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a b s t r a c t

An algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space is
presented. The arguments are the Sommerfeld parameter η, the angular momentum l, the asymptotic
momentum q and the ‘running’ momentum p, where both momenta are real. Since the partial-wave
Coulomb functions exhibit singular behavior when p → q, different representations of the Legendre
functions of the 2nd kind need to be implemented in computing the functions for the values of p close
to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is
applicable for values of |η| in the range of 10−1 to 10, and thus is particularly suited for momentum space
calculations of nuclear reactions.
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Solution method:
Computing the value of the function using explicit formulae and algorithms.

Running time:
Less than 10−3 s.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The problem of scattering by the long-range Coulomb force
is theoretically well understood, and established computational
as well as analytical techniques are available for the calculation
of scattering observables for strongly interacting particles. Those
procedures are defined and carried out in coordinate space (see
e.g. [1]). However, if the strong interactions are nonlocal or if
one is interested in problems involving three or more particles,
momentum space can be preferable when carrying out calcula-
tions, since the equations can be cast in integral form and thus
boundary conditions are automatically included. In this case all
operators are calculated in a plane wave basis and inserted into
Lippmann–Schwinger or Faddeev-type integral equations. How-
ever, due to the long-range character of the Coulomb potential, a
plane-wave basis can only be used if a screening procedure of the
Coulomb potential is employed [2]. Unfortunately, this screening
procedure becomes unstable when charges reach values of about
Z = 20 [3]. To remedy the situation, it would be natural to use ba-
sis functions that are better suited for the problem, which in this
case are momentum-space Coulomb functions. In this basis, the
Coulomb Green’s function has the same form as the free Green’s
function in the plane wave basis. However, this is non-trivial, since
the Fourier transform of the so-called coordinate-space Coulomb
wave function does not exist in a functional sense, and the loga-
rithmic singularity due to the long range of the Coulomb force is
far less tractable in momentum space.

Here we present a code for computing the non-relativistic free
momentum-space Coulomb wave function ψC

l,q,η(p) in a partial-
wave representation together with the analytical frame work that
leads to its numerical implementation. Here q is the external,
asymptotic momentum, while p is the ‘running’ momentum. The
quantity η = Z1Z2e2µ/q represents the Sommerfeld parameter,
which is positive for a repulsive Coulomb interaction, as is the case
in nuclear reactions, or negative for an attractive Coulomb force, as
e.g. in electron-ion reactions. The reduced massµ of the system of
two particles with masses m1 and m2 and charges Z1 and Z2 is de-
fined as 1

µ
=

1
m1

+
1
m2

. The quantity e represents the unit electric
charge.

Our code is valid for arbitrary large integer values of the angu-
lar momentum l. However, it is well known (see e.g. [1]) that for a
given value of η, the Coulomb wave functions for large lwill even-
tually behave like a plane wave. In this case, a matrix element in
the Coulomb basis would simply be a matrix element evaluated in
a plane wave basis. In Ref. [4] momentum-space wave functions
have been considered for two-particle scattering through an l = 0
repulsive Coulomb force. To our knowledgeno code is readily avail-
able for computing momentum-space Coulomb wave functions.

The manuscript is organized as follows: In Section 2 we review
the analytical expressions of the partial-wave Coulomb functions
in momentum space, and introduce the different representations
of the associated Legendre functions of the 2nd kind in terms
of hypergeometric functions necessary to obtain numerically
stable representations of the Coulomb wave functions around the
singularity point p = q and far away from it. In Section 3 we give
the criteria we employ to switch between the different represen-
tations. The numerical methods employed are discussed in
Section 4, the computational accuracy of our code package is
described in Section 5. Properties of the partial-wave Coulomb
functions in momentum space such as their dependence on the
parameters l and η are discussed in Section 6. The use of the code
is described in Section 7, andwe summarize our work in Section 8.

2. The partial-wave Coulomb scattering function in momen-
tum space

The expression for the Coulomb scatteringwave function inmo-
mentum space, ψC

q,η(p), as function of the asymptotic momentum
q and a ‘running momentum’ p was derived some time ago [5].
However, when considering problems which obey rotational sym-
metry, calculations are conventionally performed in a partial-wave
basis, which takes this symmetry into account. In this work, we
follow Refs. [6,7] in carrying out the angular momentum decom-
position of the momentum-space Coulomb scattering wave func-
tions to arrive at their partial-wave representation. Starting from
the most general expression, we derive the two representations
necessary to obtain thewave function close to the singularity point
p = q and far away from it.

