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Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy,
and stockpile stewardship are the cross sections for reactions of neutrons with rare isotopes. Since direct
measurements are often not feasible, indirect methods, e.g., (d,p) reactions, should be used. Those (d,p)
reactions may be viewed as three-body reactions and described with Faddeev techniques.
Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order
to arrive at sets of coupled integral equations in one variable. While there exist several separable representations
for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily
available in separable form. The purpose of this paper is to introduce a separable representation for complex
phenomenological optical potentials of Woods-Saxon type.
Results: Starting from a global optical potential, a separable representation thereof is introduced based on
the Ernst-Shakin-Thaler (EST) scheme. This scheme is generalized to non-Hermitian potentials. Applications
to n + 48Ca, n + 132Sn, and n + 208Pb are investigated for energies from 0 to 50 MeV and the quality of the
representation is examined.
Conclusions: We find a good description of the on-shell t matrix for all systems with rank up to 5. The required
rank depends inversely on the angular momentum. The resulting separable interaction exhibits a different off-shell
behavior compared to the original potential, reducing the high-momentum contributions.
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I. INTRODUCTION

A variety of applications of nuclear physics require an
understanding of neutron capture on unstable nuclei. Due to the
short lifetimes involved, direct measurements are currently not
possible, and thus indirect methods using (d,p) reactions have
been proposed (see, e.g., Refs. [1–3]). Single-neutron-transfer
(d,p) reactions have also been the preferred tool to study shell
evolution in nuclear structure (see, e.g., Refs. [4,5]). In all
these cases, a reliable reaction theory is a critical ingredient.

Scattering and reaction processes involving deuterons either
as projectile or as target are perhaps the most natural three-
body problem in the realm of nuclear reactions. The binding
energy of the deuteron is so small that its root-mean-square
radius is significantly larger than the range of the force. That
means, when a deuteron interacts with a compact nucleus,
one may expect that it will behave like a three-body system
consisting of a proton p, a neutron n, and a nucleus A.
The obvious three-body reactions are elastic scattering, rear-
rangement, and breakup processes. In order to describe those
processes on the same footing, deuteron-nucleus scattering
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should be treated as a three-body problem with a three-
body Hamiltonian governing the dynamics. This three-body
Hamiltonian contains the well-understood nucleon-nucleon
(NN) interaction as well as the effective interactions between
the nucleons and the target (nA and pA). It is common for
these nucleons-nucleus interactions to take phenomenological
optical potentials which fit a large body of elastic scattering
data [6–9].

The application of momentum-space Faddeev techniques
to nuclear reactions has been pioneered in Ref. [10] and
successfully applied to (d,p) reactions for light nuclei [11].
However, when extending these calculations to heavier nuclei
[12,13], it becomes apparent that techniques employed for
incorporating the Coulomb interaction in Faddeev-type calcu-
lations of reactions with light nuclei cannot readily be extended
to the heaviest nuclei. Therefore, a new method for treating
(d,p) reactions with the exact inclusion of the Coulomb force
as well as target excitation was formulated in Ref. [14].
This new approach relies on a separable representation of the
interparticle forces.

Separable representations of the forces between con-
stituents forming the subsystems in a Faddeev approach have
a long tradition in few-body physics. There is a large body
of work on separable representations of NN interactions (see,
e.g., Refs. [15–19]) or meson-nucleon interactions [20,21].
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In the context of describing light nuclei such as 6He [22]
and 6Li [23] in a three-body approach, separable interactions
have been successfully used. A separable nucleon-12C optical
potential was proposed in Ref. [24]; it consists of a rank-1
Yamaguchi-type form factor fitted to the positive energies and
a similar term describing the bound states in the nucleon-12C
configuration. However, we are not aware of any systematic
work along this line for heavy nuclei, for which excellent
phenomenological descriptions exist in terms of Woods-Saxon
functions [6–9]. For applications to (d,p) reactions there is a
need for a procedure for deriving a separable representation
that is sufficiently general for a variety of nucleon-nucleus
optical potentials, as well as over a wide range of nuclei and
energies, so that one can take advantage of the already existing
extensive work on phenomenological optical potentials.

The separable representation of two-body interactions
suggested by Ernst-Shakin-Thaler [25] (EST) seems well
suited for achieving this goal. We note that this EST approach
has been successfully employed to represent NN potentials
[15,16]. However, in the EST representation as derived in
Ref. [25], though energy dependence of the potentials is
allowed [26,27], it is assumed that they are Hermitian.
Therefore, the EST approach needs to be generalized in order
to be applicable for optical potentials which are complex.

In Sec. II we present the generalization of the EST approach
to non-Hermitian potentials needed so that the potential as well
as the transition matrix fulfills the reciprocity theorem. First,
we explicitly show for a rank-1 separable potential the required
redefinition of the separable ansatz of Ref. [25], and then we
generalize to separable potentials of arbitrary rank. Since all
our calculations are carried out in momentum space, we sketch
the explicit procedure to obtain separable transition matrices.
This procedure follows closely the one laid out in Ref. [25],
and we will refer to it as the EST scheme.

In Sec. III A we present the results for the separable
representations of optical potentials for 48Ca, 132Sn, and
208Pb based on the CH89 [6] phenomenological optical
potential. Note that the definition of the optical potential in
coordinate space and details on the Fourier transform and
partial wave decomposition are presented in the Appendix. In
Sec. III B, we investigate the off-shell behavior of the separable
representations and compare it to the original potential. Finally,
we summarize our findings in Sec. IV.

II. FORMAL CONSIDERATIONS

A scheme for constructing separable potentials from the
solution of a Lippmann-Schwinger (LS) equation with arbi-
trary Hermitian potentials was suggested by Ernst, Shakin, and
Thaler [25]. This separable potential is designed to represent
the scattering matrix (or equivalently the scattering phase
shifts) over a chosen energy range with the same quality as
the original potential. Furthermore, this EST scheme provides
a well-defined prescription for increasing the accuracy of the
representation by increasing the rank of the separable potential.

The basic idea of the EST scheme for constructing a
separable representation of the two-body transition amplitude
is that one selects a fixed number of energy points in the energy

interval in which the separable potential shall represent the
scattering matrix. At these chosen points, the on-shell as well
as half-shell t matrices of the original potential are identical to
those obtained with the separable potential. The corresponding
half-shell t matrices at these points then serve as form factors
of the separable representation. The number of these fixed
points gives the rank of the separable potential.

