig. 13.

model. The α core is described by a single-particle density
matrix derived from one s-shell harmonic oscillator function,
while the two valence neutrons occupy the p3/2 shell and are
in the ground state coupled to spin zero. The corresponding
single-particle density matrix is also derived from a single
p-shell harmonic oscillator function.

With these assumptions all terms of the optical potential
that arise when integrating the six fully-off-shell Wolfenstein
amplitudes of the NN scattering amplitude with the single-
particle density matrix are derived and calculated. It turns
out that those Wolfenstein amplitudes that are related to the
NN tensor force, namely, G, H , and D, do not contribute to
the optical potential when employing our model ansatz for
the single-particle density matrix, in which the ground state
consists of the two valence neutrons occupying the p3/2 shell.
With our model single-particle density the “traditional” first-
order microscopic folding optical potential, which consists of a
central term related to the Wolfenstein amplitude A and a spin-
orbit term related to the Wolfenstein amplitude C, acquires
two new additional terms. One of those terms is related to the
Wolfenstein amplitude C, but since it does not contain any spin
dependence, it adds to the central part of the optical potential.
The other term, which is related to the Wolfenstein amplitude
M , adds to the spin-orbit part of the optical potential.

With these first-order folding optical potentials for 6He
and 8He we calculated the observables for elastic scattering,
i.e., the differential cross section and the analyzing power,
at 71, 100, and 200 MeV per nucleon. We find that in all
cases the additional terms have a very small effect on the
observables. This most likely results from the simplicity of
our model ansatz for the ground states of the two helium
isotopes. Thus, we do not think it appropriate to make a general
conclusion about the importance of explicitly treating open
shell structure in a microscopic optical potential. However,
we would like to point out that our derivations open the
path for employing sophisticated ground-state wave functions
in a microscopic folding optical potential, such as the ones
provided by the no-core shell model (NSCM) [12,34]. In
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the NSCM the ground state of light nuclei is calculated in a
large h̄� space. This leads to additional contributions for each
angular momentum state included in the NSCM. In addition,
in a large h̄� space transitions between different l states will be
allowed. Terms containing the Wolfenstein amplitudes G + H
and D, which do not contribute in the simple s- and p3/2-shell
model employed in this work, will contribute whenever l �= l′
transitions are included. In this case all Wolfenstein amplitudes
will contribute. As a further remark, we note that a NSCM
single-particle density matrix can be most naturally included
in this formulation of the first-order microscopic folding
optical potential, since it is quite straightforward to derive
a translationally invariant single-particle density using the
NSCM [11].

We also want to point out that the formulation of a general
spin-dependent single-particle density matrix of Sec. II A
allows us to consider more than the optical potential for the
helium isotopes as done in this work; the formulation can be
used for nuclear single-particle densities with arbitrary spin.

Since 6He and 8He are both halo nuclei, with a small separa-
tion energy of the two valence neutrons, and thus a large spatial
extension, we needed to investigate whether our model ansatz
based on harmonic oscillator wave functions is inappropriate
as input for the optical potential. More specifically, we needed
to investigate whether an exponentially decreasing spatial
density, which is characteristic of halo nuclei, would yield
significantly different results for the scattering observables.
We carried out this investigation by matching an exponential
tail at radii of about 3 fm to the oscillator waver functions.
The Fourier transform of these hybrid wave functions, after
renormalization to the particle number, was used to derive
single-particle densities. We find that, at the scattering energies
under consideration, the observables are not sensitive to the
long-range tail of the wave functions of the valence neutrons.
This is a very encouraging result for plans to use no-core
shell-model single-particle densities in calculating first-order
optical potentials.

Last, we performed a sensitivity study of the scattering
observables to the charge and matter radii of 6He. The charge
radius of 6He is experimentally quite well known, and thus,
when varying the s-wave oscillator parameter within the
boundaries dictated by experiment, we did not find a large
variation in the observables. The situation is slightly different
for the matter radius, since this is often an extracted quantity,
and we had a larger range of variation. We found that the
differential cross section at 71 MeV per nucleon preferred
a matter radius toward the smaller side of the values we
considered. The analyzing power at 100 and 200 MeV per
nucleon shows sensitivity with respect to the matter radius for
momentum transfers q � 2 fm−1. The planned experiment at
the Rikagaku Kenkyusho (RIKEN) facility at this energy may
be able to reach a momentum transfer of that size.
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APPENDIX A: CALCULATION OF
THE EXPECTATION VALUES

In this Appendix we give some details of the evaluation of
the spin-momentum operator of the scattering amplitude M
of Eq. (5) in the target intrinsic frame. For the evaluation we
define the spin operator as

