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Future exact many-body theory will allow us to calculate nuclear reactions based on the adopted NN and
many-body nuclear potentials. But NN potentials are not observable and there are an infinite number of the phase-
equivalent NN potentials related via finite-range unitary transformations. We show that asymptotic normalization
coefficients, which are the amplitudes of the asymptotic tails of the overlap functions, are invariant under finite-
range unitary transformations but spectroscopic factors are not. We prove also that the exact amplitudes for the
(d,p), (d,pn), and (e,e′p) reactions determining the asymptotic behavior of the exact scattering wave functions
in the corresponding channels, in contrast to spectroscopic factors, are invariant under finite-range unitary
transformations. Moreover, the exact reaction amplitudes are not parametrized in terms of the spectroscopic
factors and nuclear reactions in the exact approach cannot provide a tool to determine spectroscopic factors
which are not observable.
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The beginning of the 21st century has opened up a new
chapter in nuclear physics fueled by a new generation of
the radioactive beam facilities allowing us to approach the
nuclei away from the valley of stability. It should lead to new
discoveries in nuclear structure, nuclear reaction fields, and
nuclear astrophysics which is closely related to cosmology.
The important part of the new programs, as has been for the
previous 50 years, is the determination of spectroscopic factors
(SFs) from nuclear reactions, which play an important role
in nuclear physics, nuclear astrophysics, and applied physics.
Spectroscopic factors (SFs) were introduced by the shell model
formalism and are typically related to the shell occupancy.
Since the dawn of nuclear physics, direct reactions have
been the main tool for extracting SFs in nuclear laboratories
worldwide, which were compared with predictions of the
independent-particle shell model (see [1] and references
therein) to test the validity of many-body theories. The idea of
extracting SFs from nuclear reactions is based on the drastic
approximations to exact reaction amplitudes leading to the
DWBA. This approach has been used for more than 50 years.
A new era of nuclear physics calls for new eventually exact
methods of treating nuclear reactions. The question is what
should we expect when an exact reaction theory based on
ab initio calculations started from NN and many-body
potentials will be delivered?

First, solution of the nuclear many-body problem requires
nuclear potentials describing the interaction of two, three, and
more nucleons which are the main input into many-body
calculations. The next crucial step is to deliver a theory
allowing us to calculate nuclear reactions based on the
adopted NN and many-body nuclear potentials which is more
difficult than a treatment of many-body bound states. But even
identifying two- and many-body nuclear potentials turns out to
be extremely difficult and represents a yet unsolved problem
even for light nuclei and low-energy reactions because the
NN potential is not observable. As it has been underscored

in [2,3], there are an infinite number of phase equivalent
potentials related via the short-range unitary transformations.
These unitary transformations can soften or even remove
the repulsive core without changing the tail of the potential.
Short-range unitary transformations can be applied to the wave
functions affecting their short-range behavior. Intuitively one
may guess that the asymptotic behavior of the wave functions
will not be affected by short-range unitary operators. Then the
elastic scattering and reaction amplitudes being the amplitudes
of the asymptotic terms of the many-body wave functions
should be invariant under short-range unitary transformations.
From the other side the wave functions are normalized and the
unitary transformations affecting their short-range behavior
can affect the asymptotic amplitudes. It is the goal of this
Rapid Communication to prove that the exact direct reaction
amplitudes and asymptotic normalization coefficients (ANCs)
are invariant under finite-range unitary transformations while
the SFs are not. We conclude that the exact reaction amplitudes
(direct transfer, breakup, and electron-induced disintegration)
cannot be used as a tool to determine SFs. When sooner or
later an exact many-body theory will be available, the reaction
amplitudes can be determined from the matrix elements or
from the asymptotic behavior of the exact wave functions
in the corresponding asymptotic regions while the SFs can
be obtained from the overlap functions. However, these SFs
depend on the adopted nuclear potentials while the reactions
amplitudes do not. Thus delivering the exact reaction theory
would mean the separation of the nuclear reactions and SFs.