2.1. General expression

Following Ref. [6] we start from the expression for the Coulomb
scatteringwave function inmomentum space as Fourier transform
of the coordinate-space solution of the Coulomb Schrödinger
equation: ψC(+)

q,η (r) (see e.g. Refs. [1,8]),

ψC(+)
q,η (p) = lim

γ→+0


d3r e−ip·r−γ r ψC(+)

q,η (r)

= −4πe−πη/2Γ (1 + iη)

× lim
γ→+0

d
dγ


[p2 − (q + iγ )2]iη

[| p − q |
2
+γ 2]1+iη


. (1)

The Fourier transform given above is explicitly worked out in
Ref. [9]. Thewave functions are normalized inmomentum space to
a δ-function. It should be pointed out, that the definition of Fourier
transform of Eq. (1) differs from the one in the Ref. [6] by a factor
1/(2π)3.

The partial-wave Coulomb scattering function ψC
l,q,η(p) is then

defined through

ψC(+)
q,η (p) ≡

∞
l=0

(2l + 1)ψC
l,q,η(p)Pl(p̂ · q̂), (2)

where Pl(p̂ · q̂) are the Legendre polynomials. Here the decomposi-
tion of a vector q into its magnitude and a unit vector q̂ indicating
the direction, q = q q̂ is used. This leads to

ψC
l,q,η(p) =

1
2

 1

−1
dz Pl(z)ψC(+)

q,η (p), (3)

where z = (p̂ · q̂). In the following we will omit the index η to
simplify the notation.
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For the Legendre function, the following relation holds [6,7]:

1
2

 1

−1
dz Pl(z)(ζ − z)−1−iη

=
eπη

Γ (1 + iη)
(ζ 2

− 1)−iη/2Q iη
l (ζ ), (4)

where Q iη
l (ζ ) is the Associated Legendre Function of the second

kind, and

ζ =
p2 + q2 + γ 2

2pq
, (5)

and ζ > 1. Substituting Eq. (1) into Eq. (3), and using the relation
of Eq. (4), leads to

ψC
l,q(p) = −

2πeπη/2

pq

× lim
γ→+0

d
dγ


p2 − (q + iγ )2

2pq

iη

(ζ 2
− 1)−iη/2Q iη

l (ζ )


. (6)

This expression is themost general explicit formof the partialwave
Coulomb scattering function in momentum space. Though it ap-
pears simple, this general form only allows a direct numerical im-
plementation and analysis once the functions Q iη

l (ζ ) are given. As
indicated in Refs. [6,7], the Associated Legendre Function of the
second kind can be expressed in terms of the hypergeometric func-
tion 2F1(a, b; c; z). For large enough ζ we use Eq. (8.703) from
Ref. [10], which is given as

Q iη
l (ζ ) =

e−πηΓ (l + iη + 1)Γ (1/2)
2l+1Γ (l + 3/2)

(ζ 2
− 1)iη/2 ζ−l−iη−1

× 2F1


l + iη + 2

2
,
l + iη + 1

2
; l +

3
2
;

1
ζ 2


. (7)

For ζ ≈ 1 we need to use a different representation, namely
Eq. (8.773.2) from Ref. [10], which is given by

Q iη
l (ζ ) =

1
2
e−πη


Γ (iη)


ζ + 1
ζ − 1

iη/2

× 2F1


−l, l + 1; 1 − iη;

1 − ζ

2


+
Γ (−iη)Γ (l + iη + 1)

Γ (l − iη + 1)


ζ − 1
ζ + 1

iη/2

× 2F1


−l, l + 1; 1 + iη;

1 − ζ

2

 
. (8)

The region ζ ≈ 1 is equivalent to p ≈ q. When p and q are suffi-
ciently different, then ζ ≫ 1. For the numerical implementation
we need to consider these cases separately.

