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Once more about astrophysical S factor for the α + d → 6Li + γ reaction.

A.M. Mukhamedzhanov1 and B. F. Irgaziev2

1Cyclotron Institute, Texas A&M University, College Station, TX 77843
22GIK Institute of Engineering Sciences and Technology, Topi, Pakistan

Recently to study the radiative capture α + d → 6Li + γ process a new measurement of the
6Li(A150MeV) dissociation in the field of 208Pb has been reported in [F. Hammache et al. Phys.
Rev C82, 065803 (2010)]. However, the dominance of the nuclear breakup over the Coulomb one
prevented from obtaining the information about the α + d → 6Li + γ process from the breakup
data. The astrophysical S24(E) factor has been calculated within the α − d two-body potential
model with potentials determined from the fits to the α−d elastic scattering phase shifts. However,
the scattering phase shift itself doesn’t provide a unique α− d bound state potential, which is the
most crucial input when calculating the S24(E) astrophysical factor at astrophysical energies. In
this work we emphasize an important role of the asymptotic normalization coefficient (ANC) for
6Li → α+ d, which controls the overall normalization of the peripheral α+ d → 6Li+ γ process and
is determined by the adopted α−d bound state potential. We demonstrate that the ANC previously
determined from the α− d elastic scattering s-wave phase shift in [Blokhintsev et. al Phys. Rev. C
48, 2390 (1993)] gives S24(E), which is at low energies about 38% lower than the one reported in
[F. Hammache et al. Phys. Rev C82, 065803 (2010)]. We recalculate also the reaction rates, which
are also lower than those obtained in [F. Hammache et al. Phys. Rev C82, 065803 (2010)].

PACS numbers: 26.35.+c, 25.45.-z, 25.40.Lw, 21.10.Jx

The radiative capture α+d→ 6Li+γ is the only process that produces 6Li in the big bang model. A special interest
to this reaction has been trigerred by almost three order disagreemnet between the observational ratio 6Li/7Li [1] and
the calculated one [1]. Unfortunately direct measurements of the α + d → 6Li + γ radiative capture are practically
impossible at astrophysically relevant α− d relative kinetic energies E ≤ 300 keV due to extremely low cross section.
Hence, only indirect approach could be feasible to get information about 6Li formation. The first indirect information
about the astrophysical factor S24(E) for the α + d → 6Li + γ process has been obtained in [2] from the Coulomb
breakup process 6Pb(6Li (26AMeV), α d)208Pb. However, the energy behavior of the extracted astrophysical factor at
low energies turned out to be constant what contradicted to all the calculations showing significant drop [3]. Recently
in [4] a new attempt has been done to get the astrophysical factor S24(E) at astrophysically relevant energies from
6Pb(6Li (150AMeV), α d)208Pb. However, analysis has shown significant dominance of the nuclear breakup over the
Coulomb one making impossible to determine the needed information about S24(E). Nevertheless, in [4] the S24(E)
has been calculated using the α − d two-body potential model. The potentials which are required to make such
calculations were obtained from fitting the α− d elastic scattering phase shift for the s, p and d waves. The approach
used to calculate the astrophysical factor is not related with the studied 6Li breakup process. The only common
information in the analysis of the breakup data and calculation of the astrophysical factor were the same bound state
and scattering α − d potentials used to generate the corresponding bound state and scattering wave functions. In
the potential approach used in [4] the bound state potential, as we will discuss below, is the most crucial part of the
input, which affects the overall normalization of the astrophysical factor. Unfortunately, the dominance of the nuclear
breakup and dependence of the breakup data analysis on the optical potentials doesn’t allow one to make a test of
the quality of the adopted α− d potential. The approach applied in [4] is just repetition of the procedure used in [5].
Here we would like to discuss how reliable are the astrophysical factor S24(E) and the reaction rates for the

α + d → 6Li + γ radiative capture reported in [4] and what should be done to improve our knowledge about them.
It has been long ago recognized that the α + d → 6Li + γ process at astrophysical energies is entirely peripheral
reaction in the two-body potential model [3]. Evidently, the potential model itself is a limitation and it would be
nice to check peripherality of this reaction within a many-body ab initio approach similat to what has been done
recently for the 3He + 4He → 7Be + γ in [6]. However, an important issue in a many-body approach remains to
be solved is reproduction of the experimental binding energy, because the calculated astrophysical factor is sensitive
to its value. Since such ab initio many-body calculations are not yet available we have to live with a more simple
two-body potential model. The matrix element for the α + d → 6Li + γ direct radiative capture in the long-wave
approximation is given by [3]

