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Abstract

An important ingredient for applications of nuclear physics to e.g. astro-
physics or nuclear energy are the cross sections for reactions of neutrons with
rare isotopes. Since direct measurements are often not possible, indirect meth-
ods like (d, p) reactions must be used instead. Those (d, p) reactions may be
viewed as effective three-body reactions and described with Faddeev techniques.
An additional challenge posed by (d, p) reactions involving heavier nuclei is the
treatment of the Coulomb force. To avoid numerical complications in dealing
with the screening of the Coulomb force, recently a new approach using the
Coulomb distorted basis in momentum space was suggested. In order to imple-
ment this suggestion, one needs not only to derive a separable representation of
neutron- and proton-nucleus optical potentials, but also compute the Coulomb
distorted form factors in this basis.
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1 Introduction

Nuclear reactions are an important probe to learn about the structure of unstable
nuclei. Due to the short lifetimes involved, direct measurements are usually not
possible. Therefore indirect measurements using (d, p) reactions have been proposed
(see e.g. Refs. [1–3]). Deuteron induced reactions are particularly attractive from
an experimental perspective, since deuterated targets are readily available. From a
theoretical perspective they are equally attractive because the scattering problem can
be reduced to an effective three-body problem [4]. Traditionally deuteron-induced
single-neutron transfer (d, p) reactions have been used to study the shell structure
in stable nuclei, nowadays experimental techniques are available to apply the same
approaches to exotic beams (see e.g. [5]). Deuteron induced (d, p) or (d, n) reactions
in inverse kinematics are also useful to extract neutron or proton capture rates on
unstable nuclei of astrophysical relevance. Given the many ongoing experimental
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programs worldwide using these reactions, a reliable reaction theory for (d, p) reactions
is critical.

One of the most challenging aspects of solving the three-body problem for nuclear
reactions is the repulsive Coulomb interaction. While the Coulomb interaction for
light nuclei is often a small correction to the problem, this is certainly not the case for
intermediate mass and heavy systems. Over the last decade, many theoretical efforts
have focused on advancing the theory for (d, p) reactions (e.g. [6, 7]) and testing
existing methods (e.g. [4, 8, 9]). Currently, the most complete implementation of the
theory is provided by the Lisbon group [10], which solves the Faddeev equations in
the Alt, Grassberger and Sandhas [11] formulation. The method introduced in [10]
treats the Coulomb interaction with a screening and renormalization procedure as
detailed in [12,13]. While the current implementation of the Faddeev-AGS equations
with screening is computationally effective for light systems, as the charge of the
nucleus increases technical difficulties arise in the screening procedure [14]. Indeed,
for most of the new exotic nuclei to be produced at the Facility of Rare Isotope
Beams, the current method is not adequate. Thus one has to explore solutions to the
nuclear reaction three-body problem where the Coulomb problem is treated without
screening.

In Ref. [6], a three-body theory for (d, p) reactions is derived with explicit inclu-
sion of target excitations, where no screening of the Coulomb force is introduced.
Therein, the Faddeev-AGS equations are cast in a Coulomb-distorted partial-wave
representation, instead of a plane-wave basis. This approach assumes the interactions
in the two-body subsystems to be separable. While in Ref. [6] the lowest angular
momentum in this basis (l = 0) is derived for a Yamaguchi-type nuclear interaction is
derived as analytic expression, it is desirable to implement more general form factors,
which are modeled after the nuclei under consideration.

In order to bring the three-body theory laid out in Ref. [6] to fruition, well defined
preparatory work needs to be successfully carried out. Any momentum space Faddeev-
AGS type calculation needs as input transition matrix elements in the different two-
body subsystems. In the case of (d, p) reactions with nuclei these are the t-matrix
elements obtained from the neutron-proton, the neutron-nucleus and proton-nucleus
interactions. Since the formulation in Ref. [6] is designed for separable interactions,
those need to be developed not only in the traditionally employed plane wave basis,
but also the basis of Coulomb scattering states.