There are different unitary transformations used in lit-
erature. Among them is the unitary correlation operator
method (UCOM) (see [4] and references therein), Lee-Suzuki
unitary transformation [5] used in the no-core-shell model
[6], the unitary model operator approach (UMOA) (see [7]
and references therein), and similarity renormalization group
[8]. The unitary transformations aim to take into account
effectively the short-range repulsive core in NN interaction
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potentials. For example, in the UCOM [4] the unitary trans-
formation shifts away nucleons depleting the wave function
at small nucleon-nucleon distances and making the NN

potential softer. The correlated wave function in the UCOM
is obtained from an uncorrelated state (linear combination
of Slater determinants) using unitary correlation operators.
The proof which is presented here is valid for general
short-range unitary transformation requiring only the “cluster
decomposition property” [4]. The potential is assumed to be
energy independent, local or nonlocal.

Unitary transformation. Let us consider a system of
nucleons with the wave function satisfying the Shrödinger
equation H � = E �, where H = T + V , V = ∑

i<j Vij +∑
i<j<k Vijk + · · ·+ is the total interaction potential, which

is the sum of two- and many-body potentials, T = ∑
i Ti −

Tc.m. = Trel, Ti is the kinetic energy operator of the nucleon i,
Trel is the relative kinetic energy operator of the system,
and Tc.m. is the kinetic energy operator of the center of
mass of the system. A unitary transformation of the wave
function

� = U �̃ (1)

conserving the norm transforms the matrix element
〈�|H |�〉 = 〈�̃|H̃ |�̃〉. Here, H̃ = U−1 H U , the unitary op-
erator U = ei G, Ṽ = H̃ − T . Even if the initial potential V

contains only NN potentials the transformed Ṽ contains not
only NN potentials but also three- and many-body potentials
[4]. �̃ satisfies the Shrödinger equation

(Ṽ + Trel) �̃ = E �̃. (2)

Elastic scattering. There are infinite number of the NN

potentials related via finite-range unitary transformations,
which modify the short-range part of the potential leaving
the tail intact [2]. First we demonstrate that the NN scattering
amplitude is invariant under finite-range unitary transforma-
tions of the wave functions and potentials, i.e., finite-range
unitary transformations generate phase equivalent potentials.
Let us consider two wave functions related by the finite-range
unitary transformation � = U �̃. Now we take into account
that the asymptotic behavior of the scattering wave function at
r → ∞ is given by

�
r→∞≈ ei k ·r − µ

2 π
f

ei k r

r
, (3)

where f is the NN elastic scattering amplitude, µ is the
NN reduced mass. Since at distances larger then the range
of the unitary operator (at distances larger than the correlation
radius the generator G → 0) � = �̃, the scattering amplitude
f = f̃ , i.e., it is invariant under finite-range unitary transfor-
mations. Thus different potentials related via the finite-range
transformation are phase-equivalent and indistinguishable.

Next let us consider the n + A elastic scattering amplitude.
For simplicity we disregard the spins of the particles. The
asymptotic behavior of the n + A scattering wave function at
rnA → ∞ is given by

�
rnA→∞≈ �

(0)
nA −

∑
j

µnAj

2π
fnAj

e
i knAj

rnA

rnA

ϕAj
+ ��. (4)

Here, �
(0)
nA is the incident wave in the channel n + A, µnA is

the reduced mass of n and A, fnAj
are the elastic (j = 0) and

inelastic (j � 1) n + A scattering amplitudes, knA and rnA are
the relative n + A momentum and radius-vector connecting n

and the center-of-mass of A, ϕAj
is the internal wave function

of nucleus A in the bound state j . �� is the contribution
from the outgoing waves in the rearrangement and breakup
channels which are of the next order compared to the elastic
and inelastic outgoing waves. Thus the leading asymptotic
term of the projection of the wave function on the initial two-
body channel n + A, where A ≡ A0, at rnA → ∞ is

〈ϕA|�〉 rnA→∞≈ ei knA·rnA − µnA

2π
fnA

ei knA rnA

rnA

. (5)