2.2. The ‘regular’ representation

For large ζ , by inserting Eq. (7) into Eq. (6),we obtain the partial-
wave Coulomb function:

ψC
l,q(p) = −

4πηe−πη/2q(pq)l

(p2 + q2)1+l+iη


Γ (1 + l + iη)
(1/2)l+1


×2F1


2 + l + iη

2
,
1 + l + iη

2
; l + 3/2;

4q2p2

(p2 + q2)2


× lim
γ→0


p2 − (q + iγ )2

−1+iη
, (9)

where (a)n is Pochhammer’s symbol from Sect. 5.2(iii) in Ref. [11].
This ‘regular’ representation works well when ζ ≫ 1, i.e. when p
and q are sufficiently different. However, we still need to be careful
in the numerical representation of the hypergeometric function.
For values 1/ζ 2 < 0.5 the hypergeometric function is used as
given above. However,when 1/ζ 2 becomes larger than 0.5, a linear
transformation of the hypergeometric function 2F1(a, b; c; z) from
Ref. [11] (Eq. (15.10.21)) is employed,

2F1(a, b; c; ζ ) =
Γ (c)Γ (c − a − b)
Γ (c − a)Γ (c − b)
× 2F1(a, b; a + b − c + 1; 1 − ζ )

+
Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
(1 − ζ )c−a−b

× 2F1(c − a, c − b; c − a − b + 1; 1 − ζ ). (10)
This assures the numerical accuracy of the regular representation
of the partial-wave Coulomb function.

2.3. The ‘pole-proximity’ representation

When p → q, i.e. ζ → 1, the partial-wave Coulomb function
exhibits a pole. In the numerical computation we also need to
consider situations in which p is close to q, i.e. ζ ≈ 1. In this case,
the hypergeometric function of Eq. (9) numerically diverges. Even
the linear transformation of Eq. (10) is not sufficient anymore, since
the resulting numerical value is computed as a difference of two
large numbers, and thus is prone to numerical instability.

Therefore, we need to employ a different representation of the
hypergeometric function. We name this particular representation
of the partial-wave Coulomb function the ‘pole-proximity’ repre-
sentation. In this region, Eq. (8) needs to be used to compute the
function Q iη

l (ζ ). To reduce the runtime spent computing hyperge-
ometric functions, and to make these functions more numerically
stable, we want to reduce the absolute value of the 4th argument.
Doing so, we apply, in addition to Eq. (8), the linear transform from
Eq. (9.131.1) in Ref. [10]:

2F1(a, b; c; z) = (1 − z)−a
2F1


a, c − b; c;

z
z − 1


. (11)

After some algebra, we obtain

ψC
l,q(p) = i

2π
p

exp(−πη/2 + iσl)

×


(p + q)2

4pq

l

lim
γ→0

(D − D∗), (12)

where

D ≡
Γ (1 + iη)e−iσl(p + q)−1+iη

(p − q + iγ )1+iη

× 2F1


−l,−l − iη; 1 − iη;

(p − q)2

(p + q)2


, (13)

and σl is the Coulomb scattering phase shift in the lth partial wave
defined by e2iσl = Γ (1 + l + iη)/Γ (1 + l − iη). The expression of
Eq. (13) explicitly exhibits the singularity (p − q ± iγ )−1∓iη of the
Coulomb wave function at the point p = q. Since for any complex
number, z − z∗

= 2i ℑm z, the expression for the wave function
around the singular point simplifies to

ψC
l,q(p) = −

2π
p

exp(−πη/2 + iσl)

(p + q)2

4pq

l

lim
γ→0

2 ℑmD. (14)

This expression allows to compute the partial-wave Coulomb func-
tions very close to the singular point p = q. In addition, Eq. (14)
indicates how integrals involving the partial-wave Coulomb func-
tions ψC

l,q(p) need to be regularized [6,12,13].

3. Switching between representations

In a numerical calculation, the parameters q, l, η are physical
inputs, and one wants to compute the functionψC

l,q,η(p) for a wide
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Fig. 1. (Color online) The functions ϕ(p, q) and ρ(p, q) defined in Eq. (15) as
functions of the running momentum p. The asymptotic momentum is taken to be
q = 1.5 fm−1 .

range of momenta p. Thus, a code needs to automatically choose
the correct representation to output the desired functionwith good
accuracy as will be discussed in detail in Section 5. As discussed in
the Section 2, the obvious trigger for the choice of representation
is the value of ζ of Eq. (5). However, it should be noted, that this is
only a fast trigger. Due to the inherently complicated nature of the
Coulomb wave function, a finer criterion must be employed.