This contribution summarizes the three major developments required to provide
reliable input to the three-body formulation for (d, p) reactions without screening the
Coulomb force, namely

• the derivation of momentum-space separable representations of neutron-nucleus
optical potentials [15],

• the derivation of momentum-space separable representations of proton-nucleus
optical potentials in the Coulomb basis [16],

• the calculation of neutron-nucleus form-factors in the basis of momentum-space
Coulomb scattering states [17].

Sections 2, 3, and 4 summarize the necessary steps to achieve reliable calculations
of those input quantities needed for three-body calculations that treat the Coulomb
force without screening. Finally, we summarize in Section 5.

2 Separable Representation of Nucleon-Nucleus
Optical Potentials

Separable representations of the forces between constituents forming the subsystems
in a Faddeev approach have a long tradition in few-body physics. There is a large
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body of work on separable representations of nucleon-nucleon (NN) interactions (see
e.g. Refs. [18–22]) or meson-nucleon interactions [23,24]. In the context of describing
light nuclei like 6He [25] and 6Li [26] in a three-body approach, separable interactions
have been successfully used. A separable nucleon-12C optical potential was proposed
in Ref. [27], consisting of a rank-1 Yamaguchi-type form factor fitted to the positive
energies and a similar term describing the bound states in the nucleon-12C configu-
ration. However, systematic work along this line for heavy nuclei, for which excellent
phenomenological descriptions exist in terms of Woods-Saxon functions [28–31] has
not been carried out until recently [15].

The separable representation of two-body interactions suggested by Ernst-Shakin-
Thaler [32] (EST) is well suited for achieving this goal. We note that this EST
approach has been successfully employed to represent NN potentials [18, 19]. How-
ever, the EST scheme derived in Ref. [32], though allowing energy dependence of the
potentials [33, 34], assumes that they are Hermitian. Therefore, we generalized the
EST approach in Ref. [15] in order to be applicable for optical potentials which are
complex. For the ease of the reader, we briefly summarize the main points of that
work.

For applications to the theory of nuclear reactions all potential operators U need
to satisfy

KUK−1 = U †, (1)

where K is the time reversal operator appropriate to the system. This condition
guarantees that the S-matrix corresponding to U is symmetric and that reaction
amplitudes constructed from these potentials satisfy reciprocity relations. When U
is a central potential in the space of a spinless particle, K can be chosen to be the
anti-linear complex conjugation operator K0, which in the coordinate space basis |r〉
is defined by

K0 α |r〉 = α∗(K0|r〉) = α∗|r〉, (2)

and from which we deduce K0|p〉 = | − p〉. Note that for this particular K we have
(K0)

−1 = K0.
Considering first a rank-1 separable potential, the EST scheme presented in Ref. [32]

requires that a separable potential U leads to the same scattering wave functions at
a specific energy EkE

(support point) as the potential u it is supposed to represent.
For u being a non-Hermitian potential, we define

U(EkE
) ≡

u|fl,kE
〉〈f∗

l,kE
|u

〈f∗
l,kE

|u|fl,kE
〉

≡ u|fl,kE
〉λ̂〈f∗

l,kE
|u , (3)

where the strength parameter is defined by (λ̂)−1 = 〈f∗
l,kE

|u|fl,kE
〉. Here fl,kE

(r) is
the unique regular radial wave function corresponding to u and f∗

l,kE
(r) is the unique

regular radial wavefunction corresponding to u∗. By a suitable choice of arbitrary
normalization constants we can arrange that f∗

l,kE
(r) is simply the complex conjugate

of fl,kE
and hence K0|fl,kE

〉 = |f∗
l,kE

〉.

