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An improved description of single neutron stripping from 34,36,46Ar beams at 33 MeV/nucleon by a hydrogen
target is presented and the dependence on the neutron-proton asymmetry of the spectroscopic factors is further
investigated. A finite range adiabatic model is used in the analysis and compared to previous zero range and
local energy approximations. Full three-body Faddeev calculations are performed to estimate the error in the
reaction theory. In addition, errors from the optical potentials are also evaluated. From our new spectroscopic
factors extracted from transfer, it is possible to corroborate the neutron-proton asymmetry dependence reported
from knockout measurements.
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I. INTRODUCTION

Since the origin of the shell model [1], concepts such as
orbital ordering, level occupancy and magic numbers have
been extremely helpful to describe nuclear properties. In the
last couple of decades, with the advances of rare isotope
facilities, it has been possible to explore shell structure away
from stability and perhaps expectedly, new orbital ordering,
level occupancies and magic numbers have been revealed (e.g.,
the doubly magic 24O [2]). In this quest of understanding shell
evolution as one moves toward the limits of stability, nuclear
reactions have played a central role. Examples of the ongoing
intense activity are: the systematic knockout program at
the National Superconducting Cyclotron Laboratory (NSCL)
[3–5], the sequence of transfer measurements on unstable
fission fragments at Oak Ridge National Laboratory (e.g.,
[6–8]), the experiments by the High Resolution Array (HiRA)
collaboration at NSCL (e.g., [9]) and the transfer program at
Argonne National Laboratory on light systems (e.g., [10,11]).
It is of paramount importance that the reaction theory used in
the analysis of these reactions provide an accurate description
of the process and that theoretical uncertainties be well
understood.

Traditionally, the linkage between structure and reactions
has often been made through the notion of a spectroscopic
factor, a quantity directly associated with the occupancy of
the single particle levels [12]. By comparing the theoretical
predictions for the cross section to the data, experimental
spectroscopic factors (Sexp) can be extracted. These Sexp can
then be compared to predictions from structure models Sth.
Although both, Sexp and Sth, are model dependent, since the
early days of the field, the methods for extracting Sexp were
tuned such that Sexp for adding/removing a nucleon to a closed
shell nucleus agreed with the independent particle picture. This
is nicely illustrated in the systematic study presented in [13].
This procedure has now been challenged by the results from
(e, e′p) data [14,15]. The (e, e′p) data are consistent with
a reduction of proton spectroscopic factors for many closed
shell nuclei by roughly 60%. As shown in [15], the apparent
discrepancy between transfer and electron knockout can be

understood by using a consistent single particle radial behavior
for the removed particle as well as an improved reaction theory.
Along those lines, a reanalysis of (d,p) and (p,d) data on Ca
isotopes, using Hartree-Fock densities to constrain the single
particle states, produce spectroscopic factors similar to those
from (e, e′p) [16].

With the possibility to study systems with large pro-
ton/neutron asymmetry, knockout studies revealed a strong
dependence of the reduction factor R = Sexp/Sth on the relative
energy between valence neutrons and valence protons (e.g.,
[17]). This exciting work has been systematized through
plotting the reduction factor R as a function of the difference
between separation energies: �S = Sp − Sn(Sn − Sp) for
proton (neutron) knockout. In this plot, all the stable systems
previously studied through (e, e′p) correspond to �S ≈ 0,
but nuclear knockout measurements completed the plot for
strongly negative and positive values. It was found that when
removing loosely bound particles the reduction factor was
closer to one, while when removing deeply bound particles
the reduction factor could be as small as 0.25.

What is learned from the analysis of the knockout data is
that, for removing valence nucleons from closed shell nuclei,
there is a considerable reduction of the spectroscopic strength
as compared to the independent particle model, and that most
large scale shell model calculations account for only part of
this reduction. This is a clear demonstration of the key role
of NN correlations within the nucleus. The exact nature of
these correlations is still not fully understood as well as its
dependence on proton/neutron asymmetry (see [18,19] for two
recent contributions on this topic).