The fourth arguments of the hypergeometric functions in
Eqs. (9) and (13) are given by the two functions,

ϕ(p, q) ≡
4p2q2

(p2 + q2)2
=

1
ζ 2
,

ρ(p, q) ≡
(p − q)2

(p + q)2
=
ζ − 1
ζ + 1

.

(15)

The p-dependence of the functions ϕ(p, q) and ρ(p, q) is displayed
in Fig. 1 for a fixed value of q. For small values of p and large values
q, we see that ϕ(p, q) < ρ(p, q). If this condition is fulfilled for
a given set of values (p, q), the ‘regular’ representation must be
used. This is consistent with the fact that the computation of the
hypergeometric function is much faster and more precise for the
smallest value of the fourth argument,

It then makes sense to impose the condition for switching
between representations as ϕ(p, q) = ρ(p, q), or

1
ζ 2

=
ζ − 1
ζ + 1

. (16)

For ζ ≠ 0 this leads to

ζ 3
− ζ 2

− ζ − 1 = 0. (17)

In the numerical implementation only the real root ζ =

1.839286755 . . . of Eq. (17) is needed. Using Eq. (5) we obtain for
given values of q and ζ

p1,2 =


ζ ∓


ζ 2 − 1


q. (18)

In order to keep the implementation simple, we prefer to use the
estimates for the roots,

p1 = 0.3 q,
p2 = 3.4 q. (19)

If p ∈ (p1, p2), the ‘pole-proximity’ representation is employed.
However, this representation of ψC

l,q,η(p) given in Eq. (14) is not
ideal if p is still some distance away from q. Therefore, a finer cri-
terion must be employed to choose the optimal numerical repre-
sentation. The problem originates from the fact that the ratio of the
real and imaginary part of the function D of Eq. (13) can become
very small for p ∈ (p1, p2), i.e. |ℑmD|/|ℜeD| 6 10−6. Because
of cancellation errors in evaluating D − D∗ in Eq. (12), the pre-
cision of the result can be less than that of D itself. If we want 10
digit accuracy inℑmD , andwe have a 64-bit processor with about
16 decimal digits accuracy in double precision floating point num-
bers, then the loss of precision can be at most six digits. On the
other hand, the ‘regular’ representation of ψC

l,q,η(p) provides accu-
rate results for values of p much closer to the singular point p = q
than the values p1 and p2 given in Eq. (19). Specifically, the linear
transformation from Eq. (10) allows to compute the hypergeomet-
ric function for values of ϕ(p, q) close to 1.

It turns out that the criterion of choosing the numerically appro-
priate representation has a crucial effect on the runtime. In fact, the
evaluation of the condition |ℑmD|/|ℜeD| > 10−6 is one of the
most runtime intensive parts of the computation when calculating
ψC

l,q,η(p) for an arbitrary value of p.
Summarizing, if p 6 p1 or p > p2, the ‘regular’ representation

forψC
l,q,η(p), Eq. (9), is chosen. If instead, p ∈ (p1, p2), the algorithm

first computes the function D of the Eq. (13). If |ℑmD|/|ℜeD| >
10−6, the ‘pole-proximity’ representation ofψC

l,q,η(p) from Eq. (14)
is chosen. If the ratio is less than 10−6, the ‘regular’ representation
of ψC

l,q,η(p) of the Eqs. (9) or (10) are used depending on the value
of 1/ζ 2.

4. Numerical methods

In order to calculate the partial wave Coulomb functions as de-
scribed above, we need additional special functions, namely
1. the Gamma-function Γ (z) for the complex argument z,
2. the hypergeometric function 2F1(a, b; c; z) for complex argu-

ments.

In the following subsections, we describe the subroutines we use
to compute those.

4.1. The Gamma function of the complex argument

The natural logarithm of the Gamma function Γ (z) of complex
arguments z is computed using an updated version of the code
from Ref. [14]. This code uses the asymptotic expansion of lnΓ (z)
from Eq. (5.11.1) of Ref. [11]. We keep the condition from the orig-
inal code, namely if ℜe z > 7, the asymptotic expansion is em-
ployed to compute lnΓ (z).

To obtain the value of lnΓ (z) for 0 < ℜe z < 7, the recurrence
relation for the logarithm of the Gamma function is used,

lnΓ (z) = lnΓ (z0)−

n−1
k=0

ln(z + k), (20)

with z0 = z + n and ℜe z0 > 7. This relation is based on the
recurrence relation forΓ (z) fromEq. (5.5.1) in Ref. [11]. Forℜe z <
0, the reflection formula is applied,

lnΓ (z) = lnπ − ln sin(πz)− lnΓ (1 − z). (21)

We use the reflection formula for Γ (z) from Eq. (5.5.3) in Ref. [11],
but adopt it to the logarithmic representation.