The EST [25,26] scheme has been successfully applied to
construct separable representations of several NN potentials
[15,16] defined below the pion production threshold, i.e.,
real potentials. Potentials intended to describe the scattering
of neutrons or protons from nuclei are in general complex
as a result of reactions channels not explicitly taken into
account. In the following we show that the formulation given
in Ref. [25] is not suitable for complex potentials, since it is not
compatible with the reciprocity theorem. We illustrate how the
requirement of time-reversal invariance leads to a modification
of the definition of the separable potential.

A. Separable complex potentials of rank 1 and time reversal

For applications to the theory of nuclear reactions it is
convenient to arrange that all potential operators U satisfy

KUK−1 = U †, (1)

where K is the time-reversal operator appropriate to the sys-
tem. This condition guarantees that the S matrix corresponding
to U is symmetric and that reaction amplitudes constructed
from these potentials satisfy convenient reciprocity relations.

When U is a central potential in the space of a spinless
particle, K can be chosen to be the antilinear complex
conjugation operator K0, which in the coordinate-space basis
|r〉 is defined by

K0 α |r〉 = α∗(K0|r〉) = α∗|r〉, (2)

and from which we deduce K0|p〉 = |−p〉. Note that for this
particular K we have (K0)−1 = K0.

We first consider a Hermitian interaction v acting in a partial
wave with angular momentum l. It was shown in Ref. [25]
that a rank-1 separable potential leading to a scattering wave
function that is identical to that of potential V (defined via a
Hamiltonian H = H0 + V ) at a specific energy EkE

(support
point) is given as

V
(
EkE

) = v
∣∣fl,kE

〉〈
fl,kE

∣∣v
〈fl,kE

∣∣v∣∣fl,kE

〉 ≡ v
∣∣fl,kE

〉
λ̂
〈
fl,kE

∣∣v. (3)

Here |fl,kE
〉 is the regular radial scattering wave function,

which is unique within an overall constant, for v at energy
EkE

, v|fl,kE
〉 is the form factor, and (λ̂)−1 = 〈fl,kE

|v|fl,kE
〉 is

the strength parameter.
For a Hermitian v the radial function fl,kE

can be taken to be
real in both coordinate and momentum space and the strength
parameter λ̂ is real. As a result, the nonlocal potential V of
Eq. (3) is a Hermitian symmetric matrix in both momentum
and coordinate space and satisfies K0VK0 = V †.

If however v is a complex potential, or more generally a
non-Hermitian operator u, the radial functions fl,kE

are no
longer real and if v is simply replaced by u in Eq. (3) the
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resulting rank-1 nonlocal potential U will neither be Hermitian
nor satisfy K0UK0 = U †.

To remedy this situation for a non-Hermitian potential u we
replace the definition of Eq. (3) by

U
(
EkE

) ≡ u
∣∣fl,kE

〉〈
f ∗

l,kE

∣∣u〈
f ∗

l,kE

∣∣u∣∣fl,kE

〉 ≡ u
∣∣fl,kE

〉
λ̂
〈
f ∗

l,kE

∣∣u, (4)

where now the strength parameter is defined by (λ̂)−1 =
〈f ∗

l,kE
|u|fl,kE

〉.
Here fl,kE

(r) is the unique regular radial wave function
corresponding to u and f ∗

l,kE
(r) is the unique regular radial

wave function corresponding to u∗. By a suitable choice of
arbitrary normalization constants we can arrange that f ∗

l,kE
(r)

is simply the complex conjugate of fl,kE
and henceK0|fl,kE

〉 =
|f ∗

l,kE
〉.

If u satisfies K0uK0 = u† the definition of Eq. (4) gives a
symmetric complex potential matrix that satisfies

K0U
(
EkE

)K0 = (K0u
∣∣fl,kE

〉)
(λ̂)∗

(〈
f ∗

l,kE

∣∣uK0
)

= u†∣∣f ∗
l,kE

〉
(λ̂)∗

〈
fl,kE

∣∣u† = U †, (5)

where the round brackets mean that K0 here acts only on the
quantities within the brackets.

For a general energy E and arbitrary potential V we define
an operator t(E) as the solution of

t(E) = V + Vg0(E)t(E). (6)

For the potential given by Eq. (4) we then obtain a rank-1
separable t matrix t(E) in a given partial wave with matrix
elements

〈p′|t(E)|p〉 = 〈p′|u∣∣fl,kE

〉〈
f ∗

l,kE

∣∣u|p〉〈
f ∗

l,kE

∣∣u − ug0(E)u
∣∣fl,kE

〉 . (7)

By introducing t(p′, kE,EkE
) = 〈f ∗

l,kE
|u|p′〉 and

t(p, kE,EkE
) = 〈p|u|fl,kE

〉, the partial wave t matrix
element 〈p′|t(E)|p〉 can be written as

〈p′|t(E)|p〉 = t
(
p′, kE,EkE

)
t
(
p, kE,EkE

)
〈
f ∗

l,kE

∣∣u(1 − g0(E)u)
∣∣fl,kE

〉
≡ t(p′, kE,E) τ (E) t(p, kE,E), (8)

where

τ−1(E) = 〈
f ∗

l,kE

∣∣u(1 − g0(E)u)
∣∣fl,kE

〉
. (9)

The scattering wave function |fl,kE
〉 satisfies |fl,kE

〉 =
|kE〉 + g0(EkE

)u|fl,kE
〉. Using this we find [τ (EkE

)]−1 =
〈kE|u|fl,kE

〉 = t(kE, kE,EkE
), and hence

〈p′|t(EkE

)|p〉 = t
(
p′, kE,EkE

)
t
(
p, kE,EkE

)
t
(
kE, kE,EkE

) , (10)

where angular momentum indices are omitted.
On the energy shell, i.e., for p → kE and p′ → kE , the

separable t matrix of Eq. (10) agrees with the t matrix evaluated
with the original potential u, as it should. For any general E =
k2

0/2μ the function τ (E) of Eq. (8) is explicitly calculated as

τ (E)−1 = t
(
kE, kE,EkE

) + 2μ

[
P

∫
dpp2 t

(
p, kE,EkE

)
t
(
p, kE,EkE

)
k2
E − p2

− P
∫

dpp2 t
(
p, kE,EkE

)
t
(
p, kE,EkE

)
k2

0 − p2

]

+ iπμ
[
k0t

(
k0, kE,EkE

)
t
(
k0, kE,EkE

) − kE t
(
kE, kE,EkE

)
t
(
kE, kE,EkE

)]
. (11)

Here the half-shell t matrices t(p, kE,EkE
) are the

momentum-space solutions of a standard LS equation
at the scattering energy EkE

.
Thus, the rank-1 separable potential as given in Eq. (4)

leads to the desired rank-1 separable t matrix, which fulfills
the reciprocity theorem.