Motivated by the exciting results from nuclear knockout
experiments, transfer reactions 34,36,46Ar(p,d) were performed
at 33 MeV/nucleon, with the intention of studying the
dependence of the reduction factor on the asymmetry R(�S).
Results published in [9] show a clear disagreement on the
trend of the reduction factor: while in knockout experiments
one observes a strong variation of the reduction factor, in
transfer data no such dependence is present. It has been pointed
out that different beam energies could be at the heart of
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the disagreement since nuclear knockout experiments were
all performed at around 70 MeV/nucleon while the transfer
measurement were done at 33 MeV/nucleon. Consequently,
the 34,36,46Ar(p,d) experiments have been repeated at higher
energy and the analysis is in progress. Despite this aspect,
from the theoretical point of view, it is pertinent to inspect
the reaction theory used in the analyzes and evaluate the
uncertainties.

Due to the renewed experimental interest, there have been
a number of studies on reaction theory for (d,p) and (p,d),
particularly concerned with uncertainties in the methods. Ex-
amples include the study of optical potential uncertainties [20],
the effect of the reaction mechanism [21], the uncertainties in
the single particle state [22,23], the description of the deuteron
continuum [24] and the inclusion of full three-body dynamics
in the reaction [25].

As in previous systematic studies [26], the recent
34,36,46Ar(p,d) data [9] were analyzed using the adiabatic wave
model (ADWA) developed by Johnson and Soper [27]. This
model provides an improvement over distorted wave Born
approximation (DWBA) in that it takes deuteron breakup
into account explicitly, however it also makes a zero-range
approximation, reducing the accuracy of the method. In [9],
a correction to the zero-range approximation is introduced,
namely the local energy approximation (LEA) [28]. Note
that, although not as simple as the zero-range ADWA, there
is a finite range formulation of ADWA [29,30] which has
recently been studied in detail [31] and compared to its zero
range counterpart. In [31] finite range effects are shown to
be important for (d,p) reaction at deuteron energies around
50 MeV or larger and the LEA prescription is shown to
be inaccurate for energies well above the Coulomb barrier.
While the adiabatic model used in [9] is very appealing due
to its simplicity and the possibility of extracting a single
spectroscopic factor, one should remember that it presents
an approximate formulation to the full three-body problem
p + n + A. The ADWA formulation is best if only small n-p
distances contribute to the transfer cross section. Faddeev
techniques used to solve the exact three-body problem are
useful to estimate the uncertainty involved in the practical
ADWA methods.

In this work we will reanalyze the results from [9] with
the finite-range version of ADWA and using this improved
reaction theory obtain the reduction factor for 34,36,46Ar
(Sec. II). We will also estimate uncertainties associated with
the reaction theory, namely in what pertains the interaction
and in the three-body reaction dynamics (Sec. III). A final
discussion and conclusions will be presented in Sec. IV.

II. EXTRACTING SPECTROSCOPIC FACTORS
FROM THE AR( p,d) DATA

A. Theory

The most recent analysis on A(p,d)B reactions [13,16,26,
32,33] have relied on the Johnson and Soper reaction model
[27]. Given the relative importance of deuteron breakup in
(d,p) and (p,d) reactions, Johnson and Soper consider the
three-body problem of n + p + B to describe the process.

The exact T matrix for the process can be written in prior
form as [12]

T = 〈� (−)|Vnp + UpB − UpA|φnBχ
(+)
pA 〉 , (1)

where φnB is the initial bound state of the nucleus of interest A,
χ

(+)
pA describes the relative motion of the proton and the target

in the initial channel distorted by an optical potential UpA, and
�(−) is the exact three-body wave function. Johnson and Soper
expand the exact three-body wave function in a complete set
of eigenstates of the Hamiltonian of the n + p subsystem:

�(+)(�r, �R) = φd (�r)χd ( �R) +
∫

d�kφ
(+)
k (�r)χk( �R) , (2)

which includes the ground state of the deuteron φd (�r) and
all scattering states φk(�r) of the n + p system. The Jacobi
coordinates (�r, �R) are the vector connecting the neutron and
the proton, and the center of mass of nucleus B and the center
of mass of the deuteron, respectively. In Ref. [27], the zero-
range approximation is made Vnp(r)φd (r) = D0δ(r). With
this approximation, the three-body problem for calculating
�(+)(�r, �R) reduces to the solution of an optical-model-like
equation where the distorting potential is the sum of the
nucleon-target potentials evaluated at half the deuteron energy
UZR(R) = UnA(R) + UpA(R):

(TR + UZR(R) − E − εd )χZR
d ( �R) = 0 . (3)

Here TR is the kinetic energy operator associated with �R.
This distorting potential UZR incorporates deuteron breakup
effects within the range of Vnp and thus is not meant to describe
deuteron elastic scattering.