The resulting code gives the value of lnΓ (z) with an relative
accuracy of σ 6 1·10−10. The accuracy is determined by evaluating
lnΓ (z) in two independent schemes, obtaining two values a and
b. Then σ is defined as

σ =
|a − b|

1
2 (|a| + |b|)

. (22)

The code was tested for ℜe z ∈ [−100, 150], ℑm z ∈ [−90, 100].
As benchmark values we used Γ (z) from Ref. [15].
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Fig. 2. (Color online) The absolute value of the real part of the Coulomb wave
function ψC

l,q,η(p), for angular momentum l = 0 and asymptotic momentum q =

1.5 fm−1 , as a function of p. The upper panel shows selected values of η ≤ 1,
whereas the lower panel depicts the function for values of η ≥ 1. The shaded area
masks the function around the singularity at p → q, where the function is highly
oscillatory.

4.2. The hypergeometric function of complex arguments

The hypergeometric function 2F1(a, b, c; z) for complex argu-
ments a, b, c is computed using amodified version of the code AEAE
ver. 1.0 [16], which evaluates the function by a power series expan-
sion after various transformations to avoid instabilities.We slightly
modified the code for portability and to prevent possible naming
conflicts.

In order to estimate the accuracy of this routine, we compared
selected values of the arguments a, b, c and z with those docu-
mented in Ref. [17], specifically for the case ℑm z = 0 given in
Table 26 in thatwork.We obtain agreementwithin at least 10 deci-
mal places. For casesℑm z ≠ 0, a comparisonwith values obtained
with theMathematica R⃝ software gives agreement within the same
accuracy.

5. Computational accuracy

To test the overall accuracy of our code, we computed the
Coulomb wave function ψC

l,q,η(p) with our code (program src/
wavefunctionprog) and the Mathematica R⃝ software. To simplify
the discussion, we refer to values generated by the our code asψour
and to the values generated by theMathematica R⃝ implementation
as ψmath. As a result of this comparison, we find the region of
parameters where the relative discrepancy σ of Eq. (22) between
ψour and ψmath is σ 6 5 · 10−7. This region is delimited by:

0.13 6 |η| 6 5.3,
0.1 6 q 6 1.5 fm−1,

0.1 6 p 6 1.5 fm−1,

(23)

with the additional condition that for a given η and l > 5, the
maximum value of l needs to satisfy:

|η|

l
> 0.001 · (100 + l2)− 0.1. (24)

Note that the polynomial in the last inequality Eq. (24) is obtained
by an empirical fit. In low energy nuclear physics, the typical values
of the Sommerfeld parameters are η ∈ [0.1, 10] with p, q exactly
as defined in Eq. (23). To a large extent, these are contained in
this checked region, and therefore the code here developed can be
safely applied in this field.

For example, for l = 5 this inequality leads to ηmin = 0.125. If
on the other hand, l = 5, η = 0.1 and p, q ∈ [0.1, 1.5] fm−1 one
Fig. 3. (Color online) Same as Fig. 2, but for angular momentum l = 4.

may get for some combination of p and q a value σ > 5 · 10−7. If
the parameters are outside the range given in Eq. (23), the relative
discrepancy σ starts increasing. However, this increase is slow. For
example, we find, that even for the p, q ≈ 0.01 fm−1, η = 0.1, and
l = 10, a value of σ . 10−5.

6. Discussion of the Coulomb wave functions

The momentum-space partial-wave Coulomb functions exhibit
an intricate structure. As these are commonly less known than
their coordinate-space counterparts, we illustrate their behaviors
with several examples. We consider l = 0, l = 4, and l = 8 and
η = 0.1, 0.5, 1, 2, 3, 4. We then plot the real part of ψC

l,q,η(p) as
a function of the running momentum p, fixing the value of q at
q = 1.5 fm−1. For all cases, the behavior of the imaginary part
is similar to the real (they are related by a phase), therefore we do
not show it.

