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Recently, a new approach for solving the three-body problem for (d,p) reactions in the Coulomb-distorted
basis in momentum space was proposed. Important input quantities for such calculations are the scattering matrix
elements for proton- (neutron-) nucleus scattering. We present a generalization of the the Ernst-Shakin-Thaler
scheme in which a momentum space separable representation of proton-nucleus scattering matrix elements in the
Coulomb basis can be calculated. The success of this method is demonstrated by comparing S-matrix elements
and cross sections for proton scattering from 12C, 48Ca, and 208Pb with the corresponding coordinate space
calculations.
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Deuteron induced nuclear reactions are attractive from an
experimental as well as theoretical point of view to probe
the structure of exotic nuclei. For example, carried out in
inverse kinematics, (d,p) or (d,n) reactions prove useful for
extracting neutron or proton capture rates on unstable nuclei
of astrophysical relevance (see, e.g., [1]). From a theoretical
perspective (d,p) reactions are attractive because the scattering
problem can be viewed as an effective three-body problem
[2]. One of the most challenging aspects of solving the three-
body problem for nuclear reactions is the repulsive Coulomb
interaction between the nucleus and the proton. While for very
light nuclei, exact calculations of (d,p) reactions based on
momentum-space Faddeev equations in the Alt-Grassberger-
Sandhas (AGS) [3] formulation can be carried out [4], this
is not the case for heavier nuclei with higher charges. The
reason for this shortcoming stems from the implementation
of the Faddeev-AGS equations, which relies on a screening
and renormalization procedure [5,6], which leads to increasing
technical difficulties in computing (d,p) reactions with heavier
nuclei [7].

To avoid a screening procedure Ref. [8] derived a three-
body theory for (d,p) reactions such that the Faddeev-AGS
equations are cast in a momentum-space Coulomb-distorted
partial-wave representation, instead of the plane-wave basis.
Thus all operators, specifically the interactions in the two-body
subsystems must be evaluated in the Coulomb basis, which is
a nontrivial task (carried out recently for the neutron-nucleus
interaction; see Ref. [9]). The formulation of Ref. [8] requires
the interactions in the subsystems to be of separable form.
Proton-proton (pp) scattering based on separable interactions
was considered some time ago in [10] and [11,12]. Therein the
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pp interaction was represented in terms of analytic functions,
and the parameters in the two lowest partial waves were
adjusted to describe the experimentally extracted pp phase
shifts. While such an approach is viable in the pp system, it is
not very practical when heavy nuclei are considered because
here many more partial waves are affected by the Coulomb
force. Separable forms for nucleon-nucleus interactions were
considered only as rank-1 Yamaguchi functions [13,14],
and were intended to represent the nuclear forces up to a
few MeV.

In Ref. [15] we derived a separable representation of
phenomenological neutron-nucleus optical potentials based
on Woods-Saxon forms, using a generalization of the Ernst,
Shakin, and Thaler (EST) scheme for non-Hermitian interac-
tions. In this work we derive a momentum-space separable
representation of proton-nucleus optical potentials in the
Coulomb basis.

The derivations in the original EST work laid out in [16]
set up the scattering problem in a complete plane-wave basis,
whereas in this work we need to use a complete Coulomb
basis. Consequently, when working in momentum space, we
require that a solution of the momentum space scattering
equation in the Coulomb basis exists. We solve the momentum
space Lippmann-Schwinger (LS) equation in the Coulomb
basis, following the method introduced in Ref. [17] and
successfully applied in proton-nucleus scattering calculations
with microscopic optical potentials in Ref. [18].

First, we sketch the important steps needed to derive a
separable representation of a phenomenological global optical
potential in the momentum-space Coulomb basis for proton-
nucleus scattering. Our numerical calculations of S-matrix
elements and cross sections for proton elastic scattering from
12C, 48Ca, and 208Pb at selected laboratory kinetic energies are
then discussed along with the behavior of the form factors as
a function of the external momentum.
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The scattering between a proton and a nucleus is governed
by a potential,

w = vC + us, (1)

where vC is the repulsive Coulomb potential and us an
arbitrary short-range potential. In general us consists of a
proton-nucleus optical potential uN describing the nuclear
interactions, and a short-ranged Coulomb potential vcd −
vC , traditionally parametrized as the potential of a charged
sphere with radius R0 of which the point Coulomb force is
subtracted [19],