B. Separable complex potentials of arbitrary rank

It remains to generalize the above formulation of a rank-1
separable complex potential to one of arbitrary rank. In analogy
to the procedure followed in Ref. [25] we define a complex
separable potential of arbitrary rank in a given partial wave as

U =
∑
i,j

u
∣∣fl,kEi

〉〈
fl,kEi

∣∣M∣∣f ∗
l,kEj

〉〈
f ∗

l,kEj

∣∣u. (12)

Here fl,kEi
is the unique regular radial wave function corre-

sponding to the complex potential u and asymptotic energy
Ei , and f ∗

l,kEi
is the unique regular radial wave function

corresponding to u∗. Note that u may also be energy dependent.

The matrix M is defined and constrained by

δik =
∑

j

〈
fl,kEi

∣∣M∣∣f ∗
l,kEj

〉〈
f ∗

l,kEj

∣∣u∣∣fl,kEk

〉

=
∑

j

〈
f ∗

l,kEi

∣∣u∣∣fl,kEj

〉〈
fl,kEj

∣∣M∣∣f ∗
l,kEk

〉
. (13)

The corresponding separable partial wave t matrix must be of
the form

t(E) =
∑
i,j

u
∣∣fl,kEi

〉
τij (E)

〈
f ∗

l,kEj

∣∣u, (14)

where angular momentum indices are omitted for simplicity
of notation. The coefficient matrix τij (E) is constrained by

∑
i

〈
f ∗

l,kEn

∣∣u − ug0(E)u
∣∣fl,kEi

〉
τij (E) = δnj , (15)

and ∑
j

τij (E)
〈
f ∗

l,kEj

∣∣u − ug0(E)u
∣∣fl,kEk

〉 = δik. (16)
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For i = j = 1 we recover the expressions for the rank-1
potential of the previous section.

For the explicit calculation of the matrix τij (E), we define
a matrix

Rij (E) ≡ 〈
f ∗

l,kEi

∣∣u − ug0(E)u
∣∣fl,kEj

〉
, (17)

so that the condition of Eq. (16) reads∑
j

τij (E)Rjk(E) = δik, (18)

from which follows

τij (E) = [R(E)]−1
ij . (19)

By using again that t(p′, kEi
, Ei) = 〈f ∗

l,kEi
|u|p′〉 and

t(p, kEi
, Ei) = 〈p|u|fl,kEi

〉, the matrix elements Rij are cal-
culated in momentum space. With E = k2

0/2μ, the diagonal
matrix elements are given as

Rii(E) = 〈
f ∗

l,kEi

∣∣u − ug0(E)u
∣∣fl,kEi

〉
= t

(
kEi

, kEi
; Ei

) + 2μ

× P
∫

dpp2 t
(
p, kEi

; Ei

)
t
(
p, kEi

; Ei

)
k2
Ei

− p2

− iπkEi
t
(
kEi

, kEi
; Ei

)
t
(
kEi

, kEi
; Ei

)

− 2μP
∫

dp p2 t
(
p, kEi

; Ei

)
t
(
p, kEi

; Ei

)
k2

0 − p2

+ iπk0t
(
k0, kEi

; Ei

)
t
(
k0, kEi

; Ei

)
. (20)

The half-shell t matrices t(p, kEi
; Ei) are the momentum-space

solutions of a standard LS equation at the support points Ei .
At these energies Ei , the on-shell t-matrix elements calculated
from the separable potential agree with those calculated from
the original complex potential u.

The off-diagonal elements of the matrix Rij (E) are given
by

Rij (E) = 〈
f ∗

l,kEi

∣∣u − ug0(E)u
∣∣fl,kEj

〉
= t

(
kEj

, kEi
; Ei

) + 2μ

× P
∫

dp p2 t
(
p, kEi

; Ei

)
t
(
p, kEj

; Ej

)
k2
Ej

− p2

− iπμkEj
t
(
kEj

, kEi
; Ei

)
t
(
kEj

, kEj
; Ej

)

− 2μP
∫

dp p2 t
(
p, kEi

; Ei

)
t
(
p, kEj

; Ej

)
k2

0 − p2

+ iπμk0t
(
k0, kEi

; Ei

)
t
(
k0, kEj

; Ej

)
. (21)

The matrix elements Rij (E), where i, j determine the rank
of the separable representation, are calculated at a fixed number
of energy support points Ei . The elements τij (E) are then
obtained by solving a system of linear equations Rτ = 1. For
this to be successful, the inverse of Rij (E) must exist. For
calculating the form factors, the half-shell t matrices at the
support points Ei are calculated by solving a LS equation with
the momentum-space Woods-Saxon potential derived in the
Appendix. For calculating the matrix elements Rij (E) we use
the cubic Hermite spline interpolation of Ref. [28] to obtain

the values at the required momenta. Since spline functions
are by design linearly independent, the representation of the
half-shell t matrices in this basis guarantees that the matrix
Rij (E) is always invertible.

In order to calculate the momentum-space partial wave
separable potential, one needs to evaluate Eq. (12),

〈k′|U|k〉 =
∑
i,j

〈k′|u∣∣fl,kEi

〉〈
fl,kEi

∣∣M∣∣f ∗
l,kEj

〉〈
f ∗

l,kEj

∣∣u|k〉,

(22)

together with the constraint of Eq. (13). The matrix elements

Wij ≡ 〈
f ∗

l,kEi

∣∣u∣∣fl,kEj

〉
(23)

are already part of the computation of the matrix elements
Rij (E) from Eqs. (20) and (21). The coefficient matrix Mij ≡
〈f ∗

l,kEi
|M|fl,kEj

〉 is then obtained as the inverse of Wij .

III. RESULTS

A. On-shell behavior of the optical potential
and its separable representation

To demonstrate the construction of a separable representa-
tion of a complex potential we apply the method to n + 48Ca,
n + 132Sn, and n + 208Pb and use as a starting point the Chapel
Hill phenomenological global optical potential CH89 [6].
CH89 has been widely used in the literature in the last decades
and also in recent studies of (d,p) reactions [4,5].

By using Woods-Saxon functions as parametrized forms,
these phenomenological global optical potentials are most
naturally given in coordinate space. For convenience, in
these global parametrizations one must assume local form
factors of the interaction but must introduce an explicit energy
dependence in the strengths.