In the Johnson and Soper model, the remnant term (UpB −
UpA) in Eq. (1) is neglected and the transition amplitude
simplifies to

T = D0
〈
χ

ZR(−)
d ( �R)|φnB(R)χ (+)

pA (R′)
〉
, (4)

where �R′ = mB

(mB+mn)
�R.

It is well understood that generally the zero-range approx-
imation for the deuteron is not accurate. A full finite range
version of the adiabatic model of [27] was introduced by
Johnson and Tandy [30]. Therein the full three-body wave
function is expanded in Weinberg states of the n + p system,
and the Schrödinger equation for the three-body problem
is reduced to a set of coupled channel equations. The full
coupled channel equations can be solved exactly [34] but
simplify tremendously when only the first term of the Weinberg
expansion is required. Nguyen et al. [31] use this approach
to perform a systematic study of the effects of finite range,
involving a wide range of targets and beam energies. Those
results show that finite range effects can be very significant at
intermediate energies. A popular finite-range correction, the
so-called local energy approximation (LEA), was introduced
by Buttle and Goldfarb [28] and relies on the truncation to
first order of a series dependent on incoming momentum.
Comparisons performed in [31] show that the local energy
approximation performs well for sub-Coulomb energies but
may fail at intermediate energies.

Here we follow the procedure in [31] and evaluate the
deuteron distorting potential, taking into account the finite
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TABLE I. Properties of the single hole states: Sn is the separation
energy, Rrms is the rms radius of the hole state, and bnlj is it asymptotic
normalization constant [22].

Nucleus State Sn (MeV) Rrms |bnlj |
33Ar 2s1/2 17.07 3.39 31.8
35Ar 1d3/2 15.25 3.40 10.3
45Ar 1f7/2 8.07 4.10 2.35

range of the deuteron:

UFR(R) = 〈φd (�r)|Vnp(UnA + UpA)|φd (�r)〉
〈φd (�r)|Vnp|φd (�r)〉 . (5)

Once the adiabatic deuteron wave χ̃dB is calculated using
UFR(R), the transfer amplitude can be obtained from

T = 〈φdχ̃dB |Vnp|φnBχ
(+)
pA 〉 . (6)

where the remnant term has been neglected (UpB − UpA).
Remnant term contributions for the cases under study here
are no larger than 2%.

B. Results

We perform finite range calculations for the three reactions
under study: 34,36,46Ar(p,d)33,34,45Ar(g.s.) at 33 MeV/nucleon
as in [31]. For comparison with [9], we include results for the
zero-range calculations and the local energy approximation.
For the description of the Ar bound states of interest, we
use a Woods-Saxon mean field with radius r = 1.25 fm and
diffuseness a = 0.65 fm as in [9], plus a spin-orbit interaction
Vso = 6 MeV with the same geometry as the mean field (note
that the spin-orbit force in the bound state does not affect
the extracted spectroscopic factors). Details on the single-hole
bound states can be found in Table I.

For the nucleon optical potentials we use Chapel Hill [37]
as in [9] unless otherwise stated. Finally, for the deuteron
bound state and the Vnp interaction appearing in the transfer
operator of Eq. (6), we use the Reid interaction [36] and the
corresponding D0 in the zero range model. As stated earlier,
the remnant term is neglected but was determined to be less
that 2% in the cases here studied. The finite range deuteron
adiabatic potentials of Eq. (5) are generated using the code
TWOFNR [39] and the transfer cross sections are computed
with the code FRESCO [40].

Full finite range calculations (solid line) are compared to the
zero-range approximation (dashed line) and the local-energy
approximation (long-dashed line), together with the measured
angular distributions in Fig. 1. All calculations have been
renormalized to the data using the same procedure as in [9]:
the first three data points are used for 34Ar, the five points
around the peak are used for 36Ar and all points but the first
are used for 46Ar. The extracted spectroscopic factors S are
provided in the legend of Fig. 1 and collected in Table II.
Overall the angular distributions are well described by theory.
It is only for the 36Ar case that we find finite range effects to
introduce differences in the shape of the distribution. For this
case these effects improve the description of the data. Most
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FIG. 1. (Color online) Angular distributions for (a)
34Ar(p,d)33Ar(g.s.) Ep = 33 MeV, (b) 36Ar(p,d)35Ar(g.s.) Ep = 33
MeV, and (c) 46Ar(p,d)45Ar(g.s.) Ep = 33 MeV. Comparison of
full finite range (solid) with the zero-range approximation (dashed),
and the local energy approximation (long-dashed). All distributions
have been multiplied to scale the data by the indicated spectroscopic
factor S.
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TABLE II. Extracted spectroscopic factors using the finite-range
ADWA model SF(ADWA-RF), and the percentage differences with
results obtained with the zero-range approximation, the local energy
approximation, and the inclusion of the remnant term. Also shown
are the spectroscopic factors calculated in large scale shell model
SF(LSSM) [9].