σ ≡ (σ1, σ2, σ3) ≡
(

σ+ − σ−
2i

, σ3,
σ+ + σ−

2

)
, (A1)

where the superscript i is omitted since only the struck target
nucleon is considered, and σ± = σ1 ± iσ2. As indicated in
Ref. [27], in case of closed shell nuclei, the sum over all states
leads to a zero contribution of the spin-momentum operators.
Considering the explicit expression of Eq. (18) for the p3/2

wave function of the two valence neutrons coupled to total spin
zero, we obtain, when only considering the angular momentum
parts,

�p(p̂′) σ (i) · n̂T I �p(p̂)

= 1

12

(
n̂3√

2

(
Y 0

1 (p̂′)
{
Y 1

1 (p̂) + Y−1
1 (p̂)

}
− {

Y 1
1 (p̂′) + Y−1

1 (p̂′)
}
Y 0

1 (p̂)
)

+ 2n̂2
(
Y 1

1 (p̂′)Y−1
1 (p̂) − Y−1

1 (p̂′)Y 1
1 (p̂)

)
+ in̂1√

2

(
Y 0

1 (p̂′)
{
Y−1

1 (p̂) − Y 1
1 (p̂
}

+ {
Y 1

1 (p̂′) − Y−1
1 (p̂′)

}
Y 0

1 (p̂)
) )

. (A2)

The same form of expression is obtained when replacing n̂T I

with q̂T I and P̂T I . Equation (A2) is obtained in the target
intrinsic frame, which can be oriented arbitrarily with respect
to other frames. Therefore it is necessary to integrate over
all possible orientations of the target frame relative to the
nucleon-nucleus frame, i.e., to evaluate

I = 1

8π2

∫
dp̂p̂′�p(p̂′) σ (i) · n̂T I �p(p̂) δ(p̂ · p̂′ − cos αpp′ ),

(A3)

where the factor 8π2 is the norm of the integral with respect
to a fixed angle between the vectors p̂ and p̂′. The delta
function keeps the angle between p̂ and p̂′ fixed and can be
expressed as

cos αpp′ = cos θ ′ cos θ + sin θ ′ sin θ cos(φ − φ′). (A4)

When the angle is fixed for a given p̂′, allowed orientations
of the unit vector p̂ form a cone. The projection of the cone’s
base onto the xy plane is an ellipse centered at

Xc = sin θ ′ cos φ′ cos αpp′ , Yc = sin θ ′ sin φ′ cos αpp′ .

(A5)
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With the major and minor axes given as a = sin αpp′ and
b = cos θ ′ sin αpp′ the parametric equation of the ellipse is
determined as

x = Xc + a cos t cos(π/2 + φ′) − b sin t sin(π/2 + φ′),
y = Yc + a cos t sin(π/2 + φ′) + b sin t cos(π/2 + φ′).

(A6)

The spherical harmonics depend on the angles θ and φ; thus
the integration over the solid angle � can be replaced by the
integration over the parameter t ,∫

d�

∫
d�′ Ym1

m1
(p̂′)Ym2m1

(p̂) δ(p̂ · p̂′ − cos αpp′ )

=
∫

d�′
∫ 2π

0
dtYm1

m1
(p̂′)Ym2m1

(p̂).Ym2
1 (p̂). (A7)

Substituting Eqs. (A2) and (A3) and integrating leads to

ρ̃p(p, p′) = −i
2

9

1√
π3ν5

p

|p × p′| e
− p2+p′2

2νp , (A8)

which leads to Eq. (31) after transforming to the variables q
and P.

For calculating the expectation value of σ (i) · q̂ the same
procedure is applied. Here we only have to consider that

|q| =
√

p2 + p′2 − 2|p||p′| cos αpp′ (A9)

and the unit vector q̂ as a function of the angles (θ, φ) and
(θ ′, φ′) is given as

q̂ = 1

|q|

⎛⎜⎝ |p| sin θ cos φ − |p′| sin θ ′ cos φ′

|p| sin θ sin φ − |p′| sin θ ′ sin φ

|p| cos θ − |p′| cos θ ′

⎞⎟⎠ . (A10)

By inserting this into the corresponding integral, Eq. (A3)
leads to

1

8π2

∫
dp̂dp̂′�p(p̂′) σ (i) · q̂ �p(p̂) δ(p̂ · p̂′ − cos αpp′ ) = 0.

(A11)

The same integral for P also gives a zero contribution.

APPENDIX B: EXPLICIT CALCULATION OF THE
CONTRIBUTION FROM THE WOLFENSTEIN

AMPLITUDES G + H AND D

As indicated in Eqs. (33) and (34), the contributions of
the Wolfenstein amplitudes G + H and D vanish. In this
Appendix the explicit calculation is given. The structure of
the different terms in Eq. (33) can be summarized as

U1 =
∫

d3P (G + H )
1

|KNN | |kNN | cos α ρ̃(q, P),

U2 =
∫

d3P (G + H )
1

|KNN | |k′
NN | cos γNN cos α ρ̃(q, P),

U3 =
∫

d3P (G + H )
1

|KNN | |k′
NN | sin γNN cos α ρ̃(q, P)