Herewewant to concentrate on themore global behavior of the
Coulomb wave functions regarding the indices l and η. Given the
singular behavior around p = q, we mask that region by a shaded
band in all illustrations of the Coulomb wave functions. It is well
understood that, around the singular point p → q, the Coulomb
wave function of Eq. (14) has the form

ψC
l,q,η(p) = A[B S+(p, q, η)− B∗ S−(p, q, η)], (25)

where A and B are smooth functions, whereas the leading
singularity S±(p, q, η) is given by

S±(p, q, η) = (p − q ± i0)−1∓iη. (26)

For more details see Appendix B in [13]. Due to the phase factor
(p− q)−1∓iη , the wave function becomes highly oscillatory around
the point p = q with the amplitude increasing proportional to
(p − q)−1, and the period of oscillations tending to zero as p → q.
Thus, when calculating expectation values with these Coulomb
wave functions, i.e. carrying out a momentum space integrals con-
taining Coulombwave functions together with other smooth func-
tions, special care must be taken in regularizing the singular be-
havior illustrated above. These integration techniques, specifically
the Gel’fand–Shilov [18] regularization of the singularity, are illus-
trated in Refs. [12,13].

Figs. 2–4 show ℜe ψC
l,q,η(p), for angular momenta l = 0, l = 4,

and l = 8, respectively. The top panels illustrate the wave function
for η ≤ 1 while the bottom panel shown results for η ≥ 1.

Let us first focus on Fig. 2, for l = 0. First of all, for l = 0, the
wave function has a finite value at p = 0, a value that depends
strongly on η. The differences in the Coulomb wave functions
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Fig. 4. (Color online) Same as Fig. 2, but for angular momentum l = 8.

Fig. 5. (Color online) The absolute value of the real part of the Coulomb wave
function ψC

l,q,η(p) for the external momentum q = 1.5 fm−1 and η = 0.5 (upper
panel) and η = 3 (lower panel), as function of p, for l = 0, 4, and 8. The shaded area
masks the function around the singularity at p → q, where it is highly oscillatory.

for different η extends throughout the momenta here considered.
Since we study the behavior of the function, we do not relate η =

Z1Z2e2µ/q to a specific physical system and leave it to the reader
to identify appropriate systems at given external momenta q. For
values of η < 1 the wave function has a similar behavior for values
p < q and p > q. The singular region and thus the oscillations are
confined to a region p ≈ q±10−2 fm−1. For values η ≥ 1 the wave
function develops oscillations outside the narrow region around
the pole at p = q, which become more prominent with increasing
η. It is worth noting that with increasing η ≥ 1, the wave function
quickly drops orders of magnitude once p is beyond the singular
region.

In Figs. 3 and 4, we show the absolute value of the real part of
the Coulomb wave function for l = 4 and l = 8 for the same val-
ues of q and η as in Fig. 2. They show the same qualitative behavior
as the function for l = 0, however they go to zero for p → 0, a
feature which is also present in the partial wave representation of
plane waves.

In order to better illustrate the dependence on the parameter
l, we present in Fig. 5 the absolute value of the real part of the
Coulomb wave function for two fixed values of η, one small and
one large, as function of p for selected l values. This figure clearly
shows that thewave functions approach zero quickly for p → 0, an
effect accentuated with increasing l. For η = 3, the lower panel of
Fig. 5 shows that for p > q the wave function does not monotoni-
cally decreasewith increasing l despite being two ormore orders of
Fig. 6. (Color online) Same as Fig. 5, but for negative values of Sommerfeld
parameter η.

Fig. 7. (Color online) Same as Fig. 2, but for negative values of Sommerfeld
parameter η.

magnitude smaller in the region p < q. Here the l = 8 wave func-
tion is of the same order of magnitude as the l = 0 wave function.
This reflects the well known fact that in scattering of systems with
large repulsive charges (at given external energy/momentum) one
has to expect contributions from large angularmomentawhen cal-
culating expectation values.

For negative values of the Sommerfeld parameter η, the partial
wave Coulomb functions look quite different, as shown in Fig. 6.
First we note that again only the l = 0 wave functions have a fi-
nite value for p → 0, and the value decreases for decreasing η.
Comparing Fig. 6 with Fig. 5 reveals that the behavior of the wave
functions looks almost reflected around the singular point p = q
when η changes sign. This means that specifically for η = −3, the
wave functions are more than two orders of magnitude larger for
p > q and fall off only very slowly for increasing values of p, for
all angular momenta. Specifically, the l = 0 partial wave exhibits a
very slow fall off. Therefore, we show in Fig. 7 the fall-off behavior
of the l = 0 partial wave as function of η for larger momentum.
Here we also note that once the magnitude of η exceeds one, the
wave functions fall off slower with increasing |η|. This characteris-
tic becomes more pronounced as l increases, as shown in Fig. 8.