Mλ
lf liJi

= Aλ

∫
∞

Rc

drI
6Li
α d (01) r

λ+2 ψli Ji
(r). (1)

All the notations are given in [3]. The cut-off radius Rc is introduced to reflect a peripheral character of the process.
The multipolarity of the transition is λ = 1, 2. It has been shown in [3] that the matrix element shows a very small
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sensitivity for Rc ≤ 4.5 fm, i.e. until distances which exceeds the 6Li radius and makes possible to approximate the
radial overlap function by the Cαd(01)W−η, 1/2(2 καd r)/r, where Cαd(01) is the asymptotic normalization coefficient

(ANC) for the virtual decay 6Li → α + d in the state with relative orbital angular momentum l = 0 and the
total angular momentum J = 1, W−η, 1/2(2 καd r) is the Whittaker function determining the radial shape of the
overlap function beyond of the α − d nuclear interaction region, η is the Coulomb α − d bound state parameter,
καd =

√
2µa d εαd is the α − d bound state wave number, µα d and εαd are the reduced mass and binding energy

of α and d, correspondingly. As we can see, there are two inputs needed to calculate the matrix element. One is the
α − d potential describing the continuum in the partial waves l = 1, 2. This potential has been found in cite [4] by
fitting the elastic scattering phase shifts in these partial waves and it is a legitimate procedure. Note that at very low
energies, say around the most effective energy of 70 keV, one can use a pure Coulomb scattering wave function in the
initial state of the reaction. However, the role of nuclear interaction becomes very important with energy increase
and it is responsible for reproduction of the resonance at ER = 0.7117 MeV. In the potential approach used in [4, 5]
the overlap function is replaced by the

I
6Li
α d (01) = S

1/2
α d (01) ϕαd(101)(r), (2)

Here Sα d (01) is the spectroscopic factor for the configuration (α d)01 in 6Li, ϕα d(101)(r) is the radial wave function of
the α− d relative motion in the field generated by the Woods-Saxon potential. Also n = 2 is the principal quantum
number, i.e. the number of the nodes for r > 0 is N = 1, l = 0 and J = 1 . The spectroscopic factor reflects the
fact that the overlap function is not an eigenfunction of any Hamiltonian and, hence, is not normalized to unity in
contrast to the bound state wave function. The potential, which is used to calculate the bound state wave function,
has been determined in [4] from the fitting to the α−d elastic scattering phase shift in the channel l = 0, J = 1. Since
the experimental elastic scattering phase shift includes the many-body effects of the scattered nuclei, the same is true
for the two-body potential which fits the elastic scattering data. Hence, the spectroscopic factor in Eq. (2) should be
set to Sαd (01) = 1. It is exactly what has been done in [4]. Since the reaction under consideration is peripheral at
astrophysical energies E ≤ 300 keV, functions in Eq. (2) can be replaced by their tales, i.e.

I
6Li
α d (01)

r>Rc≈ Cαd(01)

W−η, 1/2(2 καd r)

r
= bαd(101)

W−η, 1/2(2 καd r)

r
, (3)

i.e. in the two-body potential model in the asymptotic region Cαd(01) = bαd(101), where bαd(101) is the single-particle
ANC for the α − d bound state with the number of nodes for r > 0 N = 1. The value of the single-particle ANC
depends on the adopted bound-state potential. From the parameters of the bound state potential given in [4] we
find that b = 2.7 fm−1/2. Thus from the Woods-Saxon potential given in [4] we get the ANC, which is about 17%
larger then the ANC used in [3]. Since the astrophysical factor is proportional to the square of the ANC the usage
of C2