Correspondingly for the wave function �̃ we get

〈ϕ̃A|�̃〉 rnA→∞≈ ei knA·rnA − µnA

2π
f̃nA

ei knA rnA

rnA

. (6)

We recall now the cluster property of the unitary transforma-
tion

U = UnA UA, (7)

where UnA is the unitary transformation, which takes into
account correlations between n and the nucleons of nucleus A

and UA is the unitary transformation for the nucleons of
nucleus A. At rnA → ∞ the finite-range UnA can be replaced
by the unit operator. Then from Eqs. (5) and (1) taking into
account that ϕA = UA ϕ̃A we get

〈ϕA|�〉 = UnA 〈ϕ̃A|�̃〉 rnA→∞= 〈ϕ̃A|�̃〉
= ei knA·rnA − µnA

2π
fnA

ei knA rnA

rnA

+ O

(
1

r2
nA

)
. (8)

Comparing Eqs. (6) and (8) we conclude that fnA = f̃nA, i.e.,
the n + A scattering amplitude is invariant under the finite-
range unitary transformation. Similarly one can prove that the
scattering amplitude of two nuclei is also invariant under the
finite-range unitary transformations.

It is interesting that the invariance of the scattering
amplitude under finite-range unitary transformations can be
proved in a different way using the surface-integral reaction
theory (see [9] and references therein). To do it we rewrite
the conventional expression for the n + A elastic scattering
amplitude by splitting the volume integral into two parts:

fnA = 〈
ψ

(0)
nA ϕA

∣∣VnA|�(+)
i 〉 = fnA|rnA�R + fnA|rnA>R, (9)

where ψ
(0)
nA is the plane wave describing the relative motion of

the free n and A in the final state. The first (second) term in
Eq. (9) is the volume integral, in which rnA � R (rnA > R). We
choose the radius R significantly larger than the radius of the
unitary transformation, so that at rnA > R the unitary operator
UnA = 1 where 1 is the unit operator. Introducing the finite-
range unitary transformation �

(+)
i = U �̃

(+)
i and ϕA = UA ϕ̃A

we immediately conclude that the second term fnA|rnA>R is not
sensitive to the finite-range unitary transformation. Using the
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Green’s theorem

L = 〈f (r)|←−T − −→
T |g(r)〉

= − 1

2µ2
nA

lim
r→∞ r2

∫
dr̂

[
g(r)

∂

∂r
f ∗(r) − f ∗(r)

∂

∂r
g(r)

]

(10)

we can transform the internal volume integral into the surface
one over the coordinate rnA:

fnA|rnA�R = 〈
ψ

(0)
nA ϕA

∣∣ − VA + VnA + VA|�(+)
i 〉|rnA�R

= 〈
ψ

(0)
nA ϕA

∣∣ − E + ←−
T + E − −→

T |�(+)
i 〉|rnA�R

= 〈
ψ

(0)
nA ϕA

∣∣←−T − −→
T |�(+)

i 〉|rnA�R

= 〈
ψ

(0)
nA ϕA

∣∣←−T nA − −→
T nA|�(+)

i 〉|rnA�R = f
(S)
nA |rnA=R.

(11)

We took into account that T = TA + TnA and that the operator
TA is Hermitian because of the presence in the bra-state of
the bound-state wave function ϕA, i.e., using the integration
by parts the operator

←−
TA can be transformed into

−→
T A and

〈|←−TA − −→
T A|〉 = 〈|−→T A − −→

T A|〉 = 0. Since the radius R of the
sphere is taken large enough the surface integral is invariant
under finite-range unitary transformations. Thus the scattering
amplitude can be written as

fnA = f
(S)
nA |rnA=R + fnA|rnA>R, (12)

i.e., it is invariant under finite-range unitary transformations
because the matrix elements are taken in the region where
UnA = 1. This method of the proof is universal and can be
used for rearrangement and breakup nuclear reactions.