(vcd − vC)(r) = αZ1Z2

[
1

2R0

(
3 − r2

R2
0

)
− 1

r

]
, (2)

with Z1 and Z2 being the atomic numbers of the particles,
and α the Coulomb coupling constant. Because the scattering
problem governed by the Coulomb force has an analytic
solution with scattering wave functions that form a complete
basis, the scattering amplitude for elastic scattering between a
proton and a spin zero nucleus is obtained as the sum of the
Rutherford amplitude f C(Ep0 ,θ ) and the Coulomb-distorted
nuclear amplitude,

MCN (Ep0 ,θ ) = f CN (Ep0 ,θ ) + σ̂ · n̂ gCN (Ep0 ,θ ), (3)

with

f CN (Ep0 ,θ ) = −πμ

∞∑
l=0

e2iσl (Ep0 )Pl(cos θ )

× [
(l + 1)〈p0|τCN

l+ (Ep0 )|p0〉
+ l〈p0|τCN

l− (Ep0 )|p0〉
]
, (4)

gCN (Ep0 ,θ ) = −πμ

∞∑
l=0

e2iσl (Ep0 )P 1
l (cos θ )

×[〈p0|τCN
l+ (Ep0 )|p0〉 − 〈p0|τCN

l− (Ep0 )|p0〉
]
.

(5)

Here Ep0 = p2
0/2μ is the center-of-mass (c.m.) scattering

energy which defines the on-shell momentum p0, σl =
arg �(1 + l + iη) is the Coulomb phase shift, and the Sommer-
feld parameter is given by η = αZ1Z2μ/p. The unit vector
n̂ is perpendicular to the scattering plane and σ̂ /2 is the
spin operator. The subscripts “+” and “−” correspond to a
total angular momentum of j = l + 1/2 and j = l − 1/2,
respectively. Suppressing the total angular momentum indices
for simplicity, the Coulomb-distorted nuclear t-matrix element
is given by 〈p0|τCN

l (Ep0 )|p0〉, which is the solution of an
LS-type equation,

〈p|τCN
l (Ep0 )|p0〉 = 〈p|us

l |p0〉 +
∫

p′2dp′〈p|us
l |p′〉

×〈p′|gc(Ep0 + iε)|p′〉〈p′|τCN
l (Ep0 )|p0〉.

(6)

Here gc(Ep0 + iε) = (Ep0 + iε − H0 − vC)−1 is the Coulomb
Green’s function, and H0 the free Hamiltonian. The Coulomb-
distorted nuclear t-matrix element 〈p|τCN

l (Ep0 )|p0〉 is related

to the proton-nucleus t matrix 〈p|tl(Ep0 )|p0〉 by the familiar
two-potential formula,

〈p|tl(Ep0 )|p0〉=〈p|tCl (Ep0 )|p0〉 + e2iσl (Ep0 )〈p|τCN
l (Ep0 )|p0〉,

(7)

where 〈p|tCl (Ep0 )|p0〉 is the point Coulomb t matrix.
When the integral equation in Eq. (6) is solved in the basis

of Coulomb eigenfunctions, gc acquires the form of a free
Green’s function and the difficulty of solving it is shifted to
evaluating the potential matrix elements in this basis.

For deriving a separable representation of the Coulomb-
distorted proton-nucleus t-matrix element, we generalize the
approach suggested by Ernst, Shakin, and Thaler [16], to
the charged particle case. The basic idea behind the EST
construction of a separable representation of a given potential
is that the wave functions calculated with this potential and the
corresponding separable potential agree at given fixed scatter-
ing energies Ei , the EST support points. The formal derivations
of [16] use the plane-wave basis, which is standard for
scattering involving short-range potentials. However, the EST
scheme does not depend on the basis and can equally well be
carried out in the basis of Coulomb scattering wave functions.
To generalize the EST approach to charged-particle scattering,
one needs to be able to obtain the scattering wave functions
or half-shell t matrices from a given potential in the Coulomb
basis.

To obtain the Coulomb-distorted short-range half-shell t-
matrix element needed in Eq. (7), we solve Eq. (6) in the
Coulomb basis as suggested in Ref. [17], and note that in this
case the Coulomb Green’s function behaves like a free Green’s
function. Taking |
c

l,p〉 to represent the partial-wave Coulomb
eigenstate Eq. (6) reads〈


c
l,p

∣∣τCN
l (Ep0 )