In order to construct a separable momentum-space repre-
sentation of CH89 using the scheme outlined in the previous
section, we first must derive a momentum-space representation
of the CH89 optical potential. The explicit evaluation of the
Fourier transform of the CH89 potential, including the final
expressions we have implemented, is given in the Appendix,
but there are a few essential points worth highlighting.
The Fourier transform of the coordinate-space Woods-Saxon
function into momentum space can be written as a series
expansion. Fortunately, we found, by the explicit calculation of
the leading terms of this expansion, that only the first two terms
are necessary to obtain a converged result. These expressions
were used as input to a momentum-space LS equation, and
the resulting phase shifts were compared to those computed
with the coordinate-space CH89 potential using FRESCO [29].
Agreement was found for three significant figures.

A separable t matrix constructed within the scheme outlined
in Sec. II from a t matrix calculated as solution of an LS
equation with a given potential is exact on-shell as well as
half-shell at fixed support points Ei . For any other energy
E �= Ei it is then calculated by using Eq. (14).

For studying the quality of the separable representation it
is convenient to look at the partial wave S matrix, given as

Sl(E) = 1 + 2i τ̂l(E), (24)
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FIG. 1. (Color online) The l = 4 (j = 9/2) partial wave S matrix
for the n + 48Ca system obtained from the CH89 [6] phenomeno-
logical optical potential as a function of the c.m energy. The
exactly calculated S matrix is given by the solid line. Separable
representations of rank 1 (support point at 6 MeV), rank 2 (support
points at 6 and 12.5 MeV), and rank 3 (support points at 6, 15,
and 25 MeV) are shown by the dash-double-dotted, dash-dotted, and
dashed lines, respectively. The rank-4 representation (support points
at 6, 15, 36, and 47 MeV) coincides with the exact calculation and is
indicated by the solid dots.

where E represents the center-of-mass (c.m.) energy,
E ≡ Ec.m.. The dimensionless amplitude τ̂l(E) is given by

τ̂l(E) = −πμk0 tl(k0, k0; E). (25)

The on-shell momentum k0 is defined via Ec.m. = k2
0/2μ, and

μ is the reduced mass of the system under consideration. The
partial wave t matrix, tl(k0, k0), is either calculated directly
from the CH89 potential or obtained via our general scheme
to construct a separable representation thereof.

First we study in detail the scheme for constructing a
separable representation of the n + 48Ca system for c.m.
energies from 0 to 50 MeV. Our goal is to arrive at an excellent
separable representation of the partial wave S matrix starting
from the local CH89 potential. For practical applications in,
e.g., three-body type calculations, it is desirable to achieve
this with as low a rank as possible. As a representative case,
we show the l = 4, j = 9/2 partial wave S matrix in Fig. 1.
The S matrix obtained from the solution of the LS equation
with the original CH89 optical potential (solid line) shows
a relatively mild variation with energy in the energy regime
under consideration. If one is only interested in describing the
very low energies, i.e., Ec.m. � 10 MeV, a rank-1 separable
potential with a support point at 6 MeV is barely sufficient
(dash-double-dotted line), while a rank-2 representation with
support points at 6 and 12.5 MeV can already capture the range
between 0 and 20 MeV relatively well. A rank-3 representation
with support points at 5, 15, and 25 MeV captures the S matrix
up to roughly 35 MeV. However, for a high-quality separable
representation of at least four significant figures of the CH89
result a rank-4 representation with support points at 6, 15, 36,
and 47 MeV is needed in this partial wave. The figure also
shows that more support points are needed in the region where

-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

 R
e 

 S
3

 exact :  j= 7/2
 exact:  j= 5/2
 exact : central

0 5 10 15 20 25 30 35 40 45 50
Ec.m.  [MeV]

-0.5
-0.4
-0.3
-0.2
-0.1
0

 Im
  S

3

 rank 4:  j= 7/2
 rank 4:  j= 5/2
 rank 4: central

FIG. 2. (Color online) The l = 3 partial wave S matrix for the n +
48Ca system obtained from the CH89 [6] phenomenological optical
potential as a function of the c.m energy. The exactly calculated partial
wave S matrices for j = 7/2, j = 5/2, and the central part of the
optical potential alone are given by the solid, dash-double-dotted, and
dashed lines, respectively. The results for the corresponding rank-4
separable representations (support points at 6, 15, 36, and 47 MeV)
are overlayed and indicated by the solid symbols as indicated in the
figure.

the S matrix shows structure, and less points are necessary for
the smooth region.

The next question for a practical implementation of the
EST scheme is whether the optimum support points when
including both central and spin-orbit interactions differ from
the results when including the central interaction only. Usually
the central part of an optical potential is larger than the spin
part. Thus one may expect it to be sufficient to find EST
support points for the S matrix computed using only the central
part of the optical potential, and then use the same points for
deriving the separable representation of the l ± 1/2 partial
wave S matrices. This is indeed the case, as is demonstrated
for the l = 3 partial wave S matrix for the n + 48Ca system in
Fig. 2. The dashed line shows the S matrix calculated from the
cental part of the CH89 optical potential, while the solid and
dash-double-dotted lines represent the l + 1/2 and the l − 1/2
partial wave S matrices, respectively. Our results show that it
is indeed sufficient to determine the EST support points for
the S matrix computed from the cental part of the optical
potential. Thus, once the support points are determined from
a calculation including the central part, one only needs to
replace the corresponding form factors, i.e., the half-shell t
matrices, at the support points with the ones containing the
spin-orbit contribution to obtain the separable representation of
the l ± 1/2 partial wave S matrices with unchanged accuracy.

For the n + 48Ca system we find that for the lower partial
waves a rank-4 separable representation is sufficient for
energies up to Ec.m. = 50 MeV. Let us now consider what
happens as we increase the angular momentum. Reaction
calculations in the energy range 0–50 MeV often require
partial waves up to l = 20, but due to the centrifugal barrier
with increasing angular momentum the t matrix remains
close to zero even at higher scattering energy. Therefore, one
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FIG. 3. (Color online) The l = 8, j = 17/2 (solid line) and
l = 10, j = 21/2 (dash-double-dotted line) partial wave S matrices
for the n + 48Ca system calculated from the CH89 [6] phenomeno-
logical optical potential as functions of the c.m energy. The rank-1
(support point at 29 MeV) and rank-2 (support points at 29 and
47 MeV) representations for the l = 8 partial wave S matrix are
given by the dotted line and the filled circles, respectively. The rank-1
(support point at 40 MeV) representation for the l = 10 partial wave
S matrix is indicated by the filled triangles.

may expect, for the same accuracy, a lower rank separable
representation to suffice for representing higher partial waves.
This is indeed the case as demonstrated in Fig. 3. Here we
show the l = 8, j = 17/2 and l = 10, j = 21/2 partial wave
S matrices and their corresponding separable representation.
We find that for l = 10 a rank-1 representation is sufficient up
to Ec.m. = 50 MeV, whereas the l = 8 partial wave S matrix
still requires a rank-2 representation. For the energy regime
under consideration, we determined the angular momentum
intervals in which separable representations of specific ranks
represent the original partial wave S matrices within four
significant figures. Those angular momentum groups and their
corresponding support points are listed in Table I.