Reaction amplitudes. The scattering wave function �
(+)
i

describing the collision of two nuclei a and A asymptotically
behaves as

�
(+)
i = �

(0)
i −

∑
α

µα

2 π
Mα u(+)(rα) �α + ��, (13)

where the sum over α contains the elastic, inelastic, and
rearrangement channels, Mα is the reaction amplitude leading
to the final channel α, �

(0)
i is the incident wave in the entry

channel a + A, �α is the product of the bound state wave
functions of the fragments in the exit channel α, u(+)(rα) is
the outgoing wave in the two-fragment channel α, and ��

is the contribution from the breakup channels (more than
two fragments in the exit channel). Let us select a specific
rearrangement channel α = y + B and take a projection of
�

(+)
i on the exit two-fragment channel y + B. The asymptotic

of this projection at ryB → ∞ behaves as

〈ϕB ϕy |�(+)
i 〉 = UyB 〈ϕ̃B ϕ̃y |�̃(+)

i 〉
ryB→∞= 〈ϕ̃B ϕ̃y |�̃(+)

i 〉 = MyB u(+)(ryB). (14)

Hence, Mα = M̃α , i.e., the rearrangement reaction amplitudes
are also invariant under finite-range unitary transformations.
Evidently that this result is also true for breakup amplitudes
with three or more fragments in the exit channel. In this case
we need to consider the asymptotic behavior of � in the
asymptotic region where all fragments are well separated. The
invariance of the reaction amplitudes can be also be shown

directly from the conventional volume matrix element using
the surface-integral formulation of the reaction theory [9].

(e,e′p) reaction amplitude. As a particular case of the
breakup reaction we consider the electron induced photo-
disintegration (e, e′ p) which is believed to be a powerful
tool to determine the SFs [10]. To prove the invariance of
the (e, e′ p) amplitude under unitary transformations we use
the surface-integral formulation of the theory rather than the
asymptotic behavior of the wave function. The B(e, e′ p)A
amplitude in the prior form is given by

Mee′p = 〈�(−)
f |VeB − V

(opt)
eB | ϕB χ

(+)
i 〉

= 〈�(−)
f | − ←−

T + −→
T | ϕB χ

(+)
i 〉, (15)

where χ
(+)
i is the electron distorted wave in the initial channel

generated by the Coulomb optical potential V
(opt)
eB . Note that

this expression is valid even if the three-body potentials
Ve p j are included in addition to the two-body potential Ve p.
Introducing the finite-range unitary transformations we get

Mee′p = 〈
�̃

(−)
f U−1

p AU−1
A

∣∣ − ←−
T + −→

T |Up A UA ϕ̃Bχ
(+)
i 〉

= 〈�̃(−)
f | − ←−

T e B + −→
T e B |ϕ̃Bχ

(+)
i 〉, (16)

where T = Te B + Tp A + TA. To obtain the last equation we
took into account that operators TpA and TA are hermitian
because in the initial channel B is in the bound state. Thus the
exact (e, e′p) amplitude is invariant under finite-range unitary
transformations.

Radiative capture processes. Let us consider E1 direct
radiative capture amplitude A(n,γ )B. After applying the
Siegert’s theorem it can be written as

M = i kγ 〈ϕB |D|�(+)
i 〉, (17)

where �
(+)
i and ϕB are the exact initial scattering and final

bound-state wave function of nucleus B. D is the dipole
operator given by the sum of the nucleon operators

D =
∑

i

ei (ri − R), (18)

ei and ri are the charge and the radius of the ith nucleon, kγ is
the momentum of the emitted photon, R is the coordinate of the
center of mass of nucleus B. Assume that nucleus B consists of
Z protons and N = B − Z neutrons. Then the dipole operator
can be written as

D = e

B

Z∑
i=1

B∑
j=Z+1

rij , (19)

where e is the proton charge. Applying now the unitary
transformation of the wave functions we get

M = i kγ 〈ϕ̃B |U−1
B D UB |�̃(+)

i 〉

= e

B

Z∑
i=1

B∑
j=Z+1

〈ϕ̃B |U−1
ij rij Uij |�̃(+)

i 〉. (20)

The dipole operator is not invariant under unitary transforma-
tions. It is evident if we consider, for example, the unitary
correlation operator [4] which shifts away two nucleons in-
creasing the distances between them, i.e., this transformations