∣∣
c
l,p0

〉

= 〈

c

l,p

∣∣us
l

∣∣
c
l,p0

〉 +
∫ ∞

0

〈

c

l,p

∣∣us
l

∣∣
c
l,p′

〉

× p′2dp′

Ep0 − Ep′ + iε

〈

c

l,p′
∣∣τCN

l (Ep0 )
∣∣
c

l,p0

〉

≡ 〈p|τCN
l (Ep0 )|p0〉, (8)

defining the Coulomb-distorted short-range half-shell t matrix.
The essential ingredient is the driving term of Eq. (8). To obtain
it we follow Ref. [17] and insert a complete set of position
space eigenfunctions,〈

c

l,p′
∣∣us

l

∣∣
c
l,p

〉

= 2

π

∫ ∞

0

〈

c

l,p′
∣∣r ′〉 r ′2dr ′ 〈r ′|us

l |r〉 r2dr
〈
r
∣∣
c

l,p

〉

= 2

πp′p

∫ ∞

0
rr ′drdr ′ Fl(η

′,p′r ′) 〈r ′|us
l |r〉 Fl(η,pr), (9)

where the coordinate-space partial-wave Coulomb functions
are given as

〈
r
∣∣
c

l, p

〉 ≡ 
c
l, p(r) ≡ Fl(η, pr)

pr
. (10)
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For our application we consider phenomenological optical
potentials of the Woods-Saxon form which are local in
coordinate space. Thus the momentum-space potential matrix
elements simplify to

〈

c

l,p′
∣∣us

l

∣∣
c
l,p

〉 = 2

πp′p

∫ ∞

0
dr Fl(η

′,p′r)us
l (r)Fl(η,pr).

(11)

We compute these matrix elements for the short-range piece
of the CH89 phenomenological global optical potential [19],
consisting of a nuclear and a short-range Coulomb potential, as
given in Eq. (2). The integral can be carried out with standard
methods because us

l (r) is short ranged and the coordinate space
Coulomb wave functions are well defined. The accuracy of this
integral can be tested by replacing the Coulomb functions with
spherical Bessel functions and comparing the resulting matrix
elements to a partial-wave decomposition of the semianalytic
Fourier transform in Ref. [15]. For a finite grid, a maximum
radial value of 14 fm and 300 grid points is sufficient to obtain
matrix elements with a precision of six significant figures.

Extending the EST separable representation to the Coulomb
basis involves replacing the neutron-nucleus half-shell t matrix
in Eqs. (14)–(16) of Ref. [15] by Coulomb scattering states
|f c

l,p〉, which defines the Coulomb-distorted separable nuclear
t matrix,

τCN
l (Ep0 ) =

∑
i,j

us
l

∣∣f c
l,kEi

〉
τ c
ij (Ep0 )

〈
f

c , ∗
l, kEj

∣∣us
l , (12)

with τ c
ij (Ep0 ) being constrained by

∑
i

〈
f c∗

l,kEn

∣∣us
l − us

l gc(Ep0 )us
l

∣∣f c
l,kEi

〉
τ c
ij (E) = δnj ,

(13)∑
j

τCN
ij (Ep0 )

〈
f c∗

l,kEj

∣∣us
l − us

l gc(Ep0 )us
l

∣∣f c
l,kEk

〉 = δik.

Here |f c
l,kEi

〉 and |f c , ∗
l,kEi

〉 are the regular radial Coulomb
scattering wave functions, corresponding to us

l and (us
l )

∗ at
energy Ei . The constraints of Eq. (13) ensure that at the
EST support points Ei the exact and the separable Coulomb-
distorted nuclear half-shell t matrices are identical. For the
explicit evaluation we insert a complete set of Coulomb states
so that gc(Ep0 ) takes the form of a free Green’s function. The
generalization of the EST scheme to complex potentials of
Ref. [15] is not affected by changing the basis from plane
waves to Coulomb scattering states. Similar expressions for
a Coulomb-distorted separable nuclear t matrix are given in
Refs. [10–12].

We write the separable Coulomb-distorted nuclear t-matrix
elements as

〈p′|τCN
l (Ep0 )|p〉 ≡

∑
i,j

hc
l,i(p

′)τ c
ij (Ep0 )hc

l,j (p)

=
∑
i,j

〈

c

l,p′
∣∣us

l

∣∣f c
l,kEi

〉
τ c
ij (Ep0 )

× 〈
f c∗

l,kEj

∣∣us
l

∣∣
c
l,p

〉
, (14)

TABLE I. The partial-wave S-matrix elements for j= l + 1/2
as a function of selected angular momenta l calculated for p + 48Ca
elastic scattering at laboratory kinetic energy Elab = 38 MeV obtained
from the CH89 [19] phenomenological optical potential. The second
column gives the S-matrix element obtained with the separable
representation of the momentum space calculation, which is given
in the third column. In the last column the corresponding coordinate
space calculations are given.