TABLE I. The EST support points at c.m. energies Eki
used

for constructing the separable representation of the partial wave S

matrix of the n + 48Ca and n + 208Pb systems. The support points
in the last row for the n + 208Pb system given in boldface indicate
the universal set of support points, which can be used to construct a
representation for all nuclei given by the CH89 [6] phenomenological
optical potential.

System Partial wave(s) Rank EST support point(s) (MeV)

l � 10 1 40
n + 48Ca l � 8 2 29, 47

l � 6 3 16, 36, 47
l � 0 4 6, 15, 36, 47

l � 16 1 40
n + 132Sn l � 13 2 35, 48
and l � 11 3 24, 39, 48
n + 208Pb l � 6 4 11, 21, 36, 45

l � 0 5 5, 11, 21, 36, 47

-0.5
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 S
1

 exact
 rank 4 (no b.s.)

0 5 10 15 20 25
Ec.m.  [MeV]

-1

-0.5

0

0.5

 Im
  S

1

 rank 4 ( Eb= -5.62 MeV)

FIG. 4. (Color online) The l = 1 (j = 3/2) partial wave S matrix
for the n + 48Ca system obtained from the CH89 [6] phenomeno-
logical optical potential as a function of the c.m energy. The
exactly calculated S matrix is given by the solid line. A separable
representation of rank 4 (support points at 6, 15, 36, and 47 MeV)
is indicated by the filled triangles. For the dashed line the lowest
support point at 6 MeV is replaced by a point at the bound state
Eb = −5.62 MeV.

Support points need not be at positive energies; therefore a
bound state may be included and this is exactly the situation in
the so-called unitary pole approximation [30]. Given our origi-
nal purpose [namely, a Faddeev description of (d,p) reactions],
a good description of the final bound state will be necessary. To
understand the effect of including a bound state in the separable
representation, we consider the l = 1, j = 3/2 partial wave S
matrix of the n + 48Ca system, which would correspond to the
partial wave of the valence neutron in the ground state of 49Ca.
When extrapolating the CH89 parametrization to Ec.m. < 0,
we set the imaginary part to zero and directly extrapolate the
real part with no further fitting, just for the sake of illustrating
the method here. With such an approach, we find two bound
states with energies Eb = −28.8 MeV and Eb = −5.62 MeV.
We now move the support point at 6 MeV to Eb = −5.62 MeV,
which would be the valence orbital in this system. The results
are shown in Fig. 4. The solid line shows the exact calculation,
the solid triangles are its separable rank-4 representation. The
so-obtained rank-4 separable representation is given by the
dashed line in Fig. 4. Though the bound state is relatively close
to threshold, the deviation from the original representation and
the exact S matrix is quite large in the region between 1 and
7 MeV, indicating that the low-energy support point is needed
for capturing the structure of this partial wave S matrix at low
energies.

From this study we learn that though it is very easy to
add bound states to the separable representation of a specific
partial wave S matrix, such a bound state, even if shallow,
does not necessarily replace a low-energy support point. For
an application to (d,p) reactions, one should add a bound state
corresponding to the final state populated through the reaction,
thus increasing the rank by one.

Up to now we studied the separable representations in detail
for the n + 48Ca system. Next, we turn to a heavy nuclei and
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FIG. 5. (Color online) The l = 0 partial wave S matrices for the
n + 48Ca system (dashed line), the n + 132Sn system (dash-dotted
line), and the n + 208Pb system (solid line) calculated exactly from
the CH89 [6] phenomenological optical potential as functions of the
c.m energy. A rank-5 representation (support points at 5, 11, 21, 36,
and 47 MeV) for both systems is overlayed and indicated by the filled
circles (n + 208Pb), the filled diamonds (n + 132Sn), and the filled
triangles (n + 48Ca).

repeat the study for the n + 132Sn and n + 208Pb systems. In
these cases, the partial wave S matrices have more structure,
and thus they require more support points for an accurate
representation. For different partial waves, we again find that
we have groups of angular momenta for which a specific rank is
required to represent the partial wave S matrix to an accuracy of
at least four significant figures. These groups and the energies
of the corresponding support points are summarized in Table I.
First we note that a separable representation of rank 5 is
sufficient for the low-angular-momentum states. Similar to the
n + 48Ca system, the higher angular momentum states require
successively fewer support points. However, in order for a
rank-1 representation to be accurate in the energy regime under
consideration, one must go up to l = 16.

Considering the number of support points needed for
medium-mass (n + 48Ca) and heavy (n + 132Sn and n + 208Pb)
systems, we find it encouraging that a very good description of
the heavy systems can be achieved by increasing the rank of the
representation by only one, relative to the medium-mass case.

If we are interested in a “universal” separable representation
for partial waves t matrices obtained from the CH89 optical
potential, we can use the support points obtained for the n +
208Pb system, apply them to all other systems, and obtain a
high-quality separable representation. This is shown in Fig. 5
for the l = 0 partial wave S matrix for the n + 48Ca, n + 132Sn,
and n + 208Pb systems. The points used here can also be used
for the relevant higher angular momentum t matrices.

B. Off-shell behavior of the optical potential
and its separable representation

After having established the scheme for finding separable
representations of the t matrices obtained from the CH89
phenomenological optical potential and checking its accuracy
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FIG. 6. The l = 6, j = 13/2 partial wave off-shell t-matrix
elements, t6(k′, k; Ec.m.), for the n + 48Ca system computed at Ec.m. =
16 MeV as a function of the off-shell momenta k′ and k. The on-shell
momentum, k0 = 0.87 fm−1, is indicated by the straight lines. Panels
[a] and [c] show the real and imaginary parts of the t matrix in units of
fm2 obtained from the CH89 [6] phenomenological optical potential,
while panels [b] and [d] depict their separable representation
(rank 3). Note the difference in scale between the left- and
right-hand-side panels.

by comparing the S-matrix elements between 0 and 50 MeV,
we now want to look at the resulting off-shell t matrices. The
partial wave off-shell t matrices, tl(k′, k; E), are calculated at
a given energy E by using Eq. (14) sandwiched with arbitrary
momenta k′ and k.