051601-3



RAPID COMMUNICATIONS

A. M. MUKHAMEDZHANOV AND A. S. KADYROV PHYSICAL REVIEW C 82, 051601(R) (2010)

will modify each rij and, hence, the dipole operator. Hence
the direct radiative capture amplitude is also not invariant
under unitary transformations. It is also clear from the fact
that the radiative capture amplitude does not determine the
asymptotic behavior of the exact wave function. However, the
modification of the radiative capture amplitude can be quite
small if the range of the unitary correlator is small.

Effect of unitary transformations on asymptotic normal-
ization coefficients and spectroscopic factors. Let us consider
now the effect of finite-range unitary transformations on the
ANCs and SFs. The overlap function of the bound state wave
functions of nuclei B = (An) and A is given by (for simplicity
we neglect the spins of the particles)

IB
A (rnA) = (A + 1)1/2 〈ϕA|ϕB〉. (21)

The integration in the matrix element 〈ϕA|ϕB〉 is carried
over all the internal coordinates of daughter nucleus A and
(A + 1)1/2 is the antisymmetrization factor due to identical
nucleons. Asymptotic behavior of its radial part is given by

IB
A (rnA)

rnA→∞≈ CB
An

e−κ rnA

rnA

. (22)

Here, CB
An is the ANC for the virtual decay B → A + n and

κ is the neutron bound state wave number. Introducing the
unitary transformation (1) and taking into account that UB =
UnA UA we get from Eq. (21)

IB
A (rnA) = (A + 1)1/2 〈ϕA|ϕB〉

= (A + 1)1/2 〈ϕ̃A|U−1
A UB |ϕ̃B〉

= (A + 1)1/2 〈ϕ̃A|UnA|ϕ̃B〉. (23)

Thus the overlap function is not invariant under unitary
transformations. However, the tail of the overlap function (at
rnA → ∞) remains intact under the unitary transformations:

IB
A (rnA) = (A + 1)1/2 〈ϕA|ϕB〉

= (A + 1)1/2 〈ϕ̃A|UnA|ϕ̃B〉
rnA→∞= (A + 1)1/2 〈ϕ̃A|ϕ̃B〉, (24)

i.e., the radial part

IB
A (rnA)

rnA→∞≈ CB
An

e−κ rnA

rnA

= C̃B
An

e−κ rnA

rnA

. (25)

Thus the ANC, which determines the amplitude of the
projection of the bound-state wave function B on the two-body
channel A + n, is invariant under finite-range unitary transfor-
mations. The ANC, which governs the overall normalization of
the peripheral transfer reactions, can be determined from their
analysis [11]. Hence, the ANC is observable. Note that if two
different phase-equivalent potentials are not connected via an
unitary transformation the ANCs generated by these potentials,
according to the inverse scattering problem theorem, a priori,
can differ. The measurement of the ANC allows one to select
a proper NN potential among different potentials which are
not unitary equivalent.

The most general model-independent definition of the SF
is the square of the norm of the overlap function:

S = 〈
IB
A

∣∣IB
A

〉
. (26)

Thus the SF is contributed by the overlap function at small
distances where the effect of unitary transformations, which
take into account short-range nucleon correlations, can be
significant (see [12] and references therein and [13]). Hence,
the SF, in contrast to the ANC, is not invariant under finite-
range unitary transformations and is nonobservable.

(d,p) reaction amplitude and spectroscopic factor. For
many years (d,p) reactions (see [1] and references therein),
electron-induced breakup reactions (see [10] and references
therein), and nucleon knockout reactions (see [14] and refer-
ences therein) have been the main tool for extracting the SFs,
which were compared with predictions of the independent-
particle shell model. However, as it has been proved, the exact
reaction amplitudes are invariant under the finite-range unitary
transformations while the SFs are not.