l Separable p space r space

0 −0.0512 0.3765 −0.0518 0.3768 −0.0523 0.3767
2 0.3805 0.0420 0.3809 0.0421 0.3808 0.0427
6 −0.0445 0.0170 −0.0457 0.0118 −0.0462 0.0111
10 0.9818 0.0248 0.9814 0.0253 0.9814 0.0253

where the form factor,

hc
l,i(p) ≡ 〈


c
l,p

∣∣us
l

∣∣f c
l,kEi

〉
= 〈

f c∗
l,kEi

∣∣us
l

∣∣
c
l,p

〉 = 〈p|τCN
l (Ei)|kEi

〉, (15)

is the short-ranged half-shell t matrix satisfying Eq. (8).
For our analysis, and the comparison with coordinate-space
calculations, we consider the partial-wave S-matrix elements,
which are obtained from the on-shell t-matrix elements by the
relation Sl(Ep0 ) = 1 − 2πiμp0〈p0|τCN

l (Ep0 )|p0〉.
Evaluating the separable Coulomb-distorted proton-

nucleus t matrix involves integrals over the proton-nucleus
form factor hc

l,i(p). If the short-range Coulomb potential is
omitted, the numerical integration is similar to the neutron-
nucleus separable potentials discussed in Ref. [15]. However,
if it is included, the proton-nucleus form factor falls off
more slowly as a function of the momentum. This implies
that for a finite momentum grid, one has to use a much
larger value of the maximum momentum and a larger number
of grid points to obtain a separable representation of the
Coulomb-distorted proton-nucleus t matrix with the same
accuracy as the separable representation of the corresponding
neutron-nucleus t matrix.

For studying the quality of the separable representation of
t matrices for proton-nucleus optical potentials we consider
elastic scattering of protons from 12C, 48Ca, and 208Pb in the
range from 0 to 50 MeV laboratory kinetic energy. We use
the CH89 global optical potential [19] and its rank-4 (rank-5)
separable representations for p + 12C, p + 48Ca (p + 208Pb).
The same support points used for the neutron-nucleus
separable representation (summarized in Table I of [15])
provide a description of equal quality for the proton-nucleus S-
matrix elements. This is demonstrated for p + 48Ca scattering
at 38 MeV laboratory kinetic energy in Table I, which
gives the S-matrix elements calculated with the separable
representation of the Coulomb-distorted proton-nucleus t
matrix, together with the corresponding direct calculations
performed either in momentum or coordinate space.

Similar results for the p + 208Pb S-matrix elements are
shown in Fig. 1. The top two panels (a) and (b) show
the real and imaginary parts of the S-matrix elements for
j = l + 1/2 at 10 MeV laboratory kinetic energy while the
bottom two panels (c) and (d) show the real and imaginary
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FIG. 1. (Color online) The partial-wave S matrix for p + 208Pb
elastic scattering obtained from the CH89 [19] global optical potential
as a function of the angular momentum. (a) and (b) show the real and
imaginary parts of the S matrix at 10 MeV laboratory kinetic energy;
(c) and (d) give the real and imaginary parts of the S-matrix elements
at 45 MeV laboratory kinetic energy. The total angular momentum is
j = l + 1/2. The cross symbols (red) (i) give the S-matrix elements
calculated from the momentum space separable representation of the
CH89 global optical potential for p + 208Pb elastic scattering, while
open circles (black) (ii) depict the corresponding coordinate space
calculation. The open diamonds (blue) (iii) show the calculation
in which the short-range Coulomb potential is omitted. The solid
circles (green) (iv) indicate the S-matrix elements for n + 208Pb
elastic scattering.

parts of the S-matrix elements at 45 MeV. At 10 MeV the
partial-wave series converges much faster, thus we do not
show matrix elements beyond l = 12. First, we note that
the momentum space S-matrix elements calculated with the
separable representation (crosses) agree perfectly with the
corresponding coordinate-space calculation (open circles).
We find the same agreement for the j = l − 1/2 S-matrix
elements.

To illustrate the effects of the short-range Coulomb poten-
tial on the S-matrix elements, we show a calculation in which
this term is omitted (open diamonds). As indicated in Fig. 1,
only the low l partial waves are affected. To demonstrate the
overall size of all Coulomb effects for 208Pb, we also plot
the corresponding n + 208Pb S-matrix elements at the same
energies (solid circles). The differences between the crosses
and the solid circles demonstrate the importance of the correct
inclusion of the Coulomb interaction.