If u satisfies K0uK0 = u† the definition of Eq. (3) gives a symmetric complex
potential matrix that satisfies

K0U(EkE
)K0 =

[

K0u|fl,kE
〉
]

(λ̂)∗
[

〈f∗
l,kE

|uK0

]

= u†|f∗
l,kE

〉(λ̂)∗〈fl,kE
|u† = U †, (4)

where the square brackets mean that K0 here acts only on the quantities within the
brackets.

In analogy to the procedure followed in Ref. [32] we define a complex separable
potential of arbitrary rank in a given partial wave as

U =
∑

i,j

u|fl,kEi
〉〈fl,kEi

|M |f∗
l, kEj

〉〈f∗
l,kEj

|u. (5)



4 The TORUS Collaboration

0 20 40 60 80 100 120 140 160 180
θ

c.m.

10
0

10
1

10
2

10
3

10
4

10
5

σ(
θ)

  [
m

b]

(i)
(ii)

208
Pb (E

lab
= 45 MeV )

48
Ca [*40]  (E

lab
= 38 MeV )

Figure 1: The unpolarized differential cross section for elastic scattering of neutrons
from 48Ca (upper) and 208Pb (lower) as function of the c.m. angle. For 48Ca the
cross section is calculated at a laboratory kinetic energy of 38 MeV and is scaled by
a factor 40. The calculation for 208Pb is carried out at Elab = 45 MeV. The solid
lines (ii) depict the cross section calculated in momentum space based on the rank-5
separable representation of the CH89 [28] phenomenological optical potential, while
the dotted lines (i) represent the corresponding coordinate space calculations.

Here fl,kEi
and f∗

l,kEi
are the same unique regular radial wave function as used in

Eq. (3). Note that u may also be energy dependent.
The matrix M is defined and constrained by

δik =
∑

j

〈fl,kEi
|M |f∗

l,kEj
〉〈f∗

l,kEj
|u|fl,kEk

〉

=
∑

j

〈f∗
l,kEi

|u|fl,kEj
〉〈fl,kEj

|M |f∗
l,kEk

〉. (6)

The corresponding separable partial wave t-matrix must be of the form

t(E) =
∑

i,j

u|fl,kEi
〉τij(E)〈f∗

l,kEj
|u , (7)

with the following restrictions

δnj =
∑

i

〈f∗
l,kEn

|u− ug0(E)u|fl,kEi
〉 τij(E), (8)

δik =
∑

j

τij(E) 〈f∗
l,kEj

|u− ug0(E)u|fl,kEk
〉. (9)

For the explicit calculation of the matrix τij(E), we define a matrix

Rij(E) ≡ 〈f∗
l, kEi

|u− ug0(E)u|fl,kEj
〉, (10)

so that the condition of Eq. (9) reads
∑

j

τij(E)Rjk(E) = δik, (11)



Separable Optical Potentials ... 5

Table 1: The EST support points at c.m. energies Eki
used for constructing the sepa-

rable representation of the partial wave s-matrix of the n+48Ca and n+208Pb systems.
The support points in the last row for the n+208Pb system given in bold face indicate
the universal set of support points, which can be used to construct a representation
for all nuclei given by the CH89 [28] phenomenological optical potential.

system partial wave(s) rank EST support point(s) [MeV]
l ≥ 10 1 40

n+48Ca l ≥ 8 2 29, 47
l ≥ 6 3 16, 36, 47
l ≥ 0 4 6, 15, 36, 47

l ≥ 16 1 40
n+208Pb l ≥ 13 2 35, 48

l ≥ 11 3 24, 39, 48
l ≥ 6 4 11, 21, 36, 45
l ≥ 0 5 5,11,21,36,47

from which follows
τij(E) = (R(E))−1

ij . (12)