αd(01) = 7.29 fm−1 rather than C2
αd(01) = 5.29 fm−1 leads to the increase of the astrophysical factor compared to

the one obtained in [3] by almost 38%. It can be seen from Fig. 9 [4], where both astrophysical factors are shown
in the logarithmic scale. We came to the main point of this paper, the ANC, which is the most crucial input in the
calculation of the S24(E). In [4], as in [5], the s-wave scattering phase shift has been used to determine the bound-state
potential, which generates the bound state wave function and, correspondingly, the ANC. However, it is well known
from the inverse scattering problem that there is infinite number of the phase-equivalent potentials and to single out
a unique potential one has to add two parameters (if only one bound state is present in the given partial wave): the
binding energy and the ANC. In [4] the adopted potential reproduces experimental α − d binding energy but still,
one parameter, the ANC is still missing. Hence, the potential found in [4] is one out of an infinite set of the phase
equivalent potentials and the ANC, which it generates, is not necessarily a correct one. However, there is another
way of using the elastic scattering data which has been realized in [7]. This approach is based on the analiticity of
the elastic scattering S-matrix element what allows one to extrapolation the experimental scattering amplitude to the
bound state pole in the momentum plane to get the residue, which is expressed in terms of the ANC. Once the ANC
has been determined a unique potential can be found [7, 8]. This potential has to satisfy the condition

lim
r→∞

V N (r) e2κr → 0, (4)

where κ is the bound state wave number. These procedures had been realized in [7] for the α − d s-wave elastic
scattering. First, the Pade approximation was used to interpolate the elastic scattering amplitude in the physical
region, which was extrapolated to the bound state pole to get the ANC. The obtained ANC Cαd(01) = 2.3±0.12 fm−1/2

is lower than Cαd(01) = 2.7 fm−1/2 following from the potential used in [4]. After that the two-body potential has been
found, which reproduces the s-wave α − d phase shift and provides correct binding energy and the same ANC. The
found potential is more complicated than a Woods-Saxon one. It is a complex, energy independent potential, which
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FIG. 1: (Color online) The red solid line is α− d bound state nuclear potential V N (r) [4] and the blue dashed line is V N

1 (r).
The explanation see in the text.

can be expanded in terms of the harmonic oscillator basis. Evidently, that such a potential satisfies condition (4).
Thus the ambiguity in the two-body potential calls for more thorough selection of the potential because eventually
the adopted potential for the bound state will determine the overall normalization of the astrophysical factor for
peripheral direct radiative capture processes.
If we would confine ourselves to astrophysical energies then it would be enough to replace in the matrix element

(1) the overlap function by its asymptotic term (3) and, evidently, the astrophysical factor will be proportional to
C2

αd(01). However, if we want to extend our calculations to higher energies including the resonance region and above

we need to carry more accurate calculations. To compare our results with the S24(E) factor presented in [4] we adopt
the same α− d scattering potential as in [4]. For the α− d bound state potential it would be logically reasonable to
use the bound state potential from [7, 9]. However, since it has quite complicated form, we simply modify the bound
state potential used in [4] using the theorem of the inverse problem in scattering theory [10]. This theorem allows one
to recover a phase equivalent potential to the Woods-Saxon potential used in [4] with arbitrary ANC. Assume that
we find a nuclear potential V N (r), which together with the added Coulomb potential V C(r) fits the elastic scattering
phase shift in the l = 0 partial wave and the bound state wave function calculated with this potential has the ANC
C. Then the phase-equivalent potential is given by

V N
1 (r) = V N (r) +

d2K(r)

dr2
, (5)

K(r) = Log[1 + (τ − 1)(1−
∫ r

0

dxx2 ϕ2(x))]. (6)

The bound state wave function in the potential V1(r) = V N
1 (r) +V C(r) can be expressed in terms of the bound state

wave function ϕ(r) in the potential V (r) = V N (r) + V C(r):

ϕ1(r) = τ1/2
ϕ(r)

1 + (τ − 1)
∫ r

0
dxx2 ϕ2(x)

. (7)

From Eq. (7) taking the limit r → ∞ we obtain that C1 = τ−1/2 C. Let V (r) = V N (r)+VC(r) be the nuclear Woods-
Saxon plus Coulomb bound-state α− d potential adopted in [4], which generates the bound-state wave function with
Cαd(01) = 2.7 fm−1/2. Then for τ = 1.378 we obtain the wave function in the potential V1(r), which has the same
ANC as obtained in [7] and used in [3]. In Fig. 1 both nuclear potentials are shown. Since the difference between the
potentials is very small, panel (a), in panel (b) we show the tails of both potentials in the scale allowing to see the
difference. Note that the existence of the potential V N