In Fig. 6 we show the off-shell t matrix at Ec.m. = 36 MeV
for the n + 48Ca system in the partial wave l = 6, j = 13/2.
The left-side panels ([a] and [c]) show the off-shell t matrix as
a function of momenta k and k′ obtained as a solution of the
LS equation with the CH89 potential, while the right-hand-side
panels ([b] and [d]) depict their separable representation. The
on-shell momentum at k0 = 1.3 fm−1 is indicated in each panel
by the horizontal and vertical lines.

First, we point out that in both cases the t matrix is
symmetric around the line k′ = k, which must be the case
if the underlying potential fulfills the reciprocity theorem.
This also shows that our generalization of the EST scheme
to complex potentials is correct. Had we used the definition
given in Ref. [25], the resulting off-shell t matrix would not
have this symmetry.

Second, we observe that overall the magnitude of the
off-shell elements of the separable interaction is smaller
than that of the t matrix of the original potential. It was
shown in Ref. [26] that, for a rank-1 separable potential,
the off-shell t matrix has the form v(p)/v(k0), where k0

is the on-shell momentum, the form factors v(p) are the
half-shell t matrices calculated at the support points, and v(k0)
is their on-shell value. This justifies why the magnitude of the
off-shell elements of the separable t matrix is smaller than
the magnitude of those obtained from the solution of an LS
equation with the original CH89 potential.

Furthermore, we note that the t matrix obtained from the
CH89 potential has significant nonvanishing values along
the line k = k′ even for momenta k = k′ � 4 fm−1, which
is typical for local potentials, while these off-shell matrix
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FIG. 7. The l = 0 partial wave off-shell t-matrix elements,
t0(k′, k; Ec.m.), for the n + 208Pb system computed at Ec.m. = 21 MeV
as a function of the off-shell momenta k′ and k. The on-shell
momentum, k0 = 1.0 fm−1, is indicated by the straight lines. Panels
[a] and [c] show the real and imaginary parts of the t matrix in units of
fm2 obtained from the CH89 [6] phenomenological optical potential,
while panels [b] and [d] depict their separable representation
(rank 3). Note the difference in scale between the left- and
right-hand-side panels.

elements approach zero for the separable counterpart. The fact
that the separable representation projects out high-momentum
components of the original t matrix is reminiscent of renor-
malization group techniques [31], which in nuclear physics are
typically applied to the NN force. We note that the off-shell dip
around k′ = k ∼ 1.5 fm−1 is present in both cases, indicating
that closer to the on-shell point, the EST scheme preserves the
off-shell structure.

In Fig. 7 we show the off-shell t matrix at Ec.m. = 21 MeV
for the n + 208Pb system in the partial wave l = 0. The left
panels again depict the real and imaginary t matrix obtained
as a solution of the LS equation with the CH89 potential,
while the right panels give their separable representation. The
on-shell momentum k0 = 1.0 fm−1 is indicated by horizontal
and vertical lines. The scale of the exact solution is dominated
by the strong dip close to the origin. This dip is also present
in the separable representation; however, it is almost a factor
of 4 smaller in case of the real part and a factor of 2 smaller
for the imaginary part. The off-shell structure around k′ = k ∼
1.5 fm−1 is again captured well by the separable representation.
The exact solution also has nonzero contributions along the line
k′ = k, while the separable representation does not; however,
due to the scale this is not visible in the figure. For these heavier
systems, the higher partial waves behave very similarly to the
ones in the n + 48Ca system. Therefore we do not show them
separately.

IV. SUMMARY AND CONCLUSIONS

In this work we extended the well-known EST scheme [25]
for creating separable representations of two-body transition
matrix elements as well as potentials to the realm of complex
potentials. Requiring that the separable transition matrix
fulfill the reciprocity theorem, we identified a suitable rank-1

separable potential. In analogy to Ref. [25], we generalized
this potential to arbitrary rank.

All calculations presented in this work are based on the
Chapel Hill phenomenological optical potential CH89 [6].
Since the CH89 potential, as are nearly all phenomenological
optical potentials, is given in coordinate space using Woods-
Saxon functions, we first give a semianalytic Fourier transform
of those Woods-Saxon functions in terms of a series expansion.
In practice, it turns out that only two terms in the expansion are
sufficient for achieving convergence. Note that our approach
for deriving the momentum-space optical potential is general
and can be applied to any optical potential of Woods-Saxon
form. This momentum-space CH89 potential is then used in
the partial wave LS integral equation to calculate half-shell
t matrices. These then serve as input to the the generalized
scheme for creating separable representations for complex
potentials.

The systematic studies in this paper include n + 48Ca, n +
132Sn, and n + 208Pb. We are able to provide, for all cases,
a systematic classification of support points for partial wave
groups, so that the partial wave S matrices are reproduced
to at least four significant figures compared to the original
momentum-space solution of the LS equation. We find that
the low partial waves of the n + 208Pb system require a rank-5
separable potential to be well represented in the energy regime
between 0 and 50 MeV center-of-mass energy. The support
points obtained for this case are well suited to represent all
partial waves of the n + 208Pb as well as all lighter systems
described by the CH89 optical potential.

We find that the rank required for achieving a good rep-
resentation decreases with increasing angular momentum of
the partial wave considered. We developed recommendations
for both the rank and the locations of support points to
be used when describing medium-mass and heavy systems
generated from the CH89 potential. Our recommendations
group together partial waves. We also demonstrated that it
is sufficient to determine support points including only the
central part of the optical potential; when the spin-orbit
interaction is added and the form factors are accordingly
modified, the same support points can be expected to yield
a good representation.