Using that t(p′, kEi
, Ei) = 〈f∗

l,kEi
|u|p′〉, and t(p, kEi

, Ei) = 〈p|u|fl,kEi
〉, the matrix

elements Rij are calculated in momentum space as given explicitly in Ref. [15].
In order to demonstrate the construction of a separable representation of a com-

plex potential we apply the generalized EST scheme to neutron scattering from 48Ca
and 208Pb and use as starting point the Chapel Hill phenomenological global opti-
cal potential CH89 [28], which has been widely used in the literature over the last
decades. Like most phenomenological global optical potentials, CH89 is based on
Woods-Saxon functions, which are more naturally given in coordinate space, and have
an explicit energy dependence in the strength functions. In order to derive a separable
momentum-space representation of CH89, we first must construct a momentum-space
representation of the potential itself. The Fourier transform of Woods-Saxon functions
leads to a series expansion in momentum space, of which only the first two terms are
necessary to obtain a converged result [15]. The momentum-space potential then en-
ters a Lippmann-Schwinger (LS) integral equation to obtain the half-shell t-matrices
at fixed energies (support points) Ei, from which the separable representation given
in Eq. (7) is then constructed after having obtained the coupling matrix τij(E) from
the solution of Eq. (12).

A major finding of Ref. [15] is a systematic classification of support points for
partial wave groups, so that the partial wave S-matrix elements are reproduced to at
least four significant figures compared to the original momentum-space solution of the
LS equation. It turns out that the low partial waves of the n+208Pb system require a
rank-5 separable potential to be well represented in the energy regime between 0 and
50 MeV center-of-mass energy. The rank required for achieving a good representation
decreases with increasing angular momentum of the partial wave considered. The
recommendation of Ref. [15] for both the rank and the locations of the support points
to be used when describing medium-mass and heavy systems generated from the CH89
potential are repeated in Table 1 for the convenience of the reader.

In order to demonstrate the quality of the separable representations obtained with
the generalized EST scheme, Fig. 1 depicts the unpolarized differential cross section
for elastic scattering of neutrons from 48Ca at 38 MeV laboratory kinetic energy and
from 206Pb at 45 MeV as function of the center-of-mass (c.m.) angle θc.m.. The
solid lines (i) represent the calculations with the separable representations, while
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the dotted lines (ii) stand for the corresponding coordinate space calculations. The
agreement is excellent over the entire angular range, indicating that all partial wave
S-matrix elements that enter the cross section are well described by the separable
representation.

3 Separable Representation of Proton-Nucleus

Optical Potentials in the Coulomb Basis

In order to implement the formulation of the Faddeev-AGS equations proposed in
Ref. [6] we need the proton-nucleus form factors in the Coulomb distorted basis, and
thus need to have a separable representation of proton-nucleus optical potentials. In
Refs. [35, 36] rank-1 separable interactions of Yamaguchi form were introduced to
represent the nuclear force up to a few MeV, and the Coulomb distorted basis was
introduced to compute proton elastic scattering from light nuclei. This is not suffi-
cient for considering the proton-nucleus interaction in a separable representation for
scattering of heavy nuclei up to tens of MeV. Thus we need to extend the generaliza-
tion of the EST scheme presented in the previous section such that it can be applied
in the Coulomb distorted basis [16].

In general the scattering between a proton and a nucleus is governed by a potential

w = vc + us, (13)

where vc is the repulsive Coulomb potential and us an arbitrary short range potential.
In general us consists of an optical potential, which describes the nuclear interactions
and a short-ranged Coulomb potential traditionally parameterized as the potential of a
charged sphere with radius R0 from which the point Coulomb force is subtracted [28].
In practice,

us = uN + (vcd − vc), (14)

where uN represents the nuclear (optical) potential, vcd is the Coulomb potential
inside the nucleus, and is usually taken as the Coulomb potential for a uniformly
charged sphere of radius R0, from which the point Coulomb potential is subtracted.
The expressions for the short-ranged charge distribution is given in Ref. [28] as

(vcd − vc)(r) = αZ1Z2

[

1

2R0

(

3−
r2

R2
0

)

−
1

r

]