7. Use of code suite ‘libcwfn’

The code package contains 26 original subroutines, plus a
set of subroutines from Ref. [16]. Only system-wide standard
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Table 1
The test cases introduced in Section 7.2. In the column ‘Program’ value ‘W’ means src/wavefunctionprog, ‘F’
corresponds to src/fullprog, and ‘WF’ stands for both. The accuracy of the output is 7 digits for ‘W’ and ‘WF’
lines and unspecified for ‘F’ lines.

Input Program Output
p (fm−1) q (fm−1) l η ℜeψC

q,l,η(p) ℑmψC
q,l,η(p)

0.4 1.5 8 4. WF −3.617060497e−2 3.1973410e−2
5.e−2 5.e−1 0 1.3e−1 WF 3.1954226e1 −2.37425086
2.5 5.e−1 5 1.3e−1 WF −4.16660289e−6 −9.39643399e−7
8.4e−1 6.e−1 5 1.63571 WF 3.681689e−1 −1.25101277e−1
4.5 1.5 15 4.647142 WF −2.22266079e−12 −5.4218866e−13
1.0 1.5 7 0.2 W ERROR!
1.0 1.5 7 0.2 F 8.20418789e−2 3.4991968e−2
0.4 1.5 8 0.1 W ERROR!
0.4 1.5 8 0.1 F 7.2653298e−6 1.57946338e−6
libraries and standard-compliant Fortran 90 compiler are required
to compile and link the code.We recommend to use the GNUMake
utility to execute the provided Makefile-s. In addition, Python
(version 2.7 or 3) and GNU Bash are required to run the numerical
tests.

In general we follow the GNU Coding Standards. Using the
command

$ zcat libcwfn.tar.gz | tar -xf -

in a terminal creates a directory libcwfn. This directory is
organized as follows:

• doc/ is the directory containing the documentation,
• examples/ contains the examples illustrating how to use the

codes,
• src/ contains all source codes,
• tests/ contains all tests for the programs in the src / directory.

The code suite is built by running

$ make [ FC=compiler]

where the option compiler should be used if a specific Fortran
compiler is to be invoked. The default compiler is f95. With the
make-command the library src / libcwfn.a and programs used for
testing are created.

7.1. Tests and the use of the code library

After successfully creating the libraries, tests can be run with

$ make check

This will automatically check all the subroutines and functions,
provided by the package. The library src/libcwfn.a needs to be
linked to user codes with the flags
‘-lcwfn -L.’.

7.2. Examples

Let us give a few examples to test the code:

Example 1. In order to compute the value of the Coulomb wave
function ψC

l,q,η(p) for p = 0.4 fm−1, q = 1.5 fm−1, l = 8, and
η = 4, the user needs to issue the command:

$ src/wavefunctionprog << EOF
0.4 1.5 8 4.
EOF
The program will print real and imaginary parts of ψC

l,q,η(p):
-0.361706049691905E-001 0.319734104448420E-001
The results have guaranteed accuracy, namely a relative dis-

crepancyσ 6 5·10−7 comparedwith aMathematica R⃝ [19] compu-
tation. If l or η are outside of the region defined by Eq. (23), the code
will print an error message and the execution will be terminated.
Fig. 8. (Color online) Same as Fig. 3, but for negative values of Sommerfeld
parameter η.

Example 2. For specific applications a user may want to calculate
thewave functionwith lesser accuracy and skip the internal checks
of the code. To do so, the user should use the executable fullprog:

$ src/fullprog << EOF
0.4 1.5 8 0.1
EOF
The output will be
0.726532984339220E-005 0.157946338024045E-005
Executed in this fashion the code will compute the Coulomb

wave function without applying internal checks. If the input pa-
rameters are outside of the region defined by Eq. (23), we do not
guarantee the accuracy given in Section 5 and the user will have
to check if the calculated wave function is sufficiently accurate for
the intended application. The output format is described in the ex-
ample above.

A set of test cases for a quick check of the code are given
in Table 1. Further examples are located in the subdirectory
examples/.