We then investigated the off-shell behavior of the con-
structed separable representations and found that, overall,
the high-momentum components along the k = k′ axis which
are typical for local potentials are removed from the separable
representation. Furthermore, the off-shell elements of the
separable representation are smaller in magnitude but follow
the functional shape of the CH89 potential. Since off-shell
matrix elements are not observables, only reaction calculations
can show if the differences seen in the off-shell t matrix have
any consequences for, e.g., three-body observables. Future
work will address this question.
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APPENDIX: FOURIER TRANSFORM OF GLOBAL
OPTICAL POTENTIALS

1. Global optical potentials in coordinate space

Most global optical potentials are parametrized in terms of
Wood-Saxon form factors and its derivatives. For convenience,
here we provide the definitions of the form factor and stan-
dard parametrizations of phenomenological optical potentials.
These definitions are also those for the CH89 potential [6],
which we use throughout this work. The short-range, nuclear
part is given by

Unucl(r) = V (r) + i[W (r) + Ws(r)] + Vls(r) l · σ , (A1)

where

V (r) = −Vrfws(r, R0, a0),

W (r) = −Wvfws(r, Rs, as),
(A2)

Ws(r) = −Ws(−4as)f
′
ws(r, Rs, as),

Vls(r) = −(Vso + iWso)(−2)gws(r, Rso, aso),

fws(r, R, a) = 1

1 + exp
(

r−R
a

) ,

f ′
ws(r, R, a) = d

dr
fws(r, R, a), (A3)

gws(r, R, a) = f ′
ws(r, R, a)/r.

The constants Vr , Wv , Vso, and Wso are the strength parameters,
and a and R are the diffuseness and the radius parameters given
in Ref. [6].

2. Fourier transform of Woods-Saxon functions

The basic functions to be transformed to momentum space
are given by Eqs. (A3), which are the Woods-Saxon function
and its derivative. The Fourier transform of, e.g., V (r) of
Eq. (A2) is given by

V (q) = 1

2π2

1

q

∫ ∞

0
dr rV (r) sin(qr), (A4)

where q is the momentum transfer defined as q = |q| =
|k′ − k|.

Introducing dimensionless variables ρk = qak , z = r/ak ,
αk = Rk/ak , and γk = e−αk (with k ≡ 0, s, so) and inserting
into Eq. (A4) yields

V (q) = − Vr

2π2

a2
0

q

∫ ∞

0
dz

z sin(ρ0z)

1 + exp(z − α0)

≡ − Vr

2π2

a2
0

q
�m

∫ ∞

0
dz

z exp(iρ0z)

1 + exp(z − α0)
. (A5)

Repeating the above step for all the expressions in Eqs. (A2)
yields expressions that are similar to Eq. (A5). There are

four distinct real integrals appearing in the Fourier transform
expressions of Eqs. (A2) and they are the real and imaginary
parts of the two complex integrals I1 and I2 such that

I1(ρk, αk) =
∫ ∞

0
dz

z exp(iρkz)

1 + exp(z − αk)
≡

∫ ∞

0
f1(z)dz,

(A6)

I2(ρk, αk) =
∫ ∞

0
dz

exp(iρkz)

1 + exp(z − αk)
≡

∫ ∞

0
f2(z)dz,

where ρk and αk are real numbers. With the definitions given
in Eq. (A6) the Fourier transforms of the expressions given in
Eqs. (A2) can be written as

V (q) = − Vr

2π2

a2
0

q
�m I1(ρ0, α0),

W (q) = − Wv

2π2

a2
s

q
�m I1(ρs, αs),

Ws(q) = −2Ws

π2
a2

s

[
1

q
�m I2(ρs, αs) + as�e I1(ρw, αs)

]
,

Vls(q) = − (Vso + Wso)

π2
aso �e I2(ρso, αso). (A7)

The integrals I1 and I2 can be evaluated by contour integration.
The closed integration loop is taken to be the boundary of the
first quadrant (i.e., from 0 to ∞ along the positive real axis, then
a circular path from +∞ to +i∞, and finally from +i∞ to 0
along the positive imaginary axis). The contribution from the
circular path integral is zero in this case. Both integrands have
poles at zn = α + iπ (2n + 1) with n ∈ Z. The corresponding
residues are given by

Res(zn, f1) = −[α + iπ (2n + 1)]eiραe−(2n+1)πρ,

Res(zn, f2) = −eiραe−(2n+1)πρ. (A8)

The total closed-loop integral is obtained via the residue
theorem, and the path from +i∞ to 0 is evaluated as a series
expansion of the integrand in terms of γ . This leads to

�e I1(ρ, α) = 2πe−πρ

(1 − e−2πρ)2
[π (1 + e−2πρ) cos(ρα)

+α(1 − e−2πρ) sin(ρα)]

−
∞∑

n=0

(−1)nγ n ρ2 − n2

(ρ2 + n2)2
,

�m I1(ρ, α) = 2πe−πρ

(1 − e−2πρ)2
[π (1 + e−2πρ) sin(ρα)

−α(1 − e−2πρ) cos(ρα)]

− 2
∞∑

n=0

(−1)nγ n nρ

(ρ2 + n2)2
,

�e I2(ρ, α) = 2πe−πρ

1 − e−2πρ
sin(ρα) −

∞∑
n=0

(−1)nγ n n

ρ2 + n2
,

�m I2(ρ, α) = − 2πe−πρ

1 − e−2πρ
cos(ρα) +

∞∑
n=0

(−1)nγ n ρ

ρ2 + n2
.

(A9)

064608-9



L. HLOPHE et al. PHYSICAL REVIEW C 88, 064608 (2013)

TABLE II. Numerical values of the sums of Eqs (A10) evaluated
for ρ = 0.5 and α = 5.8 (corresponding to A = 40): results for CH89
[6]. The series is summed up to the value of nmax listed in the first
column.

nmax SR
1 SI

1 SR
2 SI

2

0 −4.000 000 0.000 000 0.000 000 2.000 000
1 −4.023 898 0.031 864 0.039 830 1.980 085
2 −4.023 383 0.031 589 0.038 663 1.980 377
3 −4.023 396 0.031 594 0.038 703 1.980 370

Similar expressions were derived in Ref. [32]. The infinite
sums cannot be evaluated analytically and their convergence
properties need to be studied numerically. In order to do so,
let us define the finite sums SR

1 , SI
1 , SR

2 , and SI
2 as

SR
1 = −

nmax∑
n=0

(−1)nγ n ρ2 − n2

(ρ2 + n2)2
,

SI
1 = −2

nmax∑
n=0

(−1)nγ n nρ

(ρ2 + n2)2
,

(A10)

SR
2 = −

nmax∑
n=0

(−1)nγ n n

ρ2 + n2
,

SI
2 =

nmax∑
n=0

(−1)nγ n ρ

ρ2 + n2
.

The convergence of the above sums is studied as a function of
nmax. The parameter crucial to the convergence is γ = e−α; the
smaller the value of γ , the faster the series will converge. Thus,
the slowest convergence will be for the smallest values of α
for a given optical potential. For the CH89 optical potential [6]
the minimum value is slightly larger than 5.8, corresponding
to mass number A = 40. For all heavier nuclei α is larger.
The numerical values of the sums of Eqs. (A10) are given in
Table II as function of nmax for the worst case of α = 5.8. The
table demonstrates that for the CH89 global optical potential
nmax = 2 is sufficient to obtain convergence up to six decimal
points.