Model 34Ar 36Ar 46Ar

SF(ADWA-FR) 0.92 2.21 4.93
SF(LSSM) 1.31 2.10 5.16
zero range 5% 9% 5%
local energy approx. 14% 9% 3%
remnant 2% 0.3% 0.6%

importantly, the normalization of the cross section changes
significantly with finite range effects. As compared to cross
sections calculated including full finite range effects, zero
range results systematically overestimate the cross section
(see Table II): 5% for 34Ar(p,d)33Ar, 9% for 36Ar(p,d)35Ar
and 5% for 46Ar(p,d)45Ar. On the other hand, LEA results
underestimate the cross section by 14% for 34Ar(p,d)33Ar and
9% for 36Ar(p,d)35Ar while overestimating the cross section
by 3% for 46Ar(p,d)45Ar.

III. ESTIMATING ERRORS FROM REACTION THEORY

The finite range adiabatic model is by no means the full
solution and an important part of the analysis is to understand
the uncertainties introduced with the several approximations
made. The most important approximation of course is that
we transform the many-body problem into a three-body
problem, which introduces effective interactions and with them
uncertainties. However, there are also approximations at the
three-body level, namely the truncation of the expansion in
Weinberg states as well as not taking into account the coupling
between breakup and transfer channels to all orders. The exact
solution to the full three-body problem can be obtained in the
Faddeev framework. Below we present some of the essential
features of the Faddeev method in momentum space and
follow with a discussion on the estimation of reaction theory
uncertainties for the problem.

A. Faddeev theory

Recently, nuclear reactions involving protons or deuterons
have been studied solving the full Faddeev-type equations in
momentum space [41]. These equations, usually referred to as
AGS equations (for Alt, Grassberger, and Sandhas) [42], are
coupled integral equations for the transition operators

Uβα = (1 − δβα)G−1
0 +

3∑
σ=1

(1 − δβσ )TσG0Uσα, (7)

where α, β refer to the three Faddeev components, which
also denotes the associated two-body pairs. The on-shell
matrix elements 〈ψβ |Uβα|ψα〉 are scattering amplitudes and
therefore lead directly to the observables. In Eq. (7) G0 =
(E + i0 − H0)−1 is the free resolvent, E being the available

three-particle energy and H0 the free Hamiltonian. The
two-particle transition operators Tσ are obtained from the
Lippmann-Schwinger equation

Tσ = vσ + vσG0Tσ , (8)

where vσ is the potential for the pair σ in the odd-man-out
notation. Thus, AGS equations may be viewed as a way for
summing up the multiple scattering series in terms of Tσ . Each
Faddeev channel state |ψβ〉 for β = 1, 2, 3 is an eigenstate
of the channel Hamiltonian Hβ = H0 + vβ with the energy
eigenvalue E; thus, |ψβ〉 is a product of the bound state wave
function for pair β and a plane wave with fixed on-shell
momentum corresponding to the relative motion of particle
β and pair β in the initial or final state. The channel states
|ψ0〉 are the eigenstates of H0 with the same eigenvalue E

and describe the free motion of three particles. Observables of
elastic scattering are calculated from the matrix elements with
β = α, those of breakup are given by β = 0 while 0 �= β �= α

correspond to transfer reactions. Although the original AGS
equations were derived for short-range potentials, the Coulomb
interaction can be included using the method of screening
and renormalization [43]. The numerical details of solving
AGS equations with potentials of general form can be found
in [44,45]. Since elastic scattering, transfer, and breakup are
treated on equal footing, the Faddeev/AGS framework yields
the most accurate solution to the general three-body problem
where all channels (elastic, transfer and breakup) are fully
coupled; it already has provided important tests to other
methods commonly used in reaction theory [25,46,47].