(B1)

and for Eq. (34) as

U4 =
∫

d3P D
1

|q| |kNN | cos α ρ̃(q, P),

U5 =
∫

d3P D
1

|q| |k′
NN | cos γNN cos α ρ̃(q, P), (B2)

U6 =
∫

d3P D
1

|q| |k′
NN | sin γNN cos α ρ̃(q, P),

where the integration explicitly reads
∫

d3P =∫∞
0 P 2dP

∫ 1
−1 d cos θP

∫ 2π

0 dφP . We can show that the
integrands are odd functions of the azimuthal angle φP , and
thus the integrals in Eq. (B1) and (B2) vanish. In order to
show this, we first note that ρ̃(q, P) from Eq. (31) contains
the cross product |q × P| and thus depends on sin θP . Next
we need to explicitly consider the term in Eq. (B1), The
magnitude of the vector KNN is given by

|KNN | = 1

2

√
P 2 +

(
A + 1

A

)2

K2 − 2
A + 1

A
|P ||K| cos γPK.

(B3)

By applying the addition theorem of spherical harmonics for
l = 1, cos γPK can be expressed as

cos γPK = cos θP cos θK + sin θP sin θK cos φP . (B4)

Thus, Eq. (B3) can be reexpressed as

|KNN | =
√

a − b cos φP , (B5)

with

a = 1

4

(
P 2 +

(
A + 1

A

)2

K2 − 2
A + 1

A
|P ||K| cos θP cos θK

)
,

b = 1

2

A + 1

A
|P ||K| sin θP sin θK. (B6)

The angle cos α which occurs in the transformation between
the NN and the target intrinsic frame is defined as

cos α ≡ ̂q × P · K̂NN

= 1

2 sin θP

A + 1

A

1

|q||P ||KNN |

×
3∑

i=1

3∑
j=1

3∑
k=1

εijk Ki qj Pk. (B7)

Choosing the reference frame such that q points along the z
axis,

q = (0, 0, |q|); K = (Kx, 0, Kz); P = (Px, Py, Pz),

(B8)

one obtains for Eq. (B7)

cos α = −|K| sin θK

2

A + 1

A

sin φP√
a − b cos φP

. (B9)

The magnitudes of the vectors kNN and k′
NN are given as

|k′
NN | =

√
K2

NN + q2

4
+ |KNN ||q| cos θKNN

,

|kNN | =
√

K2
NN + q2

4
− |KNN ||q| cos θKNN

, (B10)
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with

cos θKNN
= q · KNN

|q||KNN | = 1

2|KNN ||q| q ·
(

A + 1

A
K − P

)
≡ c√

a − b cos φP

, (B11)

where

c = 1

2

(
A + 1

A
|K| cos θK − |P | cos θP

)
. (B12)

By introducing the abbreviations

a′
1 = a + q2

4
+ |q|

2

(
A + 1

A
|K| cos θK − |P | cos θP

)
,

a1 = a + q2

4
− |q|

2

(
A + 1

A
|K| cos θK − |P | cos θP

)
,

(B13)

Eq. (B10) can be reexpressed as

|k′
NN | =

√
a′

1 − b cos φP ,

|kNN | =
√

a1 − b cos φP . (B14)

The angle cos γNN is given by

cos γNN ≡ kNN · k′
NN

|kNN ||k′
NN | = a2 − b cos φP√

a′
1 − b cos φP

√
a1 − b cos φP

,

(B15)

where a2 = a − q2

4 . Since sin γNN is obtained from cos γNN ,
both functions depend on cos φP and thus are even with respect
to φP .

The functional dependence of the Wolfenstein amplitudes
G, H , and D are explicitly given by

G(q, K, E) ≡ G(|q|, |KNN |, cos θKNN
, E)

= G

(
|q|,

√
a − b cos φP ,

c√
a − b cos φP

, E
)

≡ G(φP ). (B16)

Here we only give G. The functional dependence of H and
D is exactly the same. Considering the symmetry properties
of G, Eq. (B16), we see that G(π + φP ) = G(π − φP ). Thus
when considering only the azimuthal part of the integration
we obtain for U1 of Eq. (B1)

U1 =
∫ 2π

0
dφP (G + H )

cos α

|KNN | |kNN | =
∫ 2π

0
dφP (G + H )

×
(

|q|,
√

a − b cos φP ,
c√

a − b cos φP

, E
)

×
√

a1 − b cos φP

a − b cos φP

sin φP . (B17)

In this integration, for every point π − φP there is another
point π + φP with the same value of cos φP . This means that
the Wolfenstein amplitudes G, H , and D have identical values
at the points π ± φP . On the other hand, the sine function is
odd with respect to φP . Therefore, the contribution of each
point π − φP to the integral is canceled by the contribution
of the point at π + φP . Consequently, the overall integral is
zero. The same argument applies to all other functions Ui of
Eqs. (B1) and (B2), which leads to the result that all integrals
give zero, thus concluding our proof.
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