7.3. Applications

The full documentation is given in doc/libcwfn-doc.pdf.

7.3.1. Parameters
double precision, intent (in) :: p

‘running variable’ p, like at ψC
l,q,η(p).

double precision, intent (in) :: q
asymptotic momentum q, like at ψC

l,q,η(p).
integer, intent (in) :: l
double precision, intent (in) :: eta

Sommerfeld parameter η, related to q.
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7.3.2. Executables
The suite of codes provides the library libcwfn.a, as well as a set

of executables used in scripts. Every subroutine or function has its
own executable with names constructed as follows: (a) the prefix
cwfn is removed from the name of the subroutine, and (b) the
suffixprog is appended to the end of the subroutine’s name. Finally
the new name is written in lowercase. For example, the subroutine
cwfnWaveFunction() has the executable wavefunctionprog. All
executables are located in the subdirectory src/ after build process
is finished.

All executables use the same user interface pattern: input
parameters are read from the standard input (i/o unit 5), and the
output is printed to the standard output (i/o unit 6). Errors and
warnings are printed to the standard error stream (i/o unit 0).

7.3.3. The main subroutines
subroutine cwfnWaveFunction(p, q, l, eta, value)

input: p, q, l, eta
output: double complex, intent(out) :: value
Computes the Coulomb wave functionψC

l,q,η(p) for given in-
put. The correct representation (see Sections 2.2, 2.3 and 3)will
be automatically chosen. Applicability of the code is checked.
The code will be stopped, if l or η are outside of the region, de-
fined by the Eq. (23).
subroutine cwfnWaveFunctionV(n, pv, q, l, eta, values)

integer, intent(in) :: n
The size of the arrays pv, values.
double precision, intent(in), dimension(n) :: pv
Array of p-s. See above.
q, l, eta see above.
double complex, intent(out), dimension(n) :: values
Array of value-s from cwfnWaveFunction().
‘Vectorized’ version of cwfnWaveFunction(). Computes

ψC
l,q,η(p), for every set {[pv(i), q, l, eta]; i = 1, 2, . . . , n}. The correct

representation (see Sections 2.2, 2.3 and 3) will be automati-
cally chosen in every case. Applicability of the code is checked.
The code will be stopped, if l or η are outside of the region, de-
fined by the Eq. (23).

7.3.4. Auxiliary special functions
subroutine cwfncgammaln(z, value)

double complex, intent(in) :: z
double complex, intent(out) :: value
Computes the logarithm of Gamma function lnΓ (z) for

complex z.
See testing results at the source file.

subroutine cwfnf21(a, b, c, z, value)
double complex, intent(in) :: a
double complex, intent(in) :: b
double complex, intent(in) :: c
double complex, intent(in) :: z
double complex, intent(out) :: value
Computes the hypergeometric function 2F1(a, b; c; z).

8. Summary and conclusions

Though Coulombwave functions arewidely used in nuclear and
atomic physics, their numerical realization is by no means triv-
ial. Their representation and computation in coordinate space has
been developed and documented, e.g. in a recent code published
in Ref. [8] and references therein. In contrast, the representation of
partial-wave Coulomb functions in momentum space received far
less attention, mainly due to the difficulty of carrying out calcula-
tions involving the Coulomb potential inmomentum space and the
Coulomb wave functions exhibiting singular behavior for p → q.
Wedeveloped a suite of codes to calculate partial-wave decom-
posed Coulomb functions in momentum space as a function of an
external momentum q, for a given integer angular momentum l,
and real Sommerfeld parameter η (positive or negative). Crucial
for the numerical realization of the partial-wave Coulomb func-
tions in momentum space is the fact that one has to employ two
different representations of the associated Legendre functions of
the 2nd kind depending on whether the argument p of the wave
function is close to the singular point or far away from it. We de-
veloped the criteria for switching between the two different repre-
sentations and implemented them in such a way that the user will
automatically be provided with a value of accuracy ≈ 10−8.

The suite of codes has been tested with respect to tabulated
values [15,17] and computations with theMathematica R⃝ [19] soft-
ware. Since the code can beused to calculate partial-waveCoulomb
functions in momentum space for |η| in the range of 10−1 to about
10, it is well suited for momentum space calculations in nuclear
physics, specifically reactionswhich are dominated by few degrees
of freedom [13]. Itmay also have applicability in atomic andmolec-
ular physics.
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