B. Discussion on uncertainties from reaction theory

Although the Faddeev/AGS framework offers an exact
solution for elastic scattering, transfer and breakup, given a
fixed three-body Hamiltonian, it does have several conceptual
limitations regarding applications to nuclear reactions because
these are not genuine three-body problems. A first one is
related to the mapping onto the many-body problem. As
pointed out in [35], one of the important features of the
transition amplitude for the transfer process where only Vnp

appears in the transfer operator is that the mapping onto the
many-body problem can be done in a rather straight-forward
manner in terms of one-nucleon overlap functions. In the
Faddeev approach this is no longer possible because elastic,
breakup and transfer components are all mixed. This implies
that the Faddeev approach to (p,d) reactions should only be
used for pure single particle states of nucleus A and cannot
be used to extract a spectroscopic factor from a ratio to
experimental cross sections.1 In this work we will use the
Faddeev solutions to estimate the theoretical errors in the finite
range adiabatic model only.

Second, the rigorous Faddeev theory can only use the
same potentials in the initial and final states, while in the
adiabatic approaches for A(p,d)B reactions [27,30,31] the
nucleon-nucleus interaction VNB is different in the initial

1Alternative ways to determine spectroscopic factors from the
many-body problem are being explored [19].
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and final channel. Within the adiabatic approaches, for the
neutron in the initial channel we use an effective real binding
potential fitted to the spectrum of nucleus A whereas in the final
state the nucleon optical potential contains absorption which
reproduces elastic scattering. In previous Faddeev A(p,d)B
calculations VnB was real in all partial waves [25,41] while
VpB was complex with parameters corresponding to the A + p

state. In the present work, Faddeev calculations take VnB

to be real in the partial wave with the n + B bound state
but in all other partial waves VnB is taken to be complex
as in the adiabatic approach in the final state. The effect
of neutron absorption in the partial wave with the n + B

bound state can be estimated by introducing energy dependent
interactions into the AGS equations [48]. Even if not fully
consistent, we include these calculations here to provide an
estimate of the magnitude of the effect of energy dependence
in the neutron-Ar interaction. Within adiabatic approaches, the
proton interaction in the initial channel UpA is calculated at the
beam energy, whereas in the exit channel UpB it is calculated
at half the deuteron energy. In Faddeev calculations, the proton
interaction UpB is fixed at the beam energy.

There are also some technical challenges in the Fad-
deev/AGS framework regarding applications to nuclear reac-
tions, related to the convergence of multiple scattering series,
partial wave expansion and Coulomb screening. However,
these difficulties do not preclude us from obtaining well con-
verged results for the reactions considered in the present work.

Finally, another important consideration in determining the
uncertainties in reaction theory relates to the optical potentials.
The finite range adiabatic theory is built on nucleon optical
potentials which are much better known than deuteron optical
potentials. Nevertheless these are not uniquely determined and
thus, in addition to the reference Chapel Hill potential [37], we
also performed calculations with a more recent global potential
by Koning and Delaroche [38]. From the percentage difference
in cross sections obtained with these two global potentials, we
estimate the optical potential uncertainty in the theoretical
cross section.

C. Estimates of the uncertainties from reaction theory

In order to estimate the error from reaction theory, full
three-body Faddeev calculations were performed using the
same interactions, as discussed in Secs. II B and III B. The
results from these calculations (FADD) are compared to
the finite range adiabatic calculations (ADWA-FR) in Fig. 2.
The solid green lines correspond to the Faddeev results,
while the solid black lines correspond to the finite range
adiabatic. In these plots, no normalization to the data is
performed. Percentage differences between cross sections
obtained within the finite range adiabatic model and the
Faddeev equations are calculated relative to the Faddeev
results. These comparisons are performed in the angular region
where spectroscopic factors were extracted from the data [9]
and are used to estimate the error of the approximations in
the reaction mechanism. The relevant angles are θ ≈ 9◦ for
34Ar, θ ≈ 20◦ for 36Ar, and θ ≈ 5◦ for 46Ar. The percentage
differences are presented in Table III. In addition, we also
perform Faddeev calculations where instead of using the
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FIG. 2. (Color online) Angular distributions for (a)
34Ar(p,d)33Ar(g.s.) Ep = 33 MeV, (b) 36Ar(p,d)35Ar(g.s.) Ep =
33 MeV, and (c) 46Ar(p,d)45Ar(g.s.) Ep = 33 MeV. Full three-body
Faddeev calculations (FADD) are compared with the finite range
adiabatic model (ADWA-FR). More detail in the text.
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FIG. 3. (Color online) Reduction factors Rs = SF (ADWA −
FR)/SF (LB − SM) as a function of the difference between the
neutron and proton separation energies �S. The squares and
circles correspond to values extracted using transfer or knockout,
respectively. The bars correspond to the total uncertainty including
both experimental and theoretical errors evaluated for the transfer
reactions.