1 (r), which is the phase equivalent to the bound state potential

found in [7, 9] with the same ANC, doesn’t contradict to the inverse scattering theorem because the addition d2K(r)
dr2

to the potential V N (r) asymptotically decays as exp(2 καd r) violating condition (4). It doesn’t allow one to use
potential V N

1 (r) for analytical extrapolation of the scattering amplitude generated by this potential to the bound
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FIG. 2: (Color online) The astrophysical factors S24(E) for the radiative capture α+ d → 6Li + γ. Black dots are data from
[2]; black crosses are data from [5]; black triangles are data from [11]. The red solid line is the S24(E) factor from [4]. The blue
dotted line is S24(E1) factor, the blue dashed line is S24(E2) and the blue solid line is our total astrophysical factor S24(E).

state pole but we need this potential here only to generate the bound state wave function with correct amplitude of
the tail, i.e. the ANC.
Using the bound state wave functions generated by the potentials V N (r) and V N

1 (r) and the scattering α− d wave
functions in the partial waves li = 1, 2, we calculated the S24(E) for the radiative capture α + d → 6Li + γ. The
results of the calculations are shown in Fig. 2. The astrophysical factor with the bound state wave function generated
by the potential V (r) is the S24(E) presented in [4] while our S24(E) is the one obtained using the bound state
wave function generated by V1(r). At energies below the resonance practically the tails of the bound states wave
functions do contribute to the matrix element. Since the square of the ANC in [4] is higher than our one by 38%,
correspondingly the astrophysical factor from [4] is systematically higher than our S24(E). Our calculations, definitely
better reproduce the experimental data [11] at energies larger than the resonance energies, where the calculations
from [4] clearly overestimate the data. At resonance energies both calculations reproduce the data [5] very well. At
astrophysically relevant energies E ≤ 300 keV our S24(E) is lower than the one from [4] by 38%. Finaly in Table I
we present the α+ d→ 6Li + γ reaction rates, which are also systematically lower than those presented in [4].
In this work we have demonstrated that a crucial quantity, which is necessary to pinpoint the S24(E) astrophysical

factor, is the ANC for the virtual decay 6Li → α + d. Due to the peripheral character of the α + d → 6Li + γ
direct radiative capture, this ANC determines the overall normalizatiion of the astrophysical factor at astrophysically
relevant energies. From our calculations and Fig. 2 we can see that at low energies the contribution from the isospin
forbidden E1 transition dominates over the allowed E2 transition. For example, at E = 70 keV, which is the most
effective energy, the contribution from the E1 transition to the total S24(E) astrophysical factor is about 60%. Even
at E = 100 keV the E1 transition contributes about 52% to the total astrophysical factor. Meantime, even if the
Coulomb breakup of 6Li would dominate, at E = 70 keV the E1 transition will be suppressed compared to the E2 by
a factor of 60. It can hardly make possible to determine the total astrophysical factor from the 6Li experiment. Since
the ANC is the only crucial information needed to calculate the S24(E) astrophysical factor at astrophysical energies,
we call for more accurate measurements of the s-wave α − d elastic scattering phase shift at lower energies. It will
help to extrapolate more accurately the data to the bound state pole to get more ANC for 6Li → α+ d. Finally, we
note that the problem of determination of the two-body bound state potential from the elastic scattering phase shift
is quite important in different applications of nuclear reaction theory, in particular, in Faddeev approach for reactions
with composite particles.
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TABLE I: The rate for α + d → 6Li + γ reaction calculated using our astrophysical S-factor for the temperature range
106K ≤ T ≤ 1010K.

.

T9 Na〈σv〉 T9 Na〈σv〉

(cm3 mol−1 s−1) (cm3 mol−1 s−1)