, (15)

with Z1 and Z2 being the atomic numbers of the particles, and α the Coulomb coupling
constant. Since the scattering problem governed by the point Coulomb force has an
analytic solution, the scattering amplitude for elastic scattering between a proton and
a spin-zero nucleus is obtained as the sum of the Rutherford amplitude fC(Ep0

, θ)
and the Coulomb distorted nuclear amplitude given by

MCN(Ep0
, θ) = fCN(Ep0

, θ) + σ̂ · n̂ gCN(Ep0
, θ), (16)

with

fCN(Ep0
, θ) = (17)

−πµ

∞
∑

l=0

e2iσl(Ep0
)Pl(cos θ)×

[

(l + 1)〈p0|τ
CN
l+ (Ep0

)|p0〉+ l〈p0|τ
CN
l− (Ep0

)|p0〉
]

,

and

gCN(Ep0
, θ) = (18)

−πµ

∞
∑

l=0

e2iσl(Ep0
)P 1

l (cos θ)×
[

〈p0|τ
CN
l+ (Ep0

)|p0〉 − 〈p0|τ
CN
l− (Ep0

)|p0〉
]

.
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Here Ep0
= p20/2µ is the center-of-mass (c.m.) scattering energy which defines the

on-shell momentum p0, and σl = arg Γ(1 + l + iη) is the Coulomb phase shift. The
Sommerfeld parameter is given by η = αZ1Z2µ/p0. The unit vector n̂ is normal to the
scattering plane, and σ̂/2 is the spin operator. The subscripts ′+′ and ′−′ correspond
to a total angular momentum j = l + 1/2 and j = l − 1/2.

Suppressing the total angular momentum indices for simplicity, the Coulomb dis-
torted nuclear t-matrix element is given by 〈p0|τ

CN
l (Ep0

)|p0〉, which is the solution of
a LS type equation,

〈p|τCN
l (Ep0

)|p0〉 = 〈p|usl |p0〉

+

∫

p′2dp′〈p|usl |p
′〉〈p′|gc(Ep0

+ iε)|p′〉〈p′|τCN
l (Ep0

)|p0〉. (19)

Here
g−1
c (Ep0

+ iε) = Ep0
+ iε−H0 − vc (20)

is the Coulomb Green’s function andH0 the free Hamiltonian. The Coulomb distorted
nuclear t-matrix element 〈p|τCN

l (Ep0
)|p0〉 is related to the proton-nucleus t-matrix

〈p|tl(Ep0
)|p0〉 by the familiar two-potential formula

〈p|tl(Ep0
)|p0〉 = 〈p|tCl (Ep0

)|p0〉+ e2iσl(Ep0
)〈p|τCN

l (Ep0
)|p0〉, (21)

where 〈p|tCl (Ep0
)|p0〉 is the point Coulomb t-matrix. When the integral equation,

Eq. (19), is solved in the basis of Coulomb eigenfunctions, gc acquires the form of a free
Green’s function and the difficulty of solving it is shifted to evaluating the potential
matrix elements in this basis. For deriving a separable representation of the Coulomb
distorted proton-nucleus t-matrix element, we generalize the approach suggested by
Ernst, Shakin, and Thaler (EST) [32], to the charged particle case. The basic idea
behind the EST construction of a separable representation of a given potential is that
the wave functions calculated with this potential and the corresponding separable
potential agree at given fixed scattering energies Ei, the EST support points. The
formal derivations of [32] use the plane wave basis, which is standard for scattering
involving short-range potentials. However, the EST scheme does not depend on the
basis and can equally well be carried out in the basis of Coulomb scattering wave
functions.

In order to generalize the EST approach to charged-particle scattering, one needs
to be able to obtain the scattering wave functions or half-shell t-matrices from a
given potential in the Coulomb basis, and then construct the corresponding separable
representation thereof.