To further demonstrate the quality of the rank-4 separable
representation of proton-nucleus optical potentials, we display
in Fig. 2 the unpolarized differential cross sections divided
by the Rutherford cross section for p + 12C and p + 48Ca at
38 MeV laboratory kinetic energy as a function of the c.m.
angle. Here we also include the cross sections corresponding
to the coordinate space solutions (dotted lines). As with the S
matrices in Fig. 1, there is excellent agreement between the
momentum-space EST and the coordinate space results. Also
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ut
h(θ
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C [*1.5] 
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Ca 

38 MeV

θ      (deg)
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FIG. 2. (Color online) The unpolarized differential cross section
for elastic scattering of protons from 12C (upper) and 48Ca (lower)
divided by the Rutherford cross section as a function of the c.m. angle
calculated for a laboratory kinetic energy of 38 MeV. The 12C cross
section is scaled by a factor 1.5. The solid lines (i) depict the cross
section calculated in momentum space based on the rank-4 separable
representation of the CH89 [19] phenomenological optical potential,
while the dotted lines (ii) represent the corresponding coordinate
space calculations. The dashed lines (iii) show the results in which
the short-ranged Coulomb potential is omitted.

shown are the calculations in which the short-range Coulomb
potential of Eq. (2) is omitted (dashed lines). The differences
between the solid and dashed lines demonstrate clearly the
importance of including the short-range Coulomb term, even
for light nuclei.

Next we examine the form factors of the separable
representation in the Coulomb basis in detail. In Fig. 3 we
compare p + 48Ca form factors at the 36 MeV support point for
selected angular momenta calculated with the proton-nucleus
potential and the short-range Coulomb potential (i) to those
calculated with the proton-nucleus potential alone (ii). We
immediately observe that, with the exception of l = 0, the
form factors already vanish at 3.5 fm−1. For l = 0 we see that
the short-range Coulomb potential significantly modifies the
nuclear form factor. However, those effects quickly decrease
as l increases and almost vanish for l = 6 in 48Ca and l = 8 in
208Pb (not shown).

For further comparison we show in Fig. 3 the form factor
of (ii) derived in a plane-wave basis (iii). For l = 0 this form
factor has a finite value as p → 0. To demonstrate the necessity
of solving the integral equation, Eq. (8), as a starting point for
the EST scheme, we include in Fig. 3 [dotted line (iv)], the
plane-wave form factor 〈
c

l,p|us
l |fl,kEi

〉 (with |fl,kEi
〉 being the

regular scattering wave function at energy Ei) evaluated in
the Coulomb basis with the techniques introduced in [9]. This
clearly indicates that the procedure outlined here is needed
to obtain an accurate description of proton-nucleus scattering
with a separable representation of the short-range force.

Summarizing, we have generalized the EST scheme [15,16]
so that it can be applied to the scattering of charged
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FIG. 3. (Color online) The real parts of the partial-wave proton-
nucleus form factor for 48Ca as a function of the momentum p for
selected angular momenta l: (a) l = 0, (b) l = 3, and (c) l = 6.
The form factors are calculated at Ec.m. = 36 MeV and based on the
CH89 global optical potential: The full calculations (i) are compared
to those omitting the short-range Coulomb (ii), the proton-nucleus
form factor in the plane wave basis (iii), and the form factor obtained
using the techniques introduced in [9] (iv).

particles with a repulsive Coulomb force. To demonstrate
the feasibility and accuracy of our method, we applied
this momentum-space Coulomb EST scheme to proton
elastic scattering from 12C, 48Ca, and 208Pb. We found
that the same EST support points employed to construct a
separable representation of neutron-nucleus optical potentials
can be used for the separable representation of the proton-
nucleus potential. We showed that the momentum-space

S-matrix elements calculated with the separable representation
of the Coulomb-distorted proton-nucleus potential as well
as the cross sections for elastic scattering agree very well
with the corresponding coordinate-space calculation. Because
changing from a plane wave to a Coulomb basis preserves
the time-reversal invariance of the separable potential, the
separable Coulomb-distorted proton-nucleus off-shell t matrix
also obeys reciprocity.

We also studied the effects of the short-range Coulomb
potential on the proton-nucleus form factor. We found that,
with the exception of the lowest partial waves the form factors
already vanish at 3.5 fm−1. For the lowest partial waves the
short-range Coulomb force creates a very slow fall-off for the
proton-nucleus form factor at high momenta. The effects of the
short-range Coulomb potential quickly decrease as l increases.

In addition, this work demonstrates that when using
Coulomb-distorted form factors in A(d,p)B Faddeev reaction
calculations carried out in a Coulomb-distorted partial-wave
basis, it is mandatory to evaluate neutron and proton-nucleus
form factors separately.
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