In the conventional approach the parametrization of the
reaction amplitude in terms of the SF is achieved using drastic
approximations of the exact reaction amplitude leading to the
DWBA. To discuss it let us recall that the exact (d,p) reaction
amplitude in the post form is given by

Mdp = 〈χ (−)
f ϕB |VpB − V

(opt)
pB |�(+)

i 〉. (27)

Here �
(+)
i is the scattering wave function with the incident

wave in the initial d + A channel and outgoing waves in all
the open channels, VpB and V

(opt)
pB is the interaction potential

and optical potential between p and B, χ
(−)
f is the distorted

wave in the exit p + B channel. Note that if the wave function
�

(+)
i is exact, Eq. (27) does not depend on the choice of the

optical potential.
To get the DWBA amplitude the following approximations

should be done. (i) �
(+)
i is approximated by the incident wave

ϕd ϕA χ
(+)
i in the channel d + A. (ii) The bound-state wave

function ϕB is approximated by the single term ϕB = IB
A ϕA.

(iii) The next step is the single-particle approximation for the
overlap function given by

IB
A = [

S
(sp)
An

]1/2
ϕn, (28)

where S
(sp)
An is the SF of the configuration B = (An) in the

single-particle approximation and ϕn is the single-particle
wave function of the neutron moving in the mean-field.
Since the squares of the norms of the overlap function and
the radial bound-state wave function are, correspondingly, the
SF and unity, the single-particle SF in Eq. (28) will equal the
SF defined in Eq. (26) if the bound-state wave function and
the overlap function have very similar radial behavior both
in the nuclear interior and exterior. However, for rnA < RN ,
RN is the nuclear interaction radius, where both IB

A and ϕn

have most of their probability, the radial dependence of the
overlap function and single-particle wave function, a priori,
are different because the overlap function is a many-particle
object affected by the short-range correlations [13], whereas
the single-particle wave function is a solution of the single-
particle Schrödinger equation. Thus, in general S

(sp)
An does not

coincide with the microscopically calculated SF. Nonetheless,
for rnA > RN , the radial dependencies of IB

A and ϕn are the
same, and they differ only by their overall normalizations. The
asymptotic behavior of the radial overlap function is given
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by Eq. (22) and the asymptotic normalization of the radial
bound-state wave function is defined as

ϕn(rnA)
rnA→∞≈ bAn

e−κ rnA

rnA

, (29)

where bAn is the single-particle ANC. By the proper choice
of S

(sp)
An , one can make Eq. (28) exact for r > RN . Then, from

Eqs. (22) and (29) we get the relationship S
(sp)
An = C2

An/b
2
An

connecting the single-particle SF, the ANC, and the single-
particle ANC bAn. While the ANC is an experimentally
measurable quantity, the single-particle ANC bAn is not.
Hence, the single-particle SF is model dependent. Its model
dependence comes through the single-particle ANC bAn,
which is a function of the geometric parameters, radius r0 and
diffuseness a, of the Woods-Saxon potential conventionally
used as a single-particle potential. Furthermore, unlike the
SF as defined in Eq. (26), the single-particle SF is actually a
property of the peripheral part of the nucleon overlap function,
because its definition comes from the peripheral behavior of
the overlap function and the single-particle wave function.

In contrast to the (d,p) reactions the (e,e′p) reactions can
probe nuclear interior (large transfer momentum) and that is
why these reactions are believed to be the best tool to deter-
mine the SFs [10]. However, at small internucleon distances

probed in the (e,e′p) reactions the short-range correlations are
important. These correlations affect the overlap function at
small distances and, hence, the SF but leave intact the exact
(e,e′p) amplitude. Note that earlier in [15] using the effective
field theory it was shown that the occupation numbers cannot
be unambiguously determined from (e,e′p) reactions.

Thus in the exact approach nuclear reactions cannot be
used as a tool to determine the SFs, which are not observable.
We proved that the exact reaction amplitudes, which are
asymptotic amplitudes of the exact scattering wave functions
in the corresponding asymptotic regions, are invariant under
finite-range unitary transformations while SFs are not. It means
that an exact reaction theory cannot be used as a tool to
determine SFs. We call it separation of the exact reaction theory
and SFs.
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