Chapel Hill nucleon potential, we use the more modern
Koning and Delaroche [38]. The resulting angular distributions
(FADD-KD) correspond to the dashed red lines in Fig. 2.
Percentage differences between these two Faddeev results in
the same angular range of interest are presented in Table III.
For completeness, and to ensure that our error estimates in
Table III are reliable, we also perform Faddeev calculations
including the imaginary term of VnB also in the partial wave
with the n + B bound state, for all EnB > 0 [48]. Results
(FADD-E) are shown in Fig. 2 as the blue dashed lines and
we find that differences between these two Faddeev results are
of the same magnitude as the errors estimated when the VnB

is real only. Since there are ambiguities when introducing the
energy dependence of VnB , we do not use FADD-E to estimate
errors.

As the optical potential uncertainty is independent of the
three-body effects included in the Faddeev description, and
these are both independent from the experimental statistical
error, we estimate the total error by summing in quadrature.
These are shown in the last line of Table III. The largest
increase in error is seen for the 36Ar case, and originates from
the approximations in the reaction mechanism.

TABLE III. Estimates of theoretical errors in the extracted
spectroscopic factors due to approximations in the reaction model
as well as experimental errors.

Errors εth(34Ar) εth(36Ar) εth(46Ar)

Optical potential 8% 7% 4%
Faddeev vs. ADWA-FR 6% 19% 11%
Experiment 8% 8% 8%
Total 13% 22% 14%

Finally, as in previous studies [9], we calculate the reduction
factor Rs as a ratio of the experimentally determined spectro-
scopic factor and that obtained from large basis shell model
calculations. For the purpose of consistency, we use the same
shell model calculations reported in [9]. These include the
sd-shell model space and the USDB effective interaction [49]
for 34,36Ar and the sd-pf model space with the interaction
of Nummela et al. [50] for 46Ar. The predicted ground state
spectroscopic factors for 34Ar, 36Ar, and 46Ar are 1.31, 2.10
and 5.16, respectively, as shown in Table II. The reduction
factors for 34Ar, 36Ar and 46Ar using the spectroscopic factors
extracted from transfer cross sections and finite range adiabatic
theory are plotted as black squares in Fig. 3 and errors bars
include only the experimental error. The total errors, including
those from Table III, are represented by the green bars. The
knockout results [9] are plotted as red circles and only include
statistical errors.

IV. CONCLUSIONS

In summary, we have reanalyzed the reactions
34,36,46Ar(p,d)33,35,45Ar at 33 MeV/nucleon using an im-
proved reaction theory which includes deuteron breakup and
finite range effects, based on the adiabatic wave approximation
(ADWA). In addition we have quantified the errors in the
reaction theory due to the optical potential and the approximate
solution of the three-body problem. In order to do this we
have performed exact three-body Faddeev calculations. Since
our theory is based on nucleon optical potentials, we find
that the optical potential uncertainty is below 10%. However,
differences between the adiabatic results and the Faddeev
results can be as large as ≈20%. Further detailed studies to
better understand the source of these differences are underway.

With the present level of accuracy of the reaction theory, the
slope suggested by the knockout data can be corroborated by
the transfer data. Our error bars do not include the uncertainties
in the single neutron-hole overlap functions. Here we use
standard geometry and it is not clear whether, especially
for 46Ar, this will be an adequate choice. Measurements
of the matter radius could provide additional constrains.
Ideally, these reactions could be repeated at lower energy in
order to extract the asymptotic normalization of the overlap
functions, which would then enable a much better handle on
this additional ambiguity [22].

Although in this work we concentrate on the reaction theory
for transfer, it is equally important to estimate theoretical errors
associated with the description of the knockout reactions.
Our results call for a better understanding of the reaction
mechanism in order to reduce the errors.
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