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Theoretical description of reactions in general, and the theory for (d, p) reactions, in particular, needs to
advance into the future. Here deuteron-stripping processes off a target nucleus consisting of A nucleons are
treated within the framework of the few-body integral equations theory. The generalized Faddeev equations in
the Alt-Grassberger-Sandhas (AGS) form, which take into account the target excitations, with realistic optical
potentials provide the most advanced and complete description of the deuteron stripping. The main problem
in practical application of such equations is the screening of the Coulomb potential, which works only for
light nuclei. In this paper we present a formulation of the Faddeev equations in the AGS form taking into
account the target excitations with explicit inclusion of the Coulomb interaction. By projecting the (A + 2)-body
operators onto target states, matrix three-body integral equations are derived, which allow for the incorporation
of the excited states of the target nucleons. Using the explicit equations for the partial Coulomb scattering wave
functions in the momentum space we present the AGS equations in the Coulomb distorted wave representation
without screening procedure. We also use the explicit expression for the off-shell two-body Coulomb scattering
T matrix, which is needed to calculate the effective potentials in the AGS equations. The integrals containing
the off-shell Coulomb 7 matrix are regularized to make the obtained equations suitable for calculations. For NN
and nucleon-target nuclear interactions we assume the separable potentials what significantly simplifies solution

of the AGS equations.
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I. INTRODUCTION

Scattering of composite projectiles such as the deuteron off
a composite target nucleus can in principle be described by the
N-body scattering theories (see, e.g., Ref. [1]), which allow
the simultaneous treatment of all reaction channels (including
partial and complete breakup) in an exact, unique, N-particle-
unitarity-preserving manner. These N-body equations can be
reduced to two-cluster equations, as proposed in Ref. [2],
the only input necessary being the elementary two-body
transition amplitudes. However, due to the inherent complexity
of the resulting equations it is always desirable to resort to
some kind of simplifying approach. For reactions in which,
besides two-body, also three-body channels are known to be
important a promising candidate is the three-body Faddeev
integral equations theory written in the Alt-Grassberger-
Sandhas (AGS) form Refs. [3,4]. But even the three-body AGS
equations are so complicated that a more simplified CDCC
approach became quite popular (see Refs. [5—7] and references
therein). Of course, this approach does no longer constitute
a rigorous theory, the approximative character becoming the
more apparent the more important the internal degrees of
freedom are, which can be excited in the energy domain under
consideration.

If the internal structure of the target can no longer be
neglected, in order to still be able to work with the manageable
three-body theory, the possibility of excitation must, at least
approximately, be taken into account, as has been done in
Ref. [8]. Deuteron-stripping processes off a target nucleus
consisting of A nucleons were treated within the framework
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of the generalized few-body Faddeev integral equations theory
written in the AGS form. Generalization of the AGS equations
is achieved by taking into account the excitation of the
target. To reduce the (A + 2)-particle problem to the much
simpler three-body problem all the operators acting in the
(A + 2)-particle space were projected onto the three-particle
space. Obtained generalized Faddeev equations couple all
rearrangement (reaction), inelastic and elastic amplitudes. The
transition amplitudes for all interesting three-body processes
were obtained, whether the target nucleus is in its ground
or in some excited state before and/or after the collision.
The practical application was done for the deuteron stripping
reaction '>C(d,p)"3C at the deuteron bombarding energies
of 4.66, 15, and 56 MeV. The two-body-type T operators
for the nucleon-nucleus subsystem were calculated from
multichannel equations to account for the excitation and de-
excitation of the nucleus in nucleon-nucleus scattering. When
inserted in the three-body-type integral equations this feature
is automatically introduced also into the three-body dynamics.
The complexity of the AGS equations is significantly reduced
by using separable potential approach for NN and NA
interactions. However, the Coulomb p-A interaction was
neglected when solving the AGS equations and was taken into
account only approximately by multiplying each calculated
purely nuclear, partial wave reaction amplitude by the initial-
and final-state Coulomb distortion factors before summing up
the partial wave series. Definitely, in such an approach we
neglect the Coulomb-modified vertex form factors describing
the subsystem p-A and effective potentials in the AGS
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approach described by the triangular diagrams containing the
Coulomb p-A scattering amplitude as the four-ray vertex.

After our work [8] a significant advance in the applica-
tion of the Faddeev three-body approach was achieved in
Refs. [9-11], where AGS equations for stripping reactions
on different targets were solved with realistic potentials.
In Refs. [12,13] the AGS calculations were compared with
the adiabatic distorted wave approach (ADWA) for deuteron
stripping reactions to estimate the accuracy of the conventional
ADWA, which provides a simplified but practical version of
the CDCC [14]. The advantage of these works compared
to our work [8] was usage of the realistic potentials. Also
the Coulomb interaction was included using the screening
procedure, which has been applied earlier in our work for
p + d scattering [15]. Inclusion of the screening procedure
requires higher screening radii when charge of the target
increases to get the convergence. That is why the application
of the Coulomb potential screening procedure was successful
only for targets with charge Z < 20. Besides, the screening
procedure cannot be always a reliable remedy to solve
problems with charged particles, because limiting the range
of the potential may lead to the loss of information about the
very nature of the field creating the Coulomb potential. Neglect
of the internal structure of the target is another setback in the
AGS calculations in Refs. [9-13].

In this paper we present a formulation of the generalized
Faddeev equations in the AGS form for the deuteron stripping,
which includes explicitly the Coulomb interactions and target
excitations. The Coulomb interaction in the AGS approach
appears in the three-ray vertex form factors in the effective
potentials and in the four-ray vertex in the triangular diagrams.
Applying the two-potential equation allows us to remove the
noncompact singularity in the triangular diagram describing
the elastic scattering and containing the p-A Coulomb scatter-
ing amplitude. Besides the AGS equations can be rewritten
in the Coulomb distorted wave representation [16—-18], in
which the reaction amplitudes and the effective potentials are
sandwiched by the Coulomb distorted waves in the initial
and final states. Applying the regularization procedure we
obtain the expression for the effective potentials in the AGS
equations, which are free of the singularities caused by the
Coulomb distortions in the initial and final states. We also
investigate the off-shell Coulomb scattering amplitude and
show that the Coulomb-modified form factors in the transfer
amplitudes and in the triangular diagrams don’t contain
nonintegrable singularities. The target excitation is taken into
account following the formalism developed in Ref. [8]. The
final generalized matrix AGS equations are written in the
form, which includes explicitly Coulomb interactions, target
excitations, and spins of the particles. Because the solution
of the AGS equations is greatly simplified for separable
potentials, we use the separable potential approach assuming
that the adopted separable potentials will approximate realistic
NN and NA potentials. The calculations of the obtained
equations and comparison with the experimental data are a
subject for future research.

It is important to underscore that genuine AGS equations in
the Coulomb distorted wave representation have been derived.
Previously possibility of derivation of these equations in
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the Coulomb distorted wave representation was considered
in Refs. [16,18], but obtained equations were not genuine
integral equations because the amplitudes under the integral
and on the left-hand side were different functions. Here,
using a different off-shell continuation we derive genuine
AGS equations in the Coulomb distorted wave representation.
Another important topic of our research is investigation of the
singularities of the integrals containing the off-shell Coulomb
scattering amplitude. The compactness of the AGS equations
for charged particles with repulsive interactions was proved in
Refs. [17,18]. However, the practical application of this result
requires regularization of the integrals containing the off-shell
Coulomb scattering amplitudes. Note that in the case under
consideration, when only two particles are charged, only one
off-shell Coulomb scattering amplitude of the proton-nucleus
scattering is needed. Regularization of the integrals containing
the off-shell Coulomb scattering amplitude is also important
because in a standard procedure involving the screening of
the Coulomb potential is tacitly assumed that, in the limit
of the screening radius R — oo, all the integrals containing
Coulomb scattering amplitude have well-defined limits and
that the Coulomb screening affects only the Coulomb distorted
waves in the initial and final states. We show how to deal with
all the integrals containing the Coulomb off-shell 7 matrix.
The obtained equations are suitable for calculations and the
results are a subject for future research.

The advantage of the developed approach is that, owing
to the explicit inclusion of the Coulomb interaction, it can be
applied for analysis of the deuteron stripping on heavier nuclei.
Such reactions provide a unique tool to study (2, y) processes
on exotic nuclei, which are important for nuclear astrophysics
and applied physics.

The plan of this paper is as follows. In Sec. II we first
derive the matrix three-body equations for the (A + 2)-body
operators projected onto target states. In Sec. III by choosing
(quasi)separable Ansatze for the multichannel potentials these
three-body equations are converted into effective-two body
equations in the usual manner. In Sec. IV the AGS equations
in the Coulomb distorted wave representation are derived.
In Sec. V we present the final expressions for the modified
AGS equations after angular momentum decomposition. In
Appendixes A-D the partial Coulomb scattering wave func-
tions, regularized matrix elements sandwiched by the Coulomb
distorted waves, the Coulomb off-shell scattering amplitude,
the Coulomb-modified form factors, and the pole singularity
of the exchange Coulomb triangular diagram are considered.
Throughout the paper the consideration is done in the center
of mass of the three-body system « + 8 + y, that is the sum
of momenta of all three particles is always zero. We use the
system of units in which = ¢ = 1.

II. REDUCTION OF THE (A + 2) PARTICLE
TO A THREE-PARTICLE PROBLEM

In this section we consider the reduction of the system
consisting of two nucleons [denoted as particles 1 (proton)
and 3 (neutron)] and a nucleus consisting of A nucleons
(particle 2) to the three-body system. Presentation here
extends the formalism presented in Ref. [8] by including
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the proton-target Coulomb interaction and removing some
inconsistencies in Ref. [8].
The Hamiltonian is given as

H=H,+Hy+V, (1)
Hy =K. /2uq + Q/2M,, )
V=Vi+V,+ Vs, 3)

where H;,y = Tine + Vine 1S the internal Hamiltonian of nucleus
2; Ty and Vi, are the internal kinetic energy operator
and internal potential of nucleus 2. Hy is the Hamiltonian
of the relative motion of the noninteracting particles 1, 3,
and the center of mass of particle 2. That is, K, is the
momentum operator for the relative motion of particles S
and y and u, = mgm, /mg, the corresponding reduced mass,
mg, = mg+m,; Qg is the relative momentum operator for
the motion of particle & and the center of mass of (8, y)
with My, = my mg,, /(my + mg + m,,); m, denotes the mass of
particle v. The potentials V| and V3 describe the interaction of
the nucleons 3 and 1, respectively, with each of the constituents
of nucleus 2, and V; is the internucleon potential. Potential
V3 = V5 + V§, where V5 and V¥ are the short-range and the
Coulomb part of the proton-target interaction, respectively.
The Coulomb potential depends only on the distance between
the proton (particle 1) and the center of mass of nucleus
2. For simplicity, in this section we disregard the Coulomb
interaction, which will be explicitly included in the next
sections.

Consider the case that nucleus 2 can exist in several internal
states p (p =1,2..., N), assumed to be orthogonal, with
wave functions |g0§ ) and energies €’ > 0, that is,

Hin|ph) = €”|05). 4)

The notation is such that p = 1 corresponds to the ground
state with €' = 0. The index p is supposed to contain the
complete specification of the internal state, in particular also its
spin, isospin, etc. In concrete calculations it is not necessary to
limit oneself to genuine bound states; also so-called quasistates
simulating the contribution from the continuous spectrum of
the internal Hamiltonian of the nucleus might be included
among the {|@5)}.

To reduce the (A + 2)-particle problem to the much simpler
three-body problem we project all operators acting in the (A +
2)-particle space onto the three-particle space. In this way they
become N x N matrix operators:

H=[H"]=[(¢|H|e5)]. )
H, = [Hy” ]| = [(¢5 |Ho|#5 )]

= [8,0 (K2 /210 + Q2 /2M,,)], (6)

Vo = [V&7] = [{e5[Vale3)]. (7

850 Qal = [(951Qal93)] and [8,0 Kol = [(#5 [Kal@)]. The
resolvent matrices corresponding to the restricted full and free
Hamiltonian matrices are

G)=@c-W, (8)
Go@) =(z—Hp™". ©)
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All the operators acting in the A + 2 space and projected
onto the three-body space are underlined, while their matrix
elements, which have upper indices characterizing the excited
states of nucleus A, are not. Note that since the interaction
between the nucleons 1 and 3 does not depend on the
internal state of nucleus 2, the potential matrix V, is diagonal:
[Vzp 1=16 oo V21, V> being a scalar function.