In order to calculate the half-shell t-matrix of Eq. (19), we evaluate the integral
equation in the Coulomb basis as suggested in [37] and successfully applied in [38],
and note that in this case the Coulomb Green’s function behaves like a free Green’s
function. Taking |Φc

l,p〉 to represent the partial wave Coulomb eigenstate, the LS
equation becomes

〈Φc
l,p|τ

CN
l (Ep0

)|Φc
l,p0

〉 = 〈Φc
l,p|u

s|Φc
l,p0

〉+
∞
∫

0

〈Φc
l,p|u

s|Φc
l,p′〉

p′2dp′

Ep0
− Ep′ + iε

〈Φc
l,p′ |τCN

l (Ep0
)|Φc

l,p0
〉

≡ 〈p|τCN
l (Ep0

)|p0〉, (22)

which defines the Coulomb distorted nuclear t-matrix of Eq. (19).
To determine the short-range potential matrix element, we follow Ref. [37] and

insert a complete set of position space eigenfunctions
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Figure 2: The unpolarized differential cross section for elastic scattering of protons
from 48Ca (upper) and 208Pb (lower) divided by the Rutherford cross section as func-
tion of the c.m. angle θc.m.. For 48Ca the cross section is calculated at a laboratory
kinetic energy of 38 MeV and is scaled by a factor 4. The calculation for 208Pb is
carried out at Elab = 45 MeV. The solid lines (i) depict the cross section calculated
in momentum space based on the rank-5 separable representation of the CH89 [28]
phenomenological optical potential, while the dotted lines (ii) represent the corre-
sponding coordinate space calculations. The dash-dotted lines (iii) show calculations
in which the short-ranged Coulomb potential is omitted.

〈Φc
l,p′ |usl |Φ

c
l,p〉 =

2

π

∞
∫

0

〈Φc
l,p′ |r′〉 r′2dr′ 〈r′|usl |r〉 r

2dr 〈r|Φc
l,p〉

=
2

πp′p

∞
∫

0

rr′drdr′ Fl(η
′, p′r′) 〈r′|usl |r〉 Fl(η, pr). (23)

The partial wave Coulomb functions are given in coordinate space as

〈r|Φc
l,p〉 ≡

Fl(η, pr)

pr
, (24)

where Fl(η, pr) are the standard Coulomb functions [39], and η(η′) is the Sommerfeld
parameter determined with momentum p(p′).

For our application we consider phenomenological optical potentials of Woods-
Saxon form which are local in coordinate space. Thus the momentum space potential
matrix elements simplify to

〈Φc
l,p′ |usl |Φ

c
l,p〉 =

2

πp′p

∞
∫

0

dr Fl(η
′, p′r)usl (r)Fl(η, pr). (25)

We compute these matrix elements for the short-range piece of the CH89 phenomeno-
logical global optical potential [28], which consists of the nuclear part parameterized
in terms of Woods-Saxon functions and the short-range Coulomb force of Eq. (15).
The integral of Eq. (25) can be carried out with standard methods, since us(r) is
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of the momentum p for l = 0 (a) and l = 6 (c). The form factors are calculated
at the energies indicated in Table 1 for the given angular momentum, 1 ≡ 6 MeV,
2 ≡ 15 MeV, and 3 ≡ 36 MeV. The real parts of the proton form factors for 48Ca
as function of the momentum p are given for l = 0 in (b) and l = 6 in (d) for the
energies indicated in Table 1.
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Figure 4: The real parts of the partial wave neutron form factors for 208Pb as function
of the momentum p for l = 0 (a) and l = 8 (c). The form factors are calculated at the
first three energies indicated in Table 1 for the given angular momentum, 1 ≡ 21 MeV,
2 ≡ 36 MeV, and 3 ≡ 47 MeV (l = 2) and 45 MeV (l = 8). The real parts of the
proton form factors for 208Pb as function of the momentum p are given for l = 0 in
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short ranged and the coordinate space Coulomb wavefunctions are well defined. The
accuracy of this integral can be tested by replacing the Coulomb functions with spher-
ical Bessel functions and comparing the resulting matrix elements to the partial-wave
decomposition of the semi