0.001 6.467 × 10−30 0.260 6.823 × 10−04

0.002 1.857 × 10−23 0.270 7.876 × 10−04

0.003 2.470 × 10−20 0.280 9.032 × 10−04

0.004 2.286 × 10−18 0.290 1.030 × 10−03

0.005 5.693 × 10−17 0.300 1.167 × 10−03

0.006 6.592 × 10−16 0.310 1.317 × 10−03

0.007 4.651 × 10−15 0.320 1.478 × 10−03

0.008 2.327 × 10−14 0.330 1.652 × 10−03

0.009 9.067 × 10−14 0.340 1.840 × 10−03

0.010 2.923 × 10−13 0.350 2.040 × 10−03

0.011 8.127 × 10−13 0.360 2.254 × 10−03

0.012 2.008 × 10−12 0.370 2.482 × 10−03

0.013 4.508 × 10−12 0.380 2.725 × 10−03

0.014 9.343 × 10−12 0.390 2.983 × 10−03

0.015 1.811 × 10−11 0.400 3.256 × 10−03

0.016 3.318 × 10−11 0.500 6.930 × 10−03

0.017 5.787 × 10−11 0.600 1.271 × 10−02

0.018 9.676 × 10−11 0.700 2.148 × 10−02

0.019 1.559 × 10−10 0.800 3.462 × 10−02

0.020 2.432 × 10−10 0.900 5.385 × 10−02

0.025 1.538 × 10−09 1.000 8.079 × 10−02

0.030 6.277 × 10−09 1.100 1.166 × 10−01

0.035 1.929 × 10−08 1.200 1.618 × 10−01

0.040 4.870 × 10−08 1.300 2.164 × 10−01

0.045 1.066 × 10−07 1.400 2.797 × 10−01

0.050 2.093 × 10−07 1.500 3.508 × 10−01

0.060 6.375 × 10−07 1.600 4.288 × 10−01

0.070 1.554 × 10−06 1.700 5.126 × 10−01

0.080 3.245 × 10−06 1.800 6.002 × 10−01

0.090 6.057 × 10−06 1.900 6.915 × 10−01

0.100 1.038 × 10−05 2.000 7.854 × 10−01

0.110 1.665 × 10−05 2.100 8.808 × 10−01

0.120 2.533 × 10−05 2.200 9.773 × 10−01

0.130 3.690 × 10−05 2.300 1.074 × 10+00

0.140 5.185 × 10−05 2.400 1.171 × 10+00

0.150 7.071 × 10−05 2.500 1.268 × 10+00

0.160 9.398 × 10−05 3.000 1.745 × 10+00

0.170 1.222 × 10−04 3.500 2.210 × 10+00

0.180 1.559 × 10−04 4.000 2.673 × 10+00

0.190 1.954 × 10−04 4.500 3.145 × 10+00

0.200 2.416 × 10−04 5.000 3.631 × 10+00

0.210 2.946 × 10−04 6.000 4.645 × 10+00

0.220 3.552 × 10−04 7.000 5.689 × 10+00

0.230 4.238 × 10−04 8.000 6.725 × 10+00

0.240 5.008 × 10−04 9.000 7.723 × 10+00

0.250 5.868 × 10−04 10.00 8.664 × 10+00

5



I. ACKNOWLEDGMENTS

The work was supported by the US Department of Energy under Grants No. DE-FG02-93ER40773 and de-sc0004958
(topical collaboration TORUS) and NSF under Grant No. PHY-0852653.

[1] M. Asplund et al., Astrophys. J. 644, 229 (2006).
[2] J. Kiener et. al, Phys. Rev. C 44, 2195 (1991).
[3] A. M. Mukhamedzhanov et al., Phys. Rev. C 52, 3483 (1995).
[4] F. Hammache et al., Phys. Rev. C 82, 065803 (2010).
[5] P. Mohr et al., Phys. Rev. C 50, 1543 (1994).
[6] T. Neff, Phys. Rev. Lett. 106, 042502 (2011).
[7] L. D. Blokhintsev et al., Phys. Rev. C 48, 2390 (1993).
[8] L. D. Blokhintsev and V. O. Yeremenko, Phys. At. Nucl. 71, 1219 (2008) [Yad. Fiz. 71, 1247 (2008)].
[9] V. I. Kukulin and V. N. Pomerantsev, Yad Fiz. 51, 376 (1990) [Sov. J. Nucl. Phys. 51, 240 (1990)].

[10] K. Shadan, P. C. Sabatier, Inverse Problems in Quantum Scattering Theory. Springer-Verlag, New York Heidelberg -Berlin,
1977.

[11] R. G. H. Robertson et. al, Phys. Rev. Lett. 47, 1867 (1981).

6

http://arxiv.org/abs/de-sc/0004958

	I Acknowledgments
	 References