The truncation discussed above focused on CH89. The
conditions for convergence should be tested for other global
optical potentials. We repeated the study for the Weppner-
Penny [7] (WP) global optical potential, which was fitted to
nuclei as light as 12C. Then, the required minimal value of α
is about 3, where we consider that α is energy dependent. In
Table III, we present the convergence of the sums of Eqs. (A10)
for the fixed value α = 3.0, when using the WP potential. We
find that nmax = 4 is sufficient to obtain convergence up to six
decimal points. For the heavier nuclei, A � 40, the WP optical
potential requires only nmax = 2, similar to the CH89 optical
potential.

3. The partial wave optical potential in momentum space

According to the considerations in the previous section the
first two terms in the series expansion are sufficient to obtain
momentum-space expressions for the Fourier transforms of

TABLE III. Numerical values of the sums of Eqs (A10) evaluated
for ρ = 0.5 and α = 3.0 (corresponding to A = 12): results for WP
[7]. The series is summed up to the value of nmax listed in the first
column.

nmax SR
1 SI

1 SR
2 SI

2

0 −4.000 000 0.000 000 0.000 000 2.000 000
1 −4.001 453 0.031 864 0.039 830 1.998 789
2 −4.001 451 0.031 589 0.038 663 1.998 790
3 −4.001 451 0.031 594 0.038 703 1.998 790
4 −4.023 395 0.031 593 0.038 702 1.980 370
5 −4.023 395 0.031 593 0.038 702 1.980 370

the Woods-Saxon functions of the CH89 potential, which are
sufficiently accurate as shown in Table II. This leads to

V (q) = Vr

π2

{
πa0e

−πa0q

q(1 − e−2πa0q)2
[R0(1 − e−2πa0q) cos(qR0)

−πa0(1 + e−2πa0q) sin(qR0)]

− a3
0e

− R0
a0

[
1(

1 + a2
0q

2
)2 − 2e

− R0
a0(

4 + a2
0q

2
)2

]}
(A11)

for the Fourier transform of V (r). Here q stands for the
magnitude of the momentum transfer as defined in the previous
section.

For W (q), the imaginary volume term, the same expression
is obtained with Wv , as , and Rs in the place of Vr , a0, and R0.

For the surface term Ws(r) of Eq. (A2) we obtain the
following momentum-space form:

Ws(q) = −4as

Ws

π2

{
πase

−πasq

(1 − e−2πasq)2

×
[(

πas(1 + e−2πasq) − 1

q
(1 − e−2πasq)

)
cos(qRs)

+Rs(1 − e−2πasq) sin(qRs)

]

+ a2e−Rs/as

[
1(

1 + a2
s q

2
)2 − 4e−Rs/as(

4 + a2
s q

2
)2

]}
. (A12)

The Fourier transform of the spin-orbit term, Vls(r), leads to

Vls(q) = −aso

π2
(Vso + iWso)

{
2πe−πasoq

1 − e−2πasoq
sin(qRso)

+ e
−Rso
aso

(
1

1 + a2
soq

2
− 2e− Rso

aso

4 + a2
soq

2

)}
. (A13)

Here q is the momentum transfer, q = k′ − k with |q| =√
k′2 + k2 − 2k′k cos θk′k .
The most general form of a momentum-space potential

is usually written as 〈k′|Unucl|k〉 ≡ Unucl(k′, k), with k′ and k
being linear independent vectors spanning the scattering plane.
A local potential only depends on the momentum transfer,
k′ − k, and has no contribution proportional to the orthogonal
vector 1

2 (k′ + k). Thus, in momentum space the most general
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form of an optical potential of Eq. (A1) takes the form

Unucl(k′, k) = Vc(k′, k) + i sin θkk′ Vs(k′, k) σ · n̂, (A14)

where n̂ is the vector perpendicular to the scattering plane
spanned by the vectors k and k′, and Vs = d

dx
Vls with x =

cos θkk′ . Vc(k′, k) is the sum of the three central interaction
terms of Eq. (A14). For the partial wave decomposition one
obtains (see, e.g., Ref. [33])

Vc(k′, k) = 1

4π

∞∑
l=0

[(l + 1)Vl+ (k′, k) + lVl− (k′, k)]Pl(x),

Vs(k′, k) = d

dx
Vls(k′, k)

= 1

4π

d

dx

∞∑
l=0

[Vl+ (k′, k) − Vl− (k′, k)]Pl(x). (A15)

Using the standard orthogonality relations for the Legendre
polynomials leads to the partial wave projected potential for a
spin-0 + spin-1/2 system:

Vl+ (k′, k) = 2π

∫ 1

−1
dxPl(x)Vc(k′, k)

+ 2πl

∫ 1

−1
dxPl(x)Vls(k′, k),

Vl− (k′, k) = 2π

∫ 1

−1
dxPl(x)Vc(k′, k)

− 2π (l + 1)
∫ 1

−1
dxPl(x)Vls(k′, k), (A16)

TABLE IV. The partial wave phase shift δl=1,j= 3
2

calculated from

the CH89 [6] optical potential for n + 48Ca elastic scattering as a
function of the projectile laboratory energy. The second column shows
phase shifts computed in momentum space, while the third column
gives the coordinate-space calculation based on the coupled-channel
code FRESCO [29].

Elab (MeV) δl=1,j= 3
2

(deg)

k space r space

5 (−73.78, 13.75) (−73.84, 13.75)
10 (66.24, 17.02) (66.18,17.00)
20 (18.09, 19.51) (18.02, 19.45)
40 (−38.03, 22.48) (−38.08, 22.47)
50 (−57.83, 23.48) (−57.88, 23.47)

where the indices refer to j = l + 1
2 and j = l − 1

2 , respec-
tively. The partial wave projected potential matrix enters a
two-body LS equation, from which the standard scattering
phase shifts are obtained.

To test the quality of the momentum-space representation of
the CH89 optical potential, we compare scattering phase shifts
obtained in momentum space with those independently calcu-
lated in coordinate space using the techniques implemented
in the coupled-channel code FRESCO [29]. This comparison is
given in Table IV for n + 48Ca for projectile kinetic energies
up to 50 MeV. The agreement is satisfactory and gives us
confidence for using the momentum-space representation of
the CH89 global optical potential as a starting point for
constructing separable representations thereof.
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