Next we introduce the channel Hamiltonian matrix for
channel «,

H, = [A7] = [(K2/Qp1a) + Va)™]- (10)

The plane wave |q,) is eigenfunction of the operator Q,, to the
eigenvalue q, and

Q2/2M)Iqu) = q2/(2 M) qa)- (11)

Let us introduce the bound state of particles § = 2 and y
with the quantum numbers collectively denoted by n, with the
wave function @q,,, o # 2. It satisfies

(Ewna

= Ki/ 2 me)+ Vy and Eanﬂ < 0 is the binding energy of
the bound state {«, n,}. Multiplying this equation from the
left by the bound-state wave function ¢4 of nucleus 2 in the
excited state p and inserting ) |¢J ) (¢§ | we obtain the coupled

— Hy — Hint) @an, = 0, (12)

equations

Z I:Iéqubgna) = Eo’t)na

o

B (13)

for the overlap functions of the bound-state wave function ¢,
and the bound-state wave function ¢4 of nucleus 2

|06n,) = p=1,...,N. (14)

(@5 | @ens ),

A priori, we have an infinite set of the coupled overlap
functions, but here we restrict the number of the excited states
of nucleus 2, constraining, correspondingly, the number of the
coupled overlap functions by N. Also

E = ¢2/@M)+EL, +€" =42 /@M )+ Eany, o # 2,
E=q;/QMy)+ Eqn, +€".  a=2. (15)

is the total energy of the three-body system « + § + y with
the pair « in the bound state n, and

Ef, =Eq, —€" <0, (16)

Assume that 8 = 2 and y is anucleon. Then Eoma is the binding
energy for the decay of the bound state (8y),, — B° + V.
where ° = 2° is the nucleus 2 being in the excited state p.
Here we denote Ea,, = E! oa#2 Fora=2 E(md is the
deuteron binding energy.

Note that from normalization (@uy: |@an, )

ong?

= & n, WeE get

N

2 omo,

SE . (17)

‘Pan
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For the two-nucleon subsystem o = 2, Eq. (13) reduces to
the familiar eigenvalue equation since both nucleons are
structureless.

We define a matrix of two-body T operators t,(z) in the
three-body space for subsystem « # 2 via the Lippmann-
Schwinger equation

t, (@) =V, +V,G,(t,(2). (18)

This amplitude is obtained from the standard nucleon-nucleus
scattering amplitude

t(2) = Vi + Vi Go(2) 14(2) (19)
by projecting it onto the target A bound states, where
1
Go(z) = ————+— 20
0(2) T Ho_ H. (20)

is the free Green’s function containing the internal Hamiltonian
H;,; of nucleus 2.

The elements 127 (z) are related to the corresponding ones of
the matrix of two-particle T operators i, read in the two-particle
space as

dpy

12°(z) = 2ny

IPa)?27 (z — P2/2My) (Pal. (21

Equation (19) is equivalent to the following coupled system of
Lippmann-Schwinger equations for the operators 777 (z):

N
200 (2 __ Yypo pT 1 2TO
=t +;V“ fe e K o
(22)
where the energy shift accounts for the different reaction
thresholds due to the excitation of the nucleus. On the energy

shell, p, = g4, z = E and
20 =2—qo/Q2 M,). (23)
Also

1,(22) = [8p02(22)] (24)

with

0(22) = Vo + Vo (22) (25)

1
2 — K3/(2pu2)

being the purely elastic nucleon-nucleon T operator.

After we have defined all the necessary ingredients we can
introduce the transition operators satisfying the AGS equa-
tions. In this paper we use the modified transition operators. To
explain this modification we consider the standard transition
operators [2]

Upa(2) = —8po (Ho+ Tine —2) + V' — Voo — Ving
—8pa (Vg + Vi) + VG V. (26)
Here, dgo = 1 — 83, is the anti-Kronecker symbol,
V' = Vo + Vﬁ + Vy + Vine, (27)

where Vi, is the interaction potential of nucleons of target A,
Vo=V’ =V, — Viy. Let us first consider the nondiagonal
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transition operators (8 # «):

Upa(2) = = (Ho + Tint = 2) + V' = Voy = Vit = Vg — Ving
+Vﬂ gvﬂ( =—(Hy+Hyn—2)+V -V,
V4 VG, 28)

where the full resolvent G(z) = (z — H)~'. Similarly for the
diagonal transition (8 = «)

Usa = Va + Vot g Vov (29)

Note that the on-shell reaction amplitude is given by the
matrix element (®g,, |Upy(2)| Py, ), Where the channel wave
function |®y ) = Pan, |9a), 1qe) is the plane wave in the ini-
tial channel «. Because (Hy + Hine + Vo — 2) Py, = 0, the
matrix element (®g,, |Upa(2)| P s, ) = (Cblg,,ﬁ|U/§_)(z)|<I>a,,a),

o

where U é;)(z) is the standard transition operator U é;)(z) =
Vs 4+ VGV

Thus we can rewrite the standard transition operator in the
form, in which Hj, can be combined with Hj as a “modified
free motion” Hamiltonian Hy + Hjy. After that we project the
transition operator Upg, onto the eigenfunctions of Hj,, what
allows us to eliminate from the consideration Hj, replacing
it by the corresponding excitation energy of the target €”.
The modified transition operators U 4, (z) also satisfy the AGS
equations [3] (the Coulomb interaction between particles 1
and 2 is, for the moment, disregarded)

Upo(2) =8paGy @)+ Y 8yall s, ()G (), (). (30)
Y

It is apparent that the general form of (30) coincides with that
for three point particles, the only difference being that in the
present case all operators are now N x N matrix operators.
The physical amplitude for the transition from an incoming
state in channel o with relative momentum ¢, with the bound
state of particles 8 and y being characterized by quantum
numbers n,, to an outgoing state in channel § characterized
by relative momentum qg and bound-state quantum numbers
ng, irrespective of the internal excitation state of nucleus 2
and taking into account all intermediate-state excitations and
de-excitations of the nucleus due to scattering with each of the
nucleons, is defined as the matrix element of {5 between the
channel states ®,,,, 4,

Xﬁnﬂ,txna (q};, Qo> E + io)z(q)ﬁnﬁ,qlg |uﬂa(E + i0)|q)ana,qa>
(€29)
with E being the total energy of the system. The introduced
channel wave functions |®g;,.q,) have the form of a column
matrix,

| ®an,iq.) = [| €2, )0a)] = (32)

o, )1 de)

Equation (31) represents the sum of all contributions from
all excitation states of the nucleus in the incoming and the
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outgoing state, which are allowed by the on-shell condition
E =q2/2My + Ef, +€" = q2/2My + Eoy,
=q;/2Mp + E},, +¢° = q5 [2Mp + Eg,,.  (33)
The component
Xy an, s Qo E +i0)
= (s N(85,, |Ue (E +i0)|¢0, Nlae), (34

where [Ugh] = [(¢5 [Upe|95)], describes the transition from
an incoming «-channel configuration {q,, 7o}, with the nu-
cleus being in excitation state p and satisfying the on-shell
constraint, to an outgoing channel B-channel configuration
characterized by {q;g,nﬂ} and internal excitation state o,
taking into account all intermediate-state excitations and
de-excitations of the nucleus due to scattering with each of
the nucleons. q, and qjs are the on-shell relative momenta of
particles in the initial channel & and final channel 8.

III. SEPARABLE MULTICHANNEL POTENTIALS
AND EFFECTIVE-TWO BODY EQUATIONS

As is well known, the solution of the AGS equations (30)
is greatly simplified if the subsystem transition operators ¢,
are represented in separable form. For the nucleon-nucleus
subsystem a(7 2) we assume the interaction V/° leading from
a two-body state with internal excitation state p of the nucleus,
to a two-body state with internal state o of the latter, to be
described by a (quasiseparable) multichannel potential of the
form

Va, na Z |Xom 7 )"fx)c;t I nata<X§natu (35)

1y

for p,o =1,2,...N. Here, n, (n,) denote the quantum
numbers of the two-body state in the pair « before (after) the
interaction, #, (#,) is the number of the separable expansion
term before (after) interaction with the total number of the
expansion terms A,. A priori, Ay > N, where N, is the
number of the bound states in the pair «. Terms with 7, > N,
represent auxiliary terms, which don’t correspond to bound
states but are needed to improve the accuracy.

The form factor for the state with quantum numbers n,,
term number of separable expansion #,, and internal excitation

o is denoted by |x,, . )- The coupling matrix [kan nate] 18
chosen to be symmetric, thatis, Ay7, . = Ao, o iNOTder

to ensure the hermiticity of the potentlal Since, as mentioned
above, the nucleon-nucleon interaction does not depend on the
internal state of the spectator nucleus and is therefore diagonal
over the upper scripts, we have for the matrix elements of the
coupling matrix

A5,

2nl tingty

(Spa)\2;n;t‘;naza . (36)

The solution of the Lippmann-Schwinger equation (22) for the
above potential matrix (35) has the form

707 (2a) = Z | Xt )

1ty

Ot n! t’nuta (Za)<Xanafa (37)
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po
where the Ay, 0.

po po 2 :2 :z : pT
Aan thng ta(ZOf) )\an t, n,,ta+ )‘a npthnitl Xotn”t”

=1 nj t]

(Z4) satisty the coupled equations

1

X o X Dt 17m, ()
Fame KE 2 onid Senina B

(38)

for o # 2, with a similar equation for « = 2 which is, however,
uncoupled with respect to the indices characterizing the
internal state of the nucleus.

Now we will derive the expression for the overlap function
|@4n,) in the separable representation. To this end we can
rewrite Eq. (13) in the more convenient form,

(Bt =3y e = S v o) @9

From this equation taking into account Eq. (35) for the
multichannel potential we get for the overlap function with
quantum numbers n, of the pair o % 2 and with the nucleus
being in excited state p

Aq

1
(06,,) = 5 2 Ch X (40)
Eane = 337 1=t
where
ZZZ 0 X |80 ) (4D
n, 1=l
From normalization condition (17) we get
N A 2
2 2 ol 1 [ Kar) = 1
nr nata anu Ep _ Kﬁ ANty
p=11},t,=1 ang 2 e
(42)

The denominator in this equation is nonsingular because
Eﬁnu < 0. Eq. (40) is extremely important for solution of
the Faddeev equations for deuteron stripping in the separable
representation. The overlap function is not an eigenfunction
of any Hermitian Hamiltonian and, hence, not normalized to
unity. Its square of the norm is the spectroscopic factor of the
configuration 8 + y in the bound state o,

<(po€n‘y (pgiiﬂ() = S(ﬂ”)’)na . (43)

In the three-body model, in which the antisymmetrization
between the nucleon y and nucleons of nucleus § = A is
neglected, the sum rule is Z,I.L] Segry)., = 1. If we take this
antisymmetrization into account, for what we need to go be-
yond of the three-body approach, in the isospin formalism the
sum rule is ZI’LI S(goy), = A + 1. For antisymmetrization
separately with respect to protons and neutrons the sum rules
is Zg:l S(ﬁp}/)na =Ny +1 for y =3 and Z']Zzl S(ﬂﬂy)“u =
Zs+ 1fory =1, where N4 (Z,) is the number of neutrons
(protons) in nucleus A. To take into account the antisym-
metrization we can include the antisymmetrization factor into
the coefficients ¢},
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Because we use the three-body approach we suggest the
following procedure. For a # 3 the overlap function ¢}, has
a pole at kﬁ —2uq E 0,,,,1 Its residue in the pole can be
expressed in terms of the asymptotic normalization coefficient
(ANC) for the virtual decay «,, — B” + y. The neutron
ANC:s can be determined from the analysis of the experimental
data. The overall normalization due to the antisymmetrization
can be included into the coefficients cnu For ¢ =3 the
singularity at k2 = —2 u, Eéfnu is the branching point but
it is a pole for the two-body p + A scattering T matrix and
its residue is expressed in terms of the proton ANC. For
a = 2 the overlap function is the deuteron bound-state wave
function, which is decoupled from the indices characterizing
the excitation of nucleus A.

Now we proceed to the generalized AGS equations. Let
Loy = {nq, ty} collectively denotes the quantum numbers of the
state of the pair o and the number of the separable expansion
term. Allowance for the Coulomb proton-nucleus interaction
leads for the physical transition amplitudes, which are the
matrix elements of the operators L{g[; ,

X;‘Z_ﬁ o Ly (qiﬂ’ Yo Z)
_C?ﬂ* ga(qﬁ|(gﬂ;ﬁ|g (Z)Ug ()

x G’ @)|eh )au).  tp < Np, 1o < Noo  (44)

where for & =3 gf, is the Coulomb-modified form factor

[see Eq. (84) below]. For @ #3 g/, = x.. . The total
physical amplitude for transition from channel o with bound-
state quantum numbers n, and internal state p of the nucleus
A to channel 8 with a configuration characterized by ng and
o is determined by

X pan @ 9 = 3 D0 X[ 0 (@ qui0). (45)

tﬂ:l te=1
Note that
G tp06,(2) = B ATy, (46)

where ¢g = ¢/. The amplitudes X3/ Blpate satisfy the off-shell
effective-two body equations

X5 e, (P Pai 2)

800 Zfeyac, Pl Pui2) + Z >

n }’ly
Apy_ 700
: Z Z (27-[)3 Zgg,, ny(pﬁ’py,Z)
t,.t,=1 1=1
xAyc I ( Py/2M ) y{Va{a(py,pa;Z). (47)

Here p;s and p, are the off-shell momenta. The off-shell
amplitudes are needed later on when deriving the AGS
equations in the Coulomb distorted wave representation.
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For only two charged particles (with the charges of the
same sign), particles 1 and 2 in the case under consideration,
the effective potentials are given by Ref. [17]

O % O'

aﬂC(ﬁ (pﬁ|<Xﬂ;ﬁ|(1 30 934)

X G577 (2)—8pad3a G5 | X5z, )IPa)-
(48)

2%, Pp Pa3 2) =

Here the Coulomb Green’s function operator is

G$(2) = (z—Hy— V§ ) (49)
and [0 7] = [(@5 |G 1¢5)]. [V4 "1 = [8,, V). The effec-
tive potentials are diagonal in the upper indices since the
internal state of nucleus 2 cannot be changed by the one-step
particle transfer process. Equations (47) allow one to take into
account the possibility of the excitation of nucleus through the
interaction with the nucleons 1 and 3, respectively, as well as
the contribution of the rescattering of the excited nucleus to the
three-body dynamics. Because our Coulomb V3C interaction
potential depends only the distance between particle 1 (proton)
and the center of mass of nucleus 2, this Coulomb interaction

cannot excite nucleus and [V, yLor ] is diagonal matrix in the
upper indices indicating the target excitation.

Further insight is gained on expanding Eq. (47) in a Neu-
mann series. If in that expansion one neglects the contribution
from all those terms in which the excited nuclear states appear
explicitly, one obtains equations that are of the same form as the
usual AGS equations. The only difference between the latter
and the AGS equations for three point particles is that now
the two-particle amplitudes describing the elastic scattering
of each of the nucleons off nucleus 2 take into account
the multistep excitation and subsequent de-excitation of the
nucleus. Therefore, the corresponding pair potentials must be
expected to be energy-dependent, nonlocal, and complex. In
practical applications these potentials could be approximated
by optical-like potentials but fitted to the nucleon-nucleus
scattering and bound-state data.

IV. THREE-BODY EQUATIONS IN THE COULOMB
DISTORTED WAVE REPRESENTATION

In this section we obtain the AGS equations in the Coulomb
distorted wave representation. To this end we start from
the matrix AGS equations (47). X3/ iz, (Ppr a3 2) 18 the
reaction amplitude describing the transition from the initial
channel o + (B y),, and nucleus A in the internal state p,
whichever particle it is in the initial channel, to the final channel
B+ (ay), with particle A in the internal state o. If, for
example, o = 2, the above transition is a” + (By),, — B+
(a? y)¢,. Because we use separable potentials, the effective
potentials Z g’gﬂ,a ., (Ps- Qo 2) are sandwiched by the separable
form factors x.. and xj ;,- In the next section the full
AGS equations with explicit indication of spins and angular
momenta will be presented. It is worth mentioning that we
assume that all the effective potentials are diagonal over the
upper scripts p and o, that is the effective potential doesn’t
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change the internal structure of nucleus A. This change can
occur only in the separable potential matrix AV oo This

assumption is justified because the Coulomb p-A interaction
depends only on the distance between the proton and the center
of mass of target A.

Our goal is to obtain the modified Faddeev equations
in the AGS form where the Coulomb rescattering of the
particles in the initial and final states is explicitly taken
into account by sandwiching the transition amplitudes and
effective potentials by the corresponding Coulomb scattering
wave functions. That is what we call the Coulomb distorted
wave representation. To obtain this representation we follow
the strategy outlined in Ref. [16]. First, we need to rewrite the
matrix AGS equations in a conventional Lippmann-Schwinger
form X = Z 4+ Z Gy X, where G is a two-body free Green’s
function. After that we add and subtract the Coulomb po-
tential between the particles in the initial and final channels
introducing Z = Z' 4+ U¢, where Z' = Z — U€. After that we
will apply the two-potential equation leading to (p©|X|p€) =
(p€1Z'|pC) + (p€1Z’ GC X|p©), where G€ is the two-body
Coulomb Green’s function describing the propagation of the
particles in the intermediate state and p€ is the Coulomb
distorted wave. Using the spectral decomposition of the
Coulomb Green’s function G¢ we immediately arrive at
the desired AGS equations in the Coulomb distorted wave
representation, where the reaction amplitudes and the effective
potentials in all the channels « # 3 are sandwiched by
the Coulomb distorted waves: (p€|X|p€) = (p€|Z'|p€) +

PHYSICAL REVIEW C 86, 034001 (2012)

{pC1Z'1p°) Gy (p€|X|p€)). We have only quite schemati-
cally described our strategy. Its practical implementation has
many peculiarities which should be overcome. Now we pro-
ceed to the practical implementation of the outlined strategy.

First, to rewrite the AGS equation in the Lippmann-
Schwinger form, we introduce new effective two-body am-
plitudes and effective potentials [16],

X=XgG,g,' (50)
and

Z=7G,8," (51)
with

Gty a5, P P ) = 85 (B, = Pu) Ay, Ga). (52)
Where {ﬁ = ;0/(7 20{ =27 — pg/(ZMa) FOI' ta g NO(
ggf)ﬁ;ﬁa;-a(p;, Po;2) = (Sﬂa 8{,9 Caaap 5(p;{ — Pa)

X go;a I (pa; - Eana)v (53)

. 1
go; 32— Eqn,) = - 54
go,a{n(pa “ ) 72— Eqy, _pg/zMa ( )
is the two-body free Green’s function, z — E,,, — p2/2 M, =

q2/2M, — p2/2M, +iO0.

Introducing new reaction amplitudes and effective poten-
tials we are able to rewrite half-off-shell Eqs. (47) in the matrix
Lippmann-Schwinger form,

yny

- ~ dp 1
ap ’ . __ F0p )4 70T
Xﬂzﬁ’a;a(pﬁ5 qa7z)_Zﬂ{ﬁ’a{H(pﬁ’ Qa»2)+2 Z Z Z/(an ﬁ(ﬂ y;'y(pﬁ5 py’Z) —E pyz/(zMy)

=1 1=

x X'

"
Y . ny 0. 1=

vp .
X XV ¢l ;a(py, Qo 2).

Note that the two-body free Green’s function ap-
pears only in the terms describing the physical
bound state — bound state transitions. The new effective
potentials Z are not diagonal over the upper indices because
they contain now G°~.

The terms with t > N, +1 are auxiliary terms in-
cluded to 1mpr0ve the accuracy. Corresponding auxiliary
amplitudes X! ;,,Ma(l)y,qa;z) don’t describe any physical
transition bound state—>bound state. If we include these
auxiliary amplitudes, we need to supplement AGS equations
by the equations for these amplitudes.

In Ref. [8] the Coulomb p-A interaction was neglected
but here we explicitly include it. Allowance for this Coulomb
interaction leads to the appearance of the Coulomb-modified
separable form factors for the system (12) and the off-shell
1 4+ 2 Coulomb scattering amplitude in the four-ray vertex
in the triangular diagrams [4,17,18]. The triangular diagrams

d
Voac Py @D+ )0 Z Z/(zpy)z 25 o P P D) AN (2

=N,+1 v=1

- p;/2M,))

(55)

describing the d + A and p + (n A) elastic scattering with the
four-ray vertex, owe to the presence of the off-shell p + A
Coulomb scattering amplitude, contain the Coulomb forward
singularity A=2 in the transfer momentum plane at A? = 0.
Coincidence of this singularity with the pole singularity of the
two-body Green’s function leads to a noncompact singularity
of the generalized Faddeev equations written in the AGS form
[4,18,19]. To eliminate it in Refs. [4,16] the channel Coulomb
potential was added to the diagonal effective potentials and
subtracted:

Zﬂgﬂ,ag —(Sﬂa(sa?,S{ﬂ{ ngU +Zﬁ{ﬂa{’
tg or fy < N, (56)
and

258 ate = Zgty ates tg = Ng+lorty > No+1. (57)
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Note that the nondiagonal effective potentials are not affected
by the Coulomb channel potential, that is nondiagonal poten-

. ""(Tp . . . .o . .
tial Z, Lpaat coincides with the original effective potential

Zy fyac,» While its diagonal part in the channel o # 3 is
Zgi“a we, — US for 1, < N US is the channel Coulomb
potential describing the interaction of particle « and the system

(B y) with its charge concentrated in its center of mass,

PHYSICAL REVIEW C 86, 034001 (2012)

Z, e is the charge of particle « and Zg,, e is the charge of the
system (B y), which is equal to Zge or Z, e depending on
which particle of that system has nonzero charge; p, is the
distance between « and the center of mass of the system (8y).
The explicit expression for the effective potentials will be given
inthe next section.  After adding and subtracting the channel
Coulomb potentials, according to the outlined strategy, we can
apply the two-potential theorem, which allows us to rewrite
Egs. (55) in the form in which the reaction amplitudes and
potentials are sandwiched by the Coulomb scattering wave

c ZyZg, e )
Uy (pg) = ———, (58)  functions (off- and on-shell),
P
|
~ ! _ ! ’ dp ~/ 'C(—
SCop (<'C(=) _C(+). SCop C(—-) c(+) “ry SCot (= ) L C(—).
Xpcpae, B8 32) = 250, o, (B 4G +ZZ Z Z/ Qny Zy 5 By 0y 52)
ny t=1 t=1
1 g€t CE) €.,
X
: ol 7 i)+ 30 D Z
Z_E)’”y _pyz/(ZMV) ’ ’ ¢ Ny, by, 0, =Ny +1
Z dpy SC(TU (~ . )AUU ( /(2M )) SCVP ( C(+). )
Qn)y 2y By pyig) AT (2= p) vepat,\Pr> a5 2)
X Nﬁ’ toz g Noz’ (59)
5SCop / C(+). _ SCO’P C(+)
Xﬂgt%a{a (pﬁ7 qv‘ < ) - ﬂ{ﬁ a(a(pﬁi ’Z)
dpy Z5C rC(). 1 FSCto  (C(-) (C(H).
+ / ot (pj pS; - e (S qg Mz
Z ;; ; (27-[)3 ﬂfﬂ V{y( B 14 )Z _ Eyn _ pyz/(zMy) Y &y.ad Y )
§s¢
t2 2 Z Z/(Zn)s §re, P P DAY o (2= P/ QM) X% (B 0G52),
Y nynyty t,=N,+1 v=1
> Np+1, tw <N (60)
[
These equations are the desired Faddeev equations in the CH) —

AGS form in the Coulomb distorted wave representation. They
generalize Egs. (5.35) [16] by taking into account the target
excitation. Equations (59) determine the components of the re-
action amplitude matrix corresponding to bound state— bound
state transitions. From these components one can calculate
the observable cross sections. However, to determine these
physical matrix elements we need to know also the auxiliary
amplitudes X igfﬁ ., (Py» 45; 2) corresponding to transition
from the initial bound states (7, < N,) to the quasiparticle
states (t]’, > N, + 1). That is why Eqgs. (59) are supplemented
by Egs. (60), which determine these auxiliary components.
We remind that the auxiliary components appear as the result
of the separable expansion of the nuclear potential not only
over the bound states but also over the quasiparticle states not
representing any physical bound states (fg > Ng + 1).
In these equations the reaction amplitudes are

SCo
Xpe oe (V8455 2) = 361X5, 0r, @0 "), (6D
where for 15 < Ng, ty, < Ny yp = pﬂc( ) I/fpc(q) denotes

the off-shell Coulomb scattering wave function in the exit

channel g and forzg > Ng+ 1, 1, < N, yg = P;s§ q¢
C(+)

q,  stands for the on-shell Coulomb scattering wave
functions in the initial channel «. Also for the amplitudes
under the integral

SC tp
XV &y a8y

C(+)

(¥y- 45 (62)

?) =

C
1% e, DN, ):

c(—) .
where for t, < Ny, 1, < Ny y, = pc( ) = I//py( ) is the on-
shell Coulomb scattermg wave functlon in the intermediate
channel y and fort, > N, + 1, t, < Ny 'y, =p,.

The inhomogeneous terms are

~/

SCop (&'C(=) C(+). C(-) C(+)
Zgeyr,Bg 4o i2) = (¥ Y, qﬂ|Zg;ﬁa¢a(z)|lﬂ ),
\ Nﬁa t()[ g Naa (63)
SCo C( ) C( )
Zﬂ;,f,a’i;u(pﬁvqo,-F ) pﬂ|Zﬁ§ﬁa§u(Z)|¢qn+>s
tg = Ng+1, 1, < Ny. (64)
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The potentials in the integrand are

Z3s e (s py i2) = vy

)
Vo, a0 |Z,3;ﬂ v, @Dy ),

p < Ng, 1y SNy, (65)
SCoo ~'C(—) . C(-)
Zﬂfﬂ vy (pﬂ »Pysz )_< pﬂ qﬁ|Zﬂ{f; )/é“y(z)|p}’>’
s <Ns. t,>N,+1, (66
SCo C(—). o C(-)
Zye v e, (0 0y 732) = (0B1Z5%, o, @ wg, 7).
ﬂ/Nﬁ+17 tygNy» (67)
ﬁ;ﬁy;y(pﬁv PyaZ) <pﬁ|Zﬂ;ﬂy§V(Z)|py)’
t5>Ns+1, 1, >N, +1. (68)

In each channel, for which two-body state is not a bound
state, the Coulomb scattering wave function (off-shell or
on-shell) should be replaced by the corresponding plane
wave.

The off-shell Coulomb scattering wave function is given by

[¥s) = {14Go[ga /2 Mo)]} T [0/ (2 Ma) ] IPa)
Pa F Ga> (69)
1
Golga/2 My)] = (70)

q2/2My) —Q2/2M,)+i0

is the free Green’s function describing the propagation of the
system of the noninteracting particle o and the system (8 y),
Q2/(2M,) is the kinetic energy operator of their relative
motion. Also T.E[p,, Pu; 92/(2 M), Pl, Pa # qu» is the
two-body off-shell Coulomb scattering amplitude of particle
o and the center of mass of the system (8 y) moving with
the relative kinetic energy g2/(2 M,) and interacting via the
Coulomb potential US (pq).

The on-shell Coulomb scattering wave function can be
obtained from it by taking the limit p, — ¢,. In this limit
we get [20]

lim (y¢©)
Pa—Ga < PosGa

Qpar qa) = (V<] (71)

where

pa_’_qa )ina
Pa—%—io '

(72)

QPas qu) = €T — i n)] ™! (

PHYSICAL REVIEW C 86, 034001 (2012)

Ne =Zo Zgy e? My /qq is the Coulomb parameter in the chan-
nel o, which characterizes the Coulomb interaction between
particle o and the system B 4 y moving with the relative
momentum gy, Zg, = Zg + Z,,.

We return now to Egs. (59). These are not integral
equations yet and we will address this point. Let us
consider the physical amplitudes (describing the transition
bound state — bound state). On the left-hand side of Eq. (59)

we have the amplitude XSiag ., (Pg O, € z) given by

Eq. (61), while in the integrand we have different half-off-shell

amplitude X Si e, (07, ¢S5 2) given by Eq. (62). Both

amplitudes are half-off-shell but the off-shell effects are treated

differently in both amplitudes. In X ;gﬁ”ﬁ ., (Pg = ), q§™P;z2)in

the bra state we have the off-shell Coulomb scattermg wave

function, while in X 5({? (S, q§1); 2) in the bra state we
have the on-shell Coulomb scattering wave function but with
momentum p,, which is the integration variable and, hence,
Dy # qy,where g, is the on-shell momentum in the channel y .
Hence the amplitudes in the left-hand side and in the integrand
of Egs. (59) are not the same functions and these equations
cannot be solved as integral equations.

Let us take the on-shell limit p}; — q;; in Egs. (59). Taking
into account the on-shell limit of the off-shell scattering wave
function [see Eq. (71)] we get for the reaction amplitude and
effective potentials:

SCo ~'C(
lim Xﬁgﬁfj{ (p ),q§(+), )
P4y
’ /' \N1— Co C
= [Q0pp ap) " Ky a (a5 7 a0 i2). (73)
'SCop (5'C) (C(H).
Jim 250 (B 0l i2)
SCo 'C
= [Qpp. a1 Zge 70 (a5 7 aSPiz), (74)
. SCot 'C(—=) .C(-).
lim ZgCor (B Py i2)
pﬂ_)q
SCo, 'C(—
= [Qpj. ap1 ™ Z55, 0 (a5 7 pSTs2)  (75)
and
. SCo 'C(—) .
p,h_fg Zye e (B Pyi2)
SCa C
= [P a1 237 (a5 7 opyiz). (76)

Thus taking limit py — g in Egs. (59) and multiplying
them by [€2( pl/g, q;,)] we obtain the on-shell limit

' 5/ dp, -~
SCop C(=) _C(H). SCop 'C(—) C(+) dpy SCor o) ceo.
Xﬁ(ﬁaé'a(qﬂ » Qo 5 ) Zﬁ!ﬂa{a(qﬁ » Qo ZZZZ/ (27_[)3 ﬁ{ﬂ(}flg“y(qﬁ N A )
ty

X ! TSC (pCO), qC;z) Z » Z Z/ Py scoo

7 — Eyn Pyz/(ZMy) Y &y.a iy \Fy o o A (27.[)3 ﬁé“ﬁ,yly
e L 2S¢
x(qg" . pyiz) AYY c/( p,/2M,)) y{’vgg‘a(p)/’ q$™;z), ts < Ng, to<N,. (D)
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The on-shell limit of Egs. (60) is straightforward because the bra state p}J is the plane wave and we get

~ o, 7 - dp N
K36 @ a52) = 35T o 0052 + 03 > Z/ Gt 2, 9 752)
ny, t,=1 =1
! g€t C(=) CH).
* Z—EAynV —py2/(2M ) yeat Py e )
" Z Z Z Z/ (271)3 Z2, yfy(qﬂ’pr)Ay L) E PV/(ZM )| X 3?”{;{ (py, a5;2),

Y nynyty V—NJrIU 1
>Nﬂ+1, ta\Naa

where ¢, = {n,, t,},

¢ = ),

(78)

t,}. Itis evident that Egs. (77) are not integral equations because on the left-hand side we have

the on-shell transition amplitudes while in the integrand they are half-off-shell. To obtain an integral equations from Eq. (77) we
use its off-shell extension, which differs from the one used in Eq. (59),

SCo 5' SCo ’ dp e sC
Xﬂlﬂ Zla (pﬁC( )’ qg(+)’ ) Zﬂ(ﬂ OlpCa(p ;e )’ qg(-H’ Z Z Z Z/ (27:)3 ﬁsli J/r{y (pﬁC( )s pg( ), )
ny t,=1 =1
! SCtp (hC(=) (CH.
= X , .z
) z2—Ey,, — Pyz/(ZM y Crev oe, (P, a5 2)
dp oo oV ~ ~
i Z Z Z Z/ (27‘[1/)3 ggﬂ Ve (pﬁ  Pyi2) Ay'e, ¢ (&) ng;].jgga(py’qg(ﬂ 2),
ny.n), 1., =Ny+1 v=1
SN tes e (79)
X0 (P aSVi2) = 2,57, (pﬁ, €;2)
dp}/ 7' SCot ). 1 - SCp O e,
" ’ - i o sy
Z;; ;/ (271’)3 5(,9 ny(pﬁ p, ) _Eyny —pyz/(Q.My) v & Ca(py q )
Py oo
* Z Z Z Z/ (2]-:)3 B V{y(pﬂ’p}/’z) Ay &y (/(ZV))X;'? sga(py, qg(+)’ )’
ny ., b0, =Ny,+1 v=1
/Nﬁ+lvta\Na, 80)

where Z, =z — pf, /(2 M,,). Equations (79) are half-off-shell
because in the exit channel 8 the on-shell Coulomb scattering

wave function (p;gc(f)| = W'ISH' is present with momentum
B

pp # q;}. It means that in Egs. (79) the off-shell behavior in the
exit channel differs from the one in Egs. (59), where the off-
shell Coulomb scattering wave function is used rather than the
on-shell one but with the off-shell momentum. But the on-shell
limit of Eq. (79) coincides with the renormalized on-shell limit
of Eq. (59). Equations (79) together with Eq. (80) are our final
equations in the Coulomb distorted wave representation, which
will be used to calculate the deuteron-stripping amplitudes and
cross sections. The advantage of these equations is that one
don’t need to use Coulomb screening procedure, application
of which becomes problematic when the charge of the target
increases.

V. ANGULAR MOMENTUM DECOMPOSITION OF
GENERALIZED ALT-GRASSBERGER-SANDHAS
EQUATIONS IN THE COULOMB DISTORTED WAVE
REPRESENTATION

Here we present the final expressions for the modified
AGS equations (79) and (80) after the angular momentum
decomposition. We follow the formalism used in Ref. [15].
We use the following angular momentum coupling scheme for
a given channel a: sg +5, =Sy, Ly +Sy = Jo, So +Jo =
Yy, 1y + 2, = J. Here, s, denotes the spin of particle o, L,
is the relative orbital angular momentum, S,, is the total spin,
and J,, is the total angular momentum of particles 8 and y;
moreover, l, denotes the relative orbital angular momentum of
particle @ and the pair (8y), and finally J is the total angular
momentum of the three-body system. Also A, = A% is
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the rank of the separable expansion in the two-body channel
o with fixed J, and S,; N, = N/«Se (NJuSe  AduSu) jg
the rank of the separable expansion corresponding to the
bound states in the pair o for given quantum numbers J,
and S,; as before 7, = 1, ..., A%% enumerates the number
of the expansion term of the separable potential in channel
o with given J, and S,. As in the previous sections, n, =
{Ly, S, Jo} collectively denotes the quantum numbers of

From Egs. (79) we get

PHYSICAL REVIEW C 86, 034001 (2012)

the pair o, while ¢, = {ny, t4} = {Ly, Se, Ju, ty} denotes the
complete set of quantum numbers characterizing the two-body
state o, which, in addition to n,, includes the number of
the separable expansion. A new variable u, = {ny, ly, o}
collectively denotes all the introduced above spin-angular
momentum variables in the channel « except for #,. As in
Ref. [8] we don’t use the isospin formalism to treat two
nucleons.

N, N d
SCJ™ 5'SC J™ py py ~/SCJH
Xuﬁl/fi uzfu(pﬁlﬂ ‘Ial ,Z) Zuﬁtﬁ u:t/:(pﬁlﬂ qctl 52 +Z Z Z Z/ 2 72 u,et,s uVUt:(pﬁlﬂ pyl ’Z)
Yy uy h=l =1
! oSCJ™ tp
XZ—E —pyz/(zM) uy ty, ”ufa(pyl’qa[,Z)
dpypy 75CI00 A 55,00 XSCJ ’
+Z Z Z Z ) Mﬁfﬂu ty(pﬂl,g Pyi,s ) Lyt L’ﬂ(z)/) i uat(,(pyly» qal ,Z)
Yy, by, 1, =N,+1 v=1
tg < Ng, ty < Ny o
Heren, = {S,,L,, J,}andn, ={S,, L), J,}, u, = {ny,1,, ¥y} andu, = {n), [, ¥, }. Note that in the scattering of particles

. . . J
of the pair « the total momentum J, is conserved. That is why A

Also Eq. (80) leads to

Ly

¥ Sy TV

oL (zy) is diagonal over J,,.

dpy py Z5C I ot

scJm scJ” o C .
X“ﬂtﬂ u(:’;a(pﬁ’ qal ’Z) = Zuﬂfﬂ M:tt)a(pﬂ’ qvtl »Z +Z Z Z Z_/ 272 "’”"’ “Vty(pﬁ’ PVIV,Z)
uy t,=1 =1
1 oSCJ™ tp
X A b ’Z
7 — Eyny _ 2/(2M ) Uy ty, unta(pyl qal )
> dp, Py 71700 J,8, ov SCJ™ vp
+Z Z Z Z 272 uﬂlﬁ,uyty(pﬁ’ pV’Z) AL t, L, t/(ZV)Xu 1, uata(p)” qal ’Z)
uy,uy, ty,t,=Ny+1 v=I
>Nﬂ+1, oy < Ny. (82)
Al (%,) satisfies the system of equations
Ly, L, 1Ly Y q
N./ S
J, S, Tv G) = AJSrv +Z ny Zkfw XJSw| 1 Jysyw)AJSwv G, 83)
L L/ ’ y - L ! L LH " L// " ~ L// " L// //L/ ! y
wE P T e e T B Ty e SR @) T TR
where £, =z — p}z,/(Z M,).
The Coulomb-modified form factor is given by
C JySyo 0y
7,8 1,8 1 2Ty, (ky ok, )X, (k)
LV [i (k ) = XL y (ky)+8y3 a2 /0 dk;, ;, r— ) (84)
14 Y Y
1
T¢ (k’k”)—l dx P, (x)TE(K,,Kk,;2,) (85)
)/Ly ’ y’Z)/ _2 o X Lyx Y Y )/92}/7

where x = lA(;, -k,, k=k/k.
SCJ"op

The physical reaction amplitude X RSINARE which describes

the transition from the initial channel «, where the particle

pair (By) is a deuteron with J, = J; = 1 the relative orbital angular momentum of particle « and deuteron is /, = /; and
the total channel spin ¥, = %;, to the ﬁnal channel B where the particle pair («¢y) is in a bound state Jg = Jy and the
channel orbital angular momentum and channel spin /g = I and X3 = X, respectively, can be calculated from the solutions of
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Egs. (81) and (82) as

SCJ™ap
LS i % 1(Pﬂz, qal 7E
ugtp Uy ty

PHYSICAL REVIEW C 86, 034001 (2012)

Z 8450, 0151, 8555, 80,181,1 85,5, Xfﬁcz; i b (P,ngj q$,: Ey), (86)

Now we proceed to the effective potentials, which are the main input into the AGS equations. Our new defined potentials [see
Egs. (51)—(53)] are not diagonal over upper indices. We start from generalizing Eqs. (33) and (34) obtained in Ref. [15], which
determine the off-shell effective potentials sandwiched by the plane waves. Here we replace these potentials by the ones in the

Coulomb distorted wave representation,

4
5'SC J™ 5'SC J™ ) c . JgS, JoSe
Zuﬁtﬁ u;;;(pﬂ[ﬂ pal ’Z Z Zuﬁtﬁ u;;;(l ﬂlﬂ pa[a’z)s B < N p ﬁ’ to( < N 5 (87)
i=0
4
~SC J™ 58C J™ c . S, o Se
Zu;;zﬁ uzeu(Pﬁ, pal ’ Z Zuﬁzﬂ uz'?u,(l) pﬂv Palu’z)’ g = NP% 41, 1, < NP5, (83)
i=0
and
4
7 JT i
Z (Pl PasD) =Y Zit O (P Pa)s tp = NP1, gy > NP1, (89)
Here
~1SC J™ op (i) dpﬂ p//S/z dp, 17”2 I ap i)
T C Jg S, JaSa
Zuigoucrs (Pgiy Par32) = /O 2 /0 ey PP Za D P P DY L (Pt S N 1y <N
(90)
5SCITop()( 1 C ..\ _ * dpg Pa JTep(@) 1 p. c " > NJ8Ss < NYeSe
Zuﬁtﬂ,uuta (pﬂv palnvz) - 27_[2 Zuﬂtﬂ,uata(pﬂv PQ,Z)WPHIQ(PO,), tﬁ = N + 1» toz X N ) (91)
0
JT () 0) JsS JoSu
Zu,;tﬂaﬁdlta ﬁv pa’ Z A (P,37 pa u?‘;ﬂ,lul:ta(pﬁv pa»Z) tﬁ N ? ﬂ < N ’ (92)
- T op i
Za 2 (Dl Pi2) Z Al(ply PRI (P Pli2), 1 = NP 1, 1y < NP5, (93)
and
JTT H . .
Za o (P Pai?) =Y AL(Ph. Pa) Rug i w (P Pai?)s 1= NP 41, 1y > NS4 1, (94)
K
Here
NJuSa
~! : JaSo( N ~ A
Ruglt)ﬁ(,l)ugtu(pﬁ’ pa’ Z Z Ru(;(z;(l,,),’(ﬂ ﬂa PQ’Z) AL‘; f&(z[: [a(ZDt) (Za - Eana)y tﬁ < Njﬁsﬁv to( < NJ&S“? (95)
L, o=l
NJaSa
S j JoSa 2 £
R e D P =D Y RS (s PO ALY G (Ba = Eany)s 15 = NP9 41, 1) <Now (96)

L, =1

where Z, =z — p”2 /(2 M,). The nondiagonal potential for

i = 0 describes the pole diagram corresponding to the neutron
(particle 3) transfer (see Figs. 1 and 2); the potential for i =
1(2) describes particle 1(2) transfer diagrams which contain
one Coulomb-modified form factor (see Figs. 3 and 4). The
transfer diagrams describing the inverse processes are shown
in Figs. 5 and 6. The effective potential for i = 3 describes
the elastic or inelastic scattering triangle diagram (see Figs.
7 and 8) and the effective potential for i = 4 describes the
exchange triangular diagram leading to the rearrangement in
the channels o # 3 (see Figs. 9 and 10).

Both triangular diagrams contain the 1+ 2 off-shell
Coulomb scattering amplitude in the four-ray vertex. The
amplitude of the elastic scattering triangular diagram contains
a strong forward Coulomb singularity generated by the off-
shell Coulomb scattering amplitude, which is compensated
by subtracting a corresponding Born-Coulomb scattering term
in the channels o # 3. For the contributions with i =0, 1, 2
k = L is a single index while for i = 3,4 it is a multi-index
« = (L1, L2, f). Explicit equations for A’ and Rf,’; o, e b
were given in Ref. [15]. Equations for Al can be taken from
this paper with only two minor modifications: q;@ should be
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replaced by pj and g, by ps. Equations for R®* should ~ where Koy = €45(Agy Po + Pj), Ky = €gy(hay P +
be modified by including the target excitation indices. In Pe), X = f)}j Pa> Agp =me /(Mg +mpg) =1— Ago, a # B.
particular, Eq. (A1) [15] fori = 0, 1, 2 takes the form Also €, = —€g, is the antisymmetric symbol with €,5 = +1
RaY: if (o, B) is a cyclic ordering of the indices (1, 2, 3). Although

R .. " (Pg: Pai2) in Eq. (97) formally two Coulomb-modified form factors
L 1 are present, utmost only one Coulomb-modified form factor

= Rf:?a(”ﬁ( p}p Pai2) = X,ga C?ﬁ*cg 5 / dx Pg(x) is needed. In the diagram with i = 0, which describes the

neutron transfer (particle 3), the vertex with o = 3 doesn’t

ka_Lak;S_ b g7 *(kﬁ)g{ (ky) appear. Specifically, the amplitude of the pole diagram
X L 5 , describing the neutron transfer 1+ (23) — 2+ (13) (see
2= € = pi/2Ma) = k3 /i) Fig. 1) is given by
i=0,1,2, CH)

o Pk 7 xz (k) xg (k)
R 0L "oo ()L, s o o B i o .
; y Pas2) =396 - dx P, , =0, (98
Ry (P pas ) = Ry 2 (plys Pai2) = 8pa cf, 2/_1 x Pe(¥) ——— M) — K2/ i (98)
where « = 1, B =2 and y = 3. Only the vertex 8 + y — (8y), which contains nucleus 2, depends on the nucleus excitation
index o. Correspondingly, the amplitude of the inverse process 2 + (13) — 1 4 (23) (see Fig. 2) is given by

o Kbk g () e, (ke
ROCOL "oa ()L, s o % a B s Sa

s 2 v Pa32) =08puc = | dx Pr(x ,
Cﬂf (pﬂ p ) = €ﬁ€a (pﬂ p ) Ba €y 2/_1 ( )Z— o _ pa/(ZMa)—ké/(Ma)

Here, « =2, f =1 and y = 3. Only the vertex « + y — (ay), which contains nucleus 2, depends on the nucleus excitation
index o.

In the diagrams with i = 1, 2 (proton or nucleus transfer) the vertex with o = 3 appears only once. Also in Ref. [15] the
Coulomb interaction in the Coulomb-modified form factors and in the four-ray vertex of the triangular diagrams is taken into
account in the Born approximation. Here the Coulomb-Born amplitude is replaced by the full off-shell Coulomb scattering
amplitude of particles of the pair y = 3. Expression for the Coulomb-modified form factor with the off-shell Coulomb scattering
amplitude is given above in Eq. (84).

Now we proceed to the amplitude of the triangular diagram, i = 3. The elastic scattering triangular diagram has singularity
at forward scattering generated by the off-shell Coulomb scattering amplitude. To eliminate this singularity we add and subtract
the channel Coulomb scattering potentials in channels « # 3 [see Eq. (56)]. The added Coulomb potentials can be eliminated
by the including Coulomb distorted waves in the initial and final channels « # 3. In Eq. (A3) [15] the Fourier transform of
the screened Born-Coulomb potential V,ER)(A(’,) should be replaced by the unscreened Tyc, y = 3. Then Eq. (A7) [15] for the
triangular diagrams in Figs. 7 and 8 takes the form (o # 3)

i=0. (99

1
L1 L foo —JySe 00 1
RO (Dl pui 2) = Spa Ba3dys {4nFL L P D V(A + / dx2 Pry(x2) VE(AL)
1
J Sq JoSe00 ! SeJuSq00
[Fuuz Lata f (P> P 2) — 16”3FL 0L ta(pa’z)]} 872 dx2PCz(x2)FtrL’t’L tof (Pys Pai 2),
1, < NP gy < NP5, (100)
where, owe to 8 = «, pﬁ =p, andtﬁ =1,
—JuSe 00 JuSeJuSy 0
FL l/ L ta(pouZ) 167'[3 Ly l ,L zuoﬂ(pa’ th’Z)
o ) /oo e XL X () 23 o
= ——c , C ) o s
(2m)* bt B bedete ], (2= € = P2/C@My) = K2/2p)’
o) JoSeo k
J.SuluSuli o0 % o 2L —f Xior (k)
F os Pas2) = CiC / dk k="«
vty e P = | T— ¢ — P2/ M) — K2/

J)Sq0 g
Xii" (A + KD [Ag + k| 7Fe

z— € — p2/2My) — (Mg +K)*/(2ua)’

1
y / dx Pz (x) (102)
-1
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xion” (k)
Z— €% — Pﬁ/(z M,) — kz/(zﬂa)

o0
I, S JuSaLioo, 4 . " 4L —
Frrpsn o (Pgs Pai2) = cf7cg, /0 dk K>t/

/1 peo XS (| A + KD Ay + K H o wnn) o)
X x Pr,(x s 32y )-
1 e — p2 M) — (A + K/ Que) T Y
Here ¢y = {Su, Lo, Ju, to} and é‘o/z = {Sa, L;, Jo/z’ t(;}’
A:x =pot_p:):’ Ay = —hyp A:x’ x2=f’a‘f’¢;’ X1 ZR'AOH (104)
mgPe — My Pp , mﬂpt/x_m“p,/ﬁ ’ ’ / ’
k, = ——— ——, K =———, o = , k, -k, =A. 105
4 maﬁ 14 maﬂ p +pﬂ pa +pf3 Y Y o ( )

We use the following notations for the particles in the diagram of Fig. 7 (Fig. 8): a =o' =1 (e =a'=2), f=8'=2
(B=p8"=1), and y = 3 in both diagrams. The primed particles on the diagrams are the ones after the Coulomb scattering
described by the four-ray vertex.

The amplitude TVC (K, ky;2,) is the off-shell Coulomb scattering amplitude of particles B and y in the triangular diagram
without the Born term, that is TVC(k;,, k,;2,) = Tyc(k’ Kk, 2)) — Vyc(ky -K), & =z— p)%/(2 M,).

From normalization (42) on the energy shell (p, = g,) We get

N AdeSe
—JoSu
4n Z Z FLat(;Z:tL,(Qa§Z) =1. (106)
o=1 t},t,=1

—JySq 00

Then, according to Eq. (56), after applying the two-potential equation the first term 47w F;” ./} . (py;2) Vfﬁz(A;) in Eq. (107)
will be replaced by the corresponding Coulomb distorted wave. As a result, we obtain

1
'GVLi Ly f . _ < 1 C I, SatoSa 00 . 3=JuSu 00 .
R 77y Pas2) = pa Bu3dys 2 /_ldxz Pr, () {Vy (A [Fy s 77 Py P ) = 16707 F70 L (Pas 2)]
J! S JuSa ’
+ Firy e 7 Ol P}ty =1, < NS,y < NS, (107)
Also
- 1 ! / ,
3L Lo T} SaduSa . o S
Réﬂ)fal _fad(pl/g’ Doy 2) = 8,801 8a38y3 8]'[_2 / dx, Pch(xZ) FL;’& Laty }To(p;, pa,z), tg = t‘; > NJnS +1, t, < NJ S .
-1

(108)

The spin-angular part A(g]) 1, ¢ of the effective potential is given by Eq. (A2) [15], in which ¢, and 61,/3 should be replaced by p,
and p,.
The last amplitudes are the exchange triangular diagrams shown in Figs. 9 and 10,

Kid (k)
72— € — p2/(2 My) — k2 /(2 j1a)
JpSp * —
Xio (ke + pD) ko + Pl
— € — p2/2Mp) — (Ko +P)*/Q2 ta)

We use the following notations for the particles on the diagrams of Fig. 9 (Fig. 10): e =o' =1 (e =a'=2), =8 =2
(B =B =1),y =3, where all primed particles are the ones after Coulomb rescattering. Also

_ 1 1 (o) _

LiLy fo 2+L

RGPy par) = Bpudys g— / dxy Pr,(x2) / dhg kg
-1 0

1
x / dxi Pe, (0 T 6, Ky 2) (109)
—1

N mg Pe — Ma P
x2:p;3'pon k;,:am—ﬂﬂ,
[0

p:)‘yap;s_)”yﬁpa’ p/zp;g—i-kﬂypa, xlzfia-f),

k. — mgPpa — My Pg
Y Mag ’

A=k, —K, =py =P, =Ps —Pp =Ps +Po +Py: (110)

p = p/p. The spin-angular part A(Z‘l)ﬁz f(pl’g, po) of the
effective potential is given by Eq. (AS8) [15].

Using the results of Appendix D we can simplify the
calculations of the effective potentials by combining the
neutron transfer pole amplitudes with the Coulomb exchange

triangular diagram amplitudes taking into account the fact that
near the pole the exchange triangular diagram has also a pole
singularity. Summing up the pole neutron transfer amplitude
and the pole contribution to the triangular exchange diagram
and neglecting the regular at the pole part of the triangular
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(23) 2
AN

1 " (13)

FIG. 1. Pole diagram describing the neutron transfer in the
reaction 1 + (23) — 2 4+ (13).

exchange diagram, we can replace this two amplitudes by the
renormalized neutron transfer pole amplitude, that is,

57 op (0 507 op (4
Zy O (P Pl + Zi A (P pai2)
50" 6p (0

~ (U4 D ae, ) Zay iy aen (Pl Pai2), 15 < N5,

ty < NYo5, (111)
where D.I;’Q «z, 18 determined in Appendig D. In Eq. (111)
we took into account that for the pole and triangular exchange
diagrams Z = Z. The same renormalization procedure can be
applied for any 74 and f,. Approximation (111) will be used to
calculate the angular distributions near the main stripping peak,
where the pole neutron transfer mechanism gives a dominant

contribution, and the results will be compared with the exact
approach.

VI. SUMMARY

We have derived generalized Faddeev equations in the AGS
form taking into account the target excitations and explicitly
include the Coulomb interactions. Applying two potential
formulas we convert the AGS equations to the form in which
the matrix elements are sandwiched by the Coulomb distorted
waves in the initial and final states. To obtain the half-off-shell
integral equations we use an off-shell extension. The obtained
equations are compact and can be solved. We present the
final expressions for the modified AGS equations after the
angular momentum decomposition. We show how to regularize
the matrix elements sandwiched by the Coulomb distorted
waves. In addition we investigate the off-shell Coulomb
scattering amplitude in different kinematical regions. We also

(13) 1
\

2 " (23)

FIG. 2. Pole diagram describing the neutron transfer in the
reaction 2 + (13) — 1 4+ (23).

PHYSICAL REVIEW C 86, 034001 (2012)

consider the Coulomb-modified form factors and show how
to regularize them. After that we investigate the exchange
triangular diagram and show that its strongest singularity is
the pole of the neutron transfer pole diagram. The strongest
singularity of the elastic scattering triangular diagram with
Coulomb four-ray vertex is compensated by the subtracted
channel Coulomb potential. Thus we have shown that the
Coulomb interaction can be taken into account explicitly
without Coulomb screening procedure. This will allow us to
apply the Faddeev formalism for the analysis of the deuteron
stripping on targets with higher charges, at which the Coulomb
screening procedure doesn’t work. For N N and nucleon-target
nuclear interactions we assume the separable potentials, which
significantly simplifies solution of the AGS equations.
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APPENDIX A: PARTIAL COULOMB SCATTERING WAVE
FUNCTION IN THE MOMENTUM SPACE AND MATRIX
ELEMENTS IN THE COULOMB DISTORTED WAVE
REPRESENTATION

Here we present the expression for the partial Coulomb
scattering wave function in the momentum space. This wave
function has singularity and we demonstrate how this singu-
larity can be regularized when calculating the matrix elements,
which are given by the sandwiching the diagrams, describing
the reaction mechanisms, with the Coulomb scattering wave
functions in the initial and/or final states.

First we start from the definition of the Fourier transform
of the Coulomb scattering wave function [21],

vE) = tim / dr =" e P T ey
= —dmwe AT (14in,,)
L d [P —(ptier)
e~+0 de [(p/—p)+e?]
=4 > Y (B) Yo () U5, (P)

Imy

=Y QI+ DPG-PIY5().  (AD
1

Here 7, is the Coulomb parameter of the interacting particles
moving with the relative momentum p, ¥;,,, (p) is the spherical
harmonic function, P;(p - p’) is the Legendre polynomial. We
can see from Eq. (Al) that the Fourier transform of the
Coulomb scattering wave function is a distribution.

The expression for the partial Coulomb scattering wave
function in the momentum space was found by one of the
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(12) 2
\

3 " (13)

FIG. 3. The pole diagram describing the proton transfer in the reaction 3 + (12) — 2 + (13), which contains the Coulomb-modified form
factor (12) — 1 + 2. Because this form factor consists of two terms [see Eq. (84)] the diagram is also represented by the sum of two diagrams.
In the first diagram in the vertex form factor (12) — 1 4 2 no Coulomb interaction is included, but it is included in the second diagram. Bubble
shows the off-shell Coulomb scattering amplitude of proton 1 and nucleus 2.

present authors [22],
’ 2n - . i pf
Vpi(p) = =7 et i)

e +ptiey
(p'—p+ie)tinm

’r_ 2
x 2 F (—l,l+ 151 —inp;—%)},

x lim 2Im |:e_i ¢

e—0

(A2)

where ¢f =0 — o, of is the Coulomb scattering phase

shift in the partial wave I, n, =272, ezmz/p is the
Coulomb parameter for particles 1 and 2 moving with
the relative momentum p = /2 u12 E1p, 2F (=1, 1+ 1;1 —

inp;— (Z/;IP),)') is the hypergeometric function, which reduces

_ (p'=p)?
4pp'

: _ AT T 0y )
particular, for/ =0 2F1(0,1;1 —in,; Ty )=1.

The function wlfl(p/ ) has singular branching points on
the complex plane p’ at p' =p+ie and p' = —pLie.
The small imaginary addition =i ¢ determines the rules for
circuiting around the singularities when integrating. If the
integral containing the Coulomb scattering wave functions
is calculated in the analytic form, then no difficulties arise,
because the presence of the imaginary addend =i e shifts
the singularities from the integration contour to the complex
plane and lim._.o can be easily taken after carrying out all

to a polynomial of order / in the plane z = . In

(12) 1
\

the integrations. Such a procedure, however, would be highly
inconvenient in numerical calculations, for in this case it would
be necessary to calculate the integrals for several continuously
decreasing values of € in order to attain a needed accuracy.
This procedure, owing to the presence of the singularity of the
integrand, may become very unstable and even not converging
when 7, increases.

This difficulty can be readily circumvented if, putting € >
0, we regularize the initial integral. Then the result of the
integration will be stable when integration is performed for
lim,_,¢. The regularization method is taken from Ref. [23]. To
explain the Gel’fand-Shilov method we consider the integral

b
JG) = lim / dx f(x)(x +ie), (A3)
€—> a

where b > 0anda < 0, ReA = —1, ImA #0and f(0) #
0. To regularize this integral we assume that —1 < Re A and
€ > 0. Subtracting f(0) from f(x) and adding it, we can
rewrite integral (A3) as

b
J() = lim [/ dx [f(x) — f(0)] (x+ie)*i|
e—>+0 0
VL VeS|
+ £(0) b+i0) (a+i0) . (A4)

A+

J(1) is analytical function of the parameter A in the domain
—2 <ReX and A # —1. B~ecause J(A) and J(A) coincide in
the region —1 < ReA, J(A) is an analytical continuation

(12) 1
\,

3 " (23)

3 " (23)

FIG. 4. The pole diagram describing the nucleus transfer in the reaction 3 4 (12) — 1 4 (23), which contains the Coulomb-modified form
factor (12) — 1 + 2. Because this form factor consists of two terms, the diagram is also represented by the sum of two diagrams. In the first
diagram in the vertex form factor (12) — 1 + 2 no Coulomb interaction is included, but it is included in the second diagram. Bubble shows

the off-shell Coulomb scattering amplitude of proton 1 and nucleus 2.
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(13) 3
\,

2 " (12)

FIG. 5. The pole diagram describing the proton transfer in the reaction 2 + (13) — 3 + (12), which contains the Coulomb-modified form

factor 1 + 2 — (12). Notations are the same as in Fig. 3.

of J(A) into the domain —2 < Re A. The integrand in (A4)
does not have diverging singularity and the integral can
be calculated; the additional term containing f(0) is also
not singular because A = —1+in. Equation (A4) can be
considered as a generalization of the famous equation for the
integral containing pole singularity: fab dx f(x)/(x —xo —
i0)=P [ dx f(x)/(x — x0) +i 7 f(x0), where P stands
for the Cauchy principal value of the integral. By subtracting
and adding df(x)/dx|y=o x in the integral (A4) we can con-
tinue analytically (A3) into the region —3 < Re L. Moreover,
in this case the integrand vanishes at x = 0.

Using the explained regularization we show how it works
in practice. As an example we consider

2% 06 = [ L 20pp. UC o). (A5)
0 pﬁ’pao_ 0 27_[2 OPﬂvapu0P~

Here subscript 0 denotes / =0 partial wave. Note that

¥ (p) contains o Fy(—1, 1 + 151 — i nyy; —%), which is
expressed in terms the polynomial of (p — p,)** with0 < n <
[. Hence the terms with n > 1 don’t require the regularization
at the singular point p = p, and the only singular term, which
requires regularization, is the one with n = 0. That is why it is
enough to demonstrate how the regularization works for/ = 0.

To demonstrate the regularization we consider the effective

potential Z(pg, p) given by a simple pole propagator,
2unZi Z e
(ps — P> + 2’

where 111, is the reduced mass and Z, Z, ¢? is the product
of charges of the particles 1 and 2. The partial wave pole

Z(pp, p) = — (A6)

(23) 3
\

A\

1 " (12)

amplitude at / = 0 is given by
1
Py(x)
Zo(pp, p) = —unnZ1 Zr € / dx ————.
/ -1 (pg — p)*> +«2
2/L 2 Z Zz 82
= - 0g(6), (A7)
pg P

£ = (p; + p* +«*)/(2 pg p). From equation [21]
dp
Z5C(0s. pa) = Z(ps. c
(Ps> Po) / any Ps> P) ¥y, (P)
= 2upnZ Zyete ™21 +in,)

[P} — (P +i )] ™
[pp — Pa)? + 2|1 Fi 0

(A8)

where n, = Z, Z, &2 W12/ Po is the Coulomb parameter as-
sociated with the momentum p,, which is the on-shell
momentum. From Eq. (A8) using the partial wave expansion
[22] we get

oo
Z5pp.po) = > 21+ 1) Pilpp - Pa) Z7 (pp. 1))
=0
(A9)

o] dp p2
Z5%(pp. pS) = /0 5.3 Zpe PV, (P)

= —L eI+ na)ei¢lc

pp
il (B i)
P — Do ik
(23) 3
N\ N\
/
2
> 7
1 (12)

FIG. 6. The pole diagram describing the nucleus transfer in the reaction 1 4 (23) — 3 + (12), which contains the Coulomb-modified form

factor 1 + 2 — (12). Notations are the same as in Fig. 3.
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(23)\ \3 . (23)

A4
N

FIG. 7. The triangular diagram describing the elastic and inelastic
processes in the reaction 1 + (23) — 1 + (23). The four-ray vertex
is the off-shell 1 4+ 2 Coulomb scattering amplitude.

><2F1<—l,l+l;1—ina;

_(pﬂ - pa)2+K2):|

(A10)
4 PB Pa

and for/ =0

1
Z5%(ps. pSo) = —p—ﬁe‘” T2 (1 4 i )

7 inu
« 2Im| (P2 Pt IK . (Al
Pg— DPat1ik

Evidently that analytical expression (A10) for Z°(pg, p<)),
obtained owe to the very simplified approximation for the
effective potential Z, can be easily calculated. However, in
general case of folding of the partial Coulomb scattering wave
functions with the effective potentials there are no analytical
expressions for ZSC( DB pso). In this case the integral must
be calculated numerically and regularization of the integrand
is required. To show how regularization works we compare
the results of the numerical calculation of Z3(pg, pC,)
given by the integral representation (AS5) with the analytical
expression (A1l1).

First we present the regularized integral following the
Gel’fand-Shilov method described above,

ch (Pﬁ’ Pgo)

Pa—A dppz Mo Pt PatA
= ——Zo(pg, PV o(P) + Im{ f dp
/0 ) B Pa0 g )
8 FR(p) — FR(ps) — FR' (pa)(p — Pa)
(P — Po + i€)1+ma

(13)\ \3 . (13)

A4
N

FIG. 8. The triangular diagram describing the elastic and inelastic
processes in the reaction 2 + (13) — 2 + (13). The four-ray vertex
is the off-shell 1 4 2 Coulomb scattering amplitude.

PHYSICAL REVIEW C 86, 034001 (2012)

(23)\ \3 . (13)

\\'d

AN
/

FIG. 9. The triangular diagram describing the exchange processes
in the reaction 1 + (23) — 2 + (13). The four-ray vertex is the off-
shell 1 + 2 Coulomb scattering amplitude.

n .FR(py) 1 1
l " — .
N (A+ie)me (=A+ie)

+ —TR (_’:’“) ((A +ie) ™M — (A + ie)“”’“) }
i

00 d 2
+ / P8 2o(pss PV o). (A12)
P

o 272
Here we use regularization only in the proximity of the singular
point p = p,. To do it we split the integral into three terms:
the integral from O to p, — A, from p, — A to p, + A and
from p, + A to infinity. The regularization is required only in
the integral from p, — A to p, + A, where

o)
(p+ pa)lii Tla

and FR'(py) =d FR(p)/dp|y=p,. Note that here we use
regularization procedure subtracting and adding FR(p,) +
FR'(py) (p — po)- Inthis case the integrand in the regularized
integral just vanishes at the singular point.

To demonstrate how regularization procedure works we
performed calculations of analytical Eq. (A11) and regularized
Eq. (A12) for parameters given in the captions to Fig. 11.
We have chosen the Coulomb parameter 71, = 12, which
corresponds to the proton collision with charge 92 (uranium) at
the relative kinetic energy ~1.5 MeV. No Coulomb screening
procedure would work at such high Coulomb parameter.
Results of our calculations are: Z3(pg, pC,) from Eq. (A11)
gives —2.009 x 10~'? while the regularized Eq. (A12) results
in —2.005 x 107!, In Figs. 11 and 12 we demonstrate the
behavior of the regularized integrand versus the unregularized
one. As we can see, the regularization completely changes

FR(p) = (A13)

(13)\ \3 . (23)

A4
N

FIG. 10. The triangular diagram describing the exchange pro-
cesses in the reaction 2 4+ (13) — 1 4 (23). The four-ray vertex is
the off-shell 1 4 2 Coulomb scattering amplitude.
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FIG. 11. (Color online) Comparison of the regularized integrand
(dashed red line) in Eq. (A12) with the unregularized one (solid blue

line) as function of the integration momentum p for p < py, 1, = 12,
k=01fm™, p, =1,1fm™!, ps =1.2fm™!, and A = 0.25p,.

the behavior of the integrand making it possible to perform
calculations with singular partial wave Coulomb scattering
wave functions in the momentum space.

The same procedure can be used to regularize matrix
elements with the Coulomb scattering wave functions in
the initial and final states. Succeeding in regularization of
the integrals containing the AGS effective potentials sand-
wiched by the partial Coulomb scattering wave functions,
we may conclude that the effective potentials in the AGS
equations in the Coulomb distorted wave representation

TE(K,, Ky, Eo) =47 Z5 Z, e2[

1
dx x'fa

(k, —ko)?
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FIG. 12. (Color online) The same as in Fig. 11 but for p > p,.

can be calculated without using Coulomb screening procedure.
It is the most important result of our regularization procedure.

APPENDIX B: OFF-SHELL COULOMB SCATTERING
AMPLITUDE

In this Appendix using the integral representation of the
off-shell Coulomb scattering amplitude we will derive the
expressions for this amplitude, which can be used in practical
calculations in different kinematical regions. We start from
the standard expression for the off-shell Coulomb scattering
amplitude T.C (K., ko, E,) [22,24,25],

—inY 1K, ka;E})}, (B1)

1

1(K,, ky; Ey) = lim
e—0 0

2E,

k, and k/, are the relative off-shell momenta of particles 8 and
y before and after scattering moving with the relative kinetic
energy Eg, K =2 e E,. To distinguish the Coulomb
parameter of pair o (between particles 8 and y) from the
Coulomb parameter 17, in the channel o [between particle o
and the bound state of the pair (8y)] the former is denoted by
flo- To underscore that this Coulomb parameter is calculated at
kY we use notation 70 = Zg Z, e* juo/ kY. In the case under
consideration Tac(k;t, k., Ea) # 0 only for o = 3.

As we can see Tac(kfx, Ky, Ea) has the forward
singularity at

A, =K, —k,=0 (B3)
generated by the Coulomb-Born term 4w Zg Z,, e’/ Ai This
singularity appearing in the triangular elastic scattering ampli-
tude (see Figs. 9 and 10) is dangerous when coinciding with the
two-body Green’s function’s singularity. Just to remove this

x(k}, — ko) = #5 [Eo +i0 = K5 /2 pa)] [Ea +i0 = k2/2 pe)](1 = x)?

(B2)

singularity, we added and subtracted the Coulomb channel
potentials in the initial channel o and the final channel S.

1
C
C, y
( 1
0 C,

FIG. 13. Integration contour C = C; + C, + Cs.

034001-19



A. M. MUKHAMEDZHANOYV, V. EREMENKO, AND A. 1. SATTAROV

Applying after that the two-potential equation we obtained the
AGS equations in the Coulomb distorted wave representation.
At Ay, — 0 I(K,, ky; E,) ~ 1/|A,|, that is less singular
than the Born term.

It is worth mentioning that the off-shell Coulomb scattering
amplitude doesn’t have a definite on-shell limit reflecting the
fact that, owe to the infinite range of the Coulomb interaction,
charged particles are not free even when the distance between
them increases to infinity. Assuming that ki /2 1g) — E,—0
we obtain (the on-shell limit in the entry channel)

TEK, Kay Ba) "= 1€ (kg KO)TEHS (K KO, E

» By

E,), (B4)

where the so-called Coulomb renormalization factor

rC (ky, k) = ™ /2T (1 — i 72) (koi—_ki) (BS)
o ’ o o 4k§
and the half-off-shell Coulomb scattering amplitude
TaC(HSH)(k;’ K, Ea)
=4n 2527, € ¢ al? T(14id2)
, VAL
[Ke— (ke +ie)]” €50, (B6)

[, —K0)*+ ]
Similar equation takes place when k/, — kO, k!, # k. Tak-
ing simultaneous limit k,, k;, — k2 we obtain the on-shell
Coulomb scattering amplitude. Infinitesimal addend € is
required to correctly bypass singularities and for regularization
of the Coulomb scattering amplitude. In what follows we
assume that energy E, has always positive imaginary addend
i € with € — 0, that is, we replace E, by E,c = Eq + i €.
Let us introduce

Mo

PHYSICAL REVIEW C 86, 034001 (2012)

with b = lim b., and
e—>0

A2 = (K, —Kky)* + €. (B8)

Then o . ) c ol .
Ty (kg Koy Bo) = 1m T,/ (Ko, Ko, Eqc), (B9)
where the regularized off-shell Coulomb scattering

amplitude is

Toe(K,, Kos Eqe)

1 R
=47 2757, € [A — i g I (K, ka;Eae)}, (B10)

o€

1 o 1
Iez/‘ dx x'Mee — ,
0 x A2, — b (1 —x)?

ﬁge = Zﬁ ZV e Ma/V2 e EAae'

Usage of the regularized Coulomb scattering amplitude
allows us to carry out all the calculations with differente — 0
without any problems because the AGS equations are compact
ate =0/[17,18].

Equation (B10) is not always the most convenient one
for practical applications and below we present alternative
equations for 7S, which can be used in practical applications
depending on the value of £,.

(B11)

(i) E, <0. In this case always b <O, that is, x A2, —
i [Ea — Ko/ @ ua)llEa — K3/ o))l — x)* > 0 and
TaCE is regular. Note that at E, <0, owing to
the positive imaginary addend, arg(E,+ie)=m
and limeo 70, = Zs Z, €® o /v 2 to | Eol e 7/?  and
lim_ x' 16 = xZ8 21 € e/ V20 1Bl > ),

(ii) b < Obut £, > 0. In this case also no singularities appear

in the integrand of the regularized integral over x.

In general it is more convenient for b < 0 to use an

A 2 A 2
be = 5B [Eoe —Ko/Qua)][Eae —ka/Cua)]. BT giternative expression for TS,
o€ |
. w { K2\ [ - k2
Tue (K}, Ko Bac) = 4nzﬂzye2‘%(£ae - )(E - ¢ )
2Ea5 ZMO( 2I’LOK
1 2
) 1-—
y / dxxi _ . d=x) . (B12)
0 [XAg,E + |2;§:€ (Eae - k,a/(zﬂa)) (Eote - k&/(zﬂa)) |(1 - x)Z]
I
There are no problems in using this explicit equation for The roots of this equation are
Toe(K,, Ky; Eqe) in the Coulomb-modified form factors and
in the exchange triangular diagram. A strong singularity of
lime_o Tye (K, ko3 Eqe) in the elastic scattering triangular Az A2 4b
diagram, as has been explained, is compensated by subtracting xip=14+="2+-"2/1+ = (B14)
the channel Coulomb potential. 26 2b Ay

(iii) b >0 (it can be only at £, > 0). In this case
the integrand in Eq. (B11) has a singularity (zero of the
denominator),

2 2
xA2 B (p _ K E, — ky (1-—x)%=0.
¢ 2FE, 2/La 2k

(B13)

The first root x; > 1 lies outside of the integration contour
over x in Eq. (B11) at Ay > 0, while the second one x; < 1
lies on the integration contour at A, > 0. The integrand in
(B11) has a cut connecting the branching-point singularities at
x =0 and x = oo of the function x'. Hence we can rewrite
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L.(K,, Ky; Eqe) as
1

PHYSICAL REVIEW C 86, 034001 (2012)

1

LK), Ko Ege) =

: 50
P y{ dxx" e — ~ IR = >
—e e Je x A2, — B (Ege — 55)(Eqe — 5-)(1 — x)

2 Eye 2 Lo 2 p

(B15)

where the integral is taken along the contour C;, which starts at x = 1, encircles the branching singularity at x = 0, and ends

at x = 1. We assume that the root x, has a positive infinitesimal imaginary addend, which shifts the root from the integration

contour to the first quadrant. Now we consider the integral along the closed contour C = C + C, 4+ C3 shown in Fig. 13.
Because there are no singularities of the integrand inside and on the integration contour C, according to Caushy’s theorem the

integral taken along C vanishes. Hence,

L 1
Ie(kaa kot; Eae) = -

1

— o dxxiﬁgf
1 — e A2 _ e (F Ki V(F K 2
e (&) ane - ﬁ(Eote - m)(l‘?aE - I)(l —x)

1

A0
—i—?{ dxx'ae
2
Cs XA,

Lo (Bye — 3) (Eae — 7)(1 —x>2}'

— (B16)

2y 2

The integral over C; encircles the pole at x = x; and can be easily taken using Caushy’s theorem. The integral over contour Cj is
taken along the circumference with the radius |x| = 1. Using substitution x = ¢! we can simplify the integral over the contour

Cs. Then the expression for Tye(k),, Kq; Eag) reduces to

A 1 27Tﬁo
. 2
Tae(k;a Ky; Ewe) =4m 257 ¢ [_AZ + 1 e*;;ﬁge (
e

The integrand in the integral is free of singularities and
Eq. (B17) can be used to calculate Tye(k),, Ky; Eae) atbh > 0.
Note that from this equation we can easily find the on-shell
limit for Tye (K., Ko; Eqe) ath — 0

A0 ing

A b—0 2 277 be “

Tae(k;vka,Eae) = 4nZsZye T%(ﬁ) )
e

(B18)

which coincides with Eq. (B4).

We have considered different representations of the off-
shell Coulomb scattering amplitude and its on-shell limit.
In the next Appendixes we consider how to calculate the
Coulomb-modified form factors and the triangular diagrams
using the obtained representations of the off-shell Coulomb
scattering amplitudes.

APPENDIX C: COULOMB-MODIFIED FORM FACTOR

The Coulomb-modified form factor given by Eq. (84)
consists of two terms. To calculate the integral part we need
to regularize it. We see immediately that there is a pole in the
integrand at

K, =k =212, k, >0. (C1)
This pole would lead to the logarithmic singularity of the
integral when k, = 0 (end-point singularity). However, we
recall that, according to Appendix B, k', — 12), corresponds
to the on-shell limit of the Coulomb scattering amplitude

50
4b5 lnue ﬁgg 2” de
~ A ] _em2mil,
VAL +4b. + Ay )? 0

g7ﬁ8e9
A2, +2b.(1 — cos 9)]'

(B17)

TyCL, (ky, k,;2,), where it has its own singularity—a branching
point. According to Egs. (B4) and (BS5), the on-shell limit of
the partial Coulomb scattering amplitude [see Eq. (85)] is

TN s RS S AN | MPSOR .5
Ty, (kyoky32y) =" (k) —K5) " T (ky kys2y),  (C2)

where #, = Z,Zge* i, /\/21,%,. At 3, = E,c = E, +ie,
where € — 0, 7, = ﬁ‘;e. Note that in practical calculations
2y =E4f— p)z//(ZMy), E, = E +i0. Then the integrand in
the integral part of Eq. (84) has a singular behavior

Cc / - A
TyLy(k > kyvzy) k' —k,

& — K7/ Quy)

TyCLV(kV’ ky3Zy)

(2, — K2 /@u] "

(C3)

Thus the integrand in the Coulomb-modified form factor (84)
has a branching-point singularity rather then a simple pole.
As it has been demonstrated in Appendix A, this type of
singularity can be easily regularized using the Gel’ fand-Shilov
method [23]. We apply here this technique to regularize the
integral in the Coulomb-modified form factor.

First off all such regularization is required only at Rez, >
0 because at ReZ, <0 and Imz, =0 2, — k/)z, < 0, that is
the integrand is regular function. To regularize the integral at
ReZ, > O0andIm Z,, — +0 we rewrite the Coulomb-modified
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form factor (84) in the form

.ISa J, 8,0

PHYSICAL REVIEW C 86, 034001 (2012)

1 ky G, Ky k ,zyw V"( k)
g ) =X, (k)+3y322[/ dk/yk/yZV v +

/Oodk/k/z VL (ky, V’ZV)XLV (k,):|
3

1—i o 1—in,
[z, —k2/@uy)] ™ N [ T
(C4)
In the first integral arg(2, — k’f/ /(2uy)) = 0if Imz, — 0. In the second integral Z,, — k’f,/(Z,uy) = ei”[k/f,/(Z/L;,) — Zy]. Then
we can rewrite Eq. (C4) as
‘]VSV /
JSa 18,0 B 2 yL (ky’ Zy)X (k )
k, ky,)+ 6 dk/ k!
C JySyo C J, 8,0
ey /Zk dk;k;z yLy(kl/v Zy)XL tl (k;) _ e_”ﬁV/ dk;k;z yLy(kV’ ZJ/)XL t1 ( ;)] (C5)
£, [k2/@u,) — 2,17 2%, [k2/2u,) — 2,17

Assuming that Re i9, > 0 we can rewrite Eq. (C5) in the form in which the singularity is weakened enough to make it

integrable at Re i#},, — 0.

A Y J, 8,0
g5 15,0 LT o KTG W k2 ) — R TG Ry k200 ()
(k) = i Ue) 835 | | dkyk, . =
Ll [z, — k2 /Quy)]
+ l.— 8k TG, ky ks 20077 (k)
My
. JySyo c J, SV
iy /Zkv aK k/ y VL (kya kyazy)X e (ky) - kyTyf (ky, ky’ Z;/)X ’ (ky)
A Y A i
kV [k/i/(zﬂy) - Zy] ’Iy
J1,S8,0
o[ (k) ky3 20X, (k)
+ B i 3,1k, TS, (k. kyi2x;y " (k) — e~ / dk, k> I, e i } (C6)
iy 2%, [k @uy) = 2]
I
Equation (C6) can be used to calculate the Coulomb-modified Here,
form factor. We have shown how to regularize the Coulomb- 55,0
modified form factor in the proximity of the singularity k), = k, — IEV B oty ik,
A . o a= —, B= JS—' (€9
k, . This regularization allows one to calculate the Coulomb- k, + k, s o ik,
yly

modified form factor.
Now we consider a special case of a simple separable form
factor

7,8,
XL:tVN(kV) =

JVSV”)Z]LV+1 ’ (C7)

55 + (8L,

for which we will derive analytical expression for the on-shell
limit of the Coulomb-modified form factor. The Coulomb-
modified form factor in this case can be written in the integral
form [26],

JSor J, S0

k) = xp,) (k) — iy ky )

[ —4k2 ak
X 75012 . 7 - :|
(B +&) (k5 —&3)

1

xmyfl
x / dx . (C8)
o

L +1
xB—l—#—a—a—l] v

From Eq. (C8) it is clear that the Coulomb-modified
form factor has singularity in the on-shell limit k, — &,
corresponding to @ — 0. For the separable form factor (C7)
at L, = 0 the on-shell limit of the Coulomb-modified form
factor was found in Ref. [18] (see Appendix C),

21y e arctan k /,BO,V S (ky —ky "
1 — e~ 27y 2k,

(C10)

SVSV (k )

5,80
X XO[ re (ky).

Here, we extend this expression for arbitrary L, . To do it we
note that Eq. (C8) can be rewritten as

Jys o 18,0

oLy
81,1, (ky) = XL, zy (ky) — ity ky

|: _4k2 :|LV+1 1
J, S, 0 ~ ~ L,+1

(B T +R)wz —R2) ) BY*
1

/d X (C11)
“Jy e — @ —
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where x| , are the roots of equation x B + L —a—al=0,
which is equivalent to x% — —(a +a Hx + 32 =0,
—1 m
x12=a+a " (a+at) ‘ (C12)
’ 2B 2B

Evidently that at k, — 1%,, thatis, a — 0,

a=0 1 a0 a
Xy = — —>00, x = ——0.

Cl13
aB B ( )

Also x"»~! in the integrand of Eq. (C11) has a branching-point
singularity at x = 0 and oo, which are connected by a cut. Then
we can apply the method described in Appendix B. First we
transform the integral in (C11) to the integral over contour Cy,
in which the integration contour is taken along the contour
starting at x = 1, encircling the branching singularity at x = 0
and ending at x = 1 (see Fig. 13). After that we consider
the integral along the closed contour C = C 4+ C, + Cjs.
Because there are no singularities of the integrand inside and
on the integration contour C, according to Caushy’s theorem,

PHYSICAL REVIEW C 86, 034001 (2012)

the integral taken along C vanishes. Hence

1 ifly+Ly,
d
/o o — @ — xo)br

yify+Ly

1
T T 1—e [yiz d [(x — x)(x — x2)] 5 H!

if,+L
d .
* 7% o= - Xz)]LV+1i|

We assume that the root x; has a positive infinitesimal
imaginary addend, which shifts the root from the integration
contour to the first quadrant. In the integral over contour C,
we rewrite

(C14)

1
;
20 [(x —x)(x — 22 — )] e 1
1 1 . dtr 1

= — lim .
L, (x —xpbtlesodelr x —xy — €

(C15)

We take into account that at a — 0 x, — 0 while x; — o0,
that is at a — 0 contour C; encircles the pole at x = x, + €
and can be reduced to the residue in the pole,

ity +Ly

1 x”’V+L 1 1 dLV
— ~ % dx = — — lim—f dx
L—e 2™ Jo, 7 [(x — xp)(x — xp)]ErH! 1 —e ™y Lt esodelr Jo, ™ [(x —x)] T (x —x2 —€)

2mwi

a—0 2mi

1 dY (x4 ety

—— —lim
1 —e 2 L, e>0delr (x; — x1 + €)brH!

1 (—1)lr ] 1r;y+LV+]B—1nV+Ly+l

= e L H(zny—i-n) (C16)
L,=0 .. N ~ ~ JSU J, S, 0 .A
where [[,2, (if, +n) =if},. Alsoata — 0a = (k, — k,,)/(2k,) and B = (,BL ‘) )/(,BL )~ iky).
Taking into account all the factors in front of the integral in Eq. (C11)
L —4]212/ Ly+1 1 xiﬁv+LV
_iﬁykl/yl: 7,5,012 | 1 < i| L,+1 onh %dx I,+1
(L TR =R)) BT T= e Je e =t =t
20y g aretank, /87 ((ky — Ky \' 1 5,0
= —1 — e_;”ﬁv e fy arctanky / Lyty # L ‘l +l”l)XL t, (k ) (C17)
Y

Let us consider the integral over C3. In this integral the contour goes along the circumference with |x| = 1. Hence, along C;

x = e and dx = idpe™®.

iy +Ly

— ! - fdx
1—e 2 Jo o [(x —x)(x — x2)

2
a0 _ . 1 Ly+1 -9 _ L, L1 1
I e (-aB) /0 dpe” ¥ =i(=1)""(aB) . (C18)

Taking into account the factors in front of the integral in Eq. (C11) we get

- L,+1
L —4k,

—iflyky PR -
(B2 T + &) (& ~ &)

1 xir L a—0 J, S0
_ d = yoyo k .
= e .(fc o we w0

(C19)

034001-23



A. M. MUKHAMEDZHANOYV, V. EREMENKO, AND A. 1. SATTAROV PHYSICAL REVIEW C 86, 034001 (2012)

Then we arrive at the final equation of this Appendix defining the on-shell limit of the Coulomb-modified form factor for the
separable form factor (C7),

_4]212/ L 1 xify+L
L (k) — ity ky |: 75,0 - - } L+1/‘bC L+l
BET eI R M

271y o2 arctan £ /;‘}Lyfyy(r ky —k, ol
1 — e iy 2k L, L,li

J, S0

Lty(k) _ JSU

ky—>1§y

+n))(LV Va(k ), IQV > 0.

(C20)

Thus we have shown that the Coulomb-modified form factor has a branching-point singularity atk,, = 12}, . This Coulomb-modified
form factor is needed to calculate the amplitudes of the diagrams describing the proton and nucleus transfer [see Eq. (97)]. Assume
that the Coulomb-modifed form factor is g?ﬁ (ko), which has the on-shell singularity at k, = k7, where kJ = /2p14(Z4 — €”),

24 = 2 — p2/(2M,). Then we can rewrite Eq. (97) as

aa(z )L 00(1')5
Reye, (Pp> Pa32) = Ry,

o* 0

! . . <
(P> Pa3 2) = Spacy/cr, 5

where g7 (ko) isregularatk, — l%g Thus the integrand, owing
to the presence of the Coulomb-modified form factor, has a
branching-point singularity rather than a pole and the integral
can be easily regularized using the Gel fand-Shilov method
[23] applied earlier. Note that, although derivation of Eq. (C20)
has relied on the explicit form (C7) of the separable form
factor x LV Syo (k, ), the result is nevertheless valid for arbitrary
nonsmgular at the origin form factor since any such form
factor can be represented as a linear combination of functions
of type (C7). Thus we have demonstrated that the Coulomb-
modified form factor does not create any problems in practical
calculations.

Finally, it is worth mentioning that the on-shell limit of
the Coulomb-modified form factor at 12}, =0for L, =0 was

found in Ref. [17]: go: V(k ) b 20 k2 that is the Coulomb-

modified form factor vanishes at the on-shell limit at k, = 0.
Similar consideration can be done for L, > 0.

APPENDIX D: POLE SINGULARITY OF THE
TRIANGULAR EXCHANGE DIAGRAM AND COULOMB
RENORMALIZATION OF ITS STRENGTH

In the previous section we considered the Coulomb-
modified form factor and how the presence of the off-
shell Coulomb scattering amplitude affects it. The off-shell
Coulomb scattering amplitude also is needed to calculate the
direct and exchange triangular diagrams. The discussion of the
direct triangular diagram has been done in Sec. V. Here we
consider the exchange triangular diagrams shown in Figs. 9
and 10.

In this section we show that there is a pole singularity of
the exchange triangular diagram, which allows us to rewrite
the amplitude of this diagram as the renormalized pole neutron
transfer diagram plus the nonsingular at the pole term. To show
it let us consider, for example, the amplitude of the exchange
triangular diagram shown in Fig. 9. For simplicity, we neglect
the orbital momenta in the three-ray vertices and the spins,

1! ky
f dx Pg(x)

Lk "y ()82 (ka)

1—ify’ i=051725
[Zoz —€f — kg/(zﬂa)] :

(C21)

although the final result, which we present below, is valid for
the general case. The amplitude of the exchange triangular
diagram is given by

dp, X5 (pV + ,:l;, p};)
2 my 2
O R e ).
Xa (py + Wpa)
k2 —(p, + _pa)

mgy

where o = 1,8 =2, and y =3; k2 =2us2, and 2, =
2 — p2/@My); k3 =2upzp and 25 =z — p'3/(2Mp); p, +
n%pa and p, + %p% are the relative momenta of particles
in the three-ray vertices (8y) — B + y and (¢y) — « + y in
the triangular diagram. Also k), = p, + (mq/mag)py (k; =
—pj — (mp/mep)p,) is the relative momentum of particles
and B on the diagram before (after) the Coulomb scattering
with the transfer momentum in the four-ray vertex A] =
k, — k), = po + pj + p, [see also Eq. (110)].

The closest to the physical region and the strongest
singularity of the triangular diagram is the one generated
by the coincidence of the singularities of the propagators
k2 —(p, + n’f—;pa)z = O0and k3 — (p, + mT’yp};)2 = 0 and the
forward singularity of the off-shell Coulomb singularity A/, =
0 of the Coulomb scattering amplitude. To show how these
singularities of the exchange triangular diagram appear and
to simplify consideration we replace the off-shell Coulomb
scattering amplitude Tyc(k;,, k,;Z,) of particles & and B by
the Born-Coulomb amplitude, which is the Fourier transform
of the Coulomb potential 4/ A’i. Then the amplitude of
triangular exchange diagram simplifies to

dpy XE(pV + Mgy pﬂ)
27 2 — (p, + m—wpf,)2

Z9p}. pa) = T (K, ky:2))

(D1)

ZO(py. po) = 47 ZpZoe’

1 Xea(Py + 55Pa)
x A/2 ]22 my 2
a g T (p)/ + m_ﬁypﬂt)
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dA.,  x5(A, —Kp)
(2m)* k3 — (A}, —kj)?
< 1 X(x(A; —Kky)

A2 k2= (A, —ko)?

= 4w ZyZ e

(D2)

where we used the substitution p, = A}, — py — p%. Also
k, = p% + (mg/mg, )P, is the relative momentum of particles
B and y in the three-ray vertex (8y) — B + y in the diagram
of Fig. 1, with ¢ = 1,8 =2, and y = 3. Similarly k}; =
Po + (Ma/May )Py is the relative momentum of particles o and
y in the three-ray vertex (¢y) — « + y of the same diagram.
Now we rewrite

2 — (A, — Ky’ =0, +2A, - ky — A

= 0g[1 4+ 2t - kg — 0at?],  (D3)

where we introduced o, = k2 — k2 and used the substitution

Al = o,t. (D4)

Similarly
P2 AT LN Hp o 2
kg — (A, —Kkg)” =04 +2t-ky —out”|.  (D5)
Ha

Here we took into account that from the energy-momentum
conservation in both three-ray vertices of the diagram in Fig. 1
follows

opg = &O}X.

Mo

(D6)

Because we consider the singularity of the exchange
triangular diagram generated by the coincidence of zeros
of three denominators (pinch-point singularity) in Eq. (D2),I
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we use the substitution (D4) obtaining in the leading order
o[ X5 (—Kp) xa(—Ka)
O
dt 1 1 1
Q)3 P24+ 2t -k 21+ 2t ko
(D7)
Thus we have shown that the strongest singularity of the

amplitude of the exchange triangular diagram is a pole
singularity at

2Ol pa) "= = A2y Zye

o, = 0.

(D8)

The same singularity has the pole diagram in Fig. 1. Moreover
[X;(_k%)Xa(_ka)}

ZOp. pa) ~
Oy

(D9)

in Eq. (D7) is the amplitude of the pole diagram (we neglect

the spins and angular momenta). We can conclude from the

simple consideration presented here that near the singularity

(D8) the amplitude of the exchange triangular diagram behaves

as renormalized amplitude of the pole diagram in Fig. 1,
a,—0

Z9Ppy. pa) "= DZV(Dy, Pa) + Zia(Py. Pa),  (D10)

where D is the renormalization factor determining the strength
of the pole singularity. The additional term Z{Q(pj, Po) is
regular at o, = 0.

A general expression for the renormalization factor for
the exchange triangular diagram containing the full TyC
Coulomb scattering amplitude rather than the Born Coulomb
amplitude was obtained in Refs. [27-29]. Summing up the
neutron transfer pole diagram and the corresponding exchange
triangular diagram we obtain the renormalized pole diagram
plus the additional term from the exchange triangular diagram,
which is regular at o, = 0. For the diagram in Fig. 9 the
renormalization factor, which determines the strength of the
pole singularity of the triangular exchange diagram, is

Vg G — €9) 4 /=maymg(Zg — €) + i\ Jmympa B, o qine
-1+ ]

Dftyar, = - - : _ : (D11)
Vmmpyma(Ga =€) 4/ —maymy(Zp — €7) = ’\/”m
2 2
: MI[Pp—4%  pe—di
Eftsat, = Eftyar, + [ — | (D12)
Pepota Plote gy | 2mg 2my
M Moy mg,
Eftpag, = 7 —(E +i0) = 8L By, — ~PLET, (D13)
B mlga mﬁa mﬂa ™
ZpZye*
Npo = 2ol b (D14)
72
Za=2z— %, Z=z— 2'77‘;, and M = m, + mg + m,,. For the diagram in Fig. 10
M May A mgy
o _ 7 : _ Y fo By
Brsaty — o (E +i0) -~ Eg,, _m,sa Eqgn,. (D15)

Thus we have shown that the off-shell Coulomb scattering amplitude doesn’t cause any problem in calculation of the exchange

triangular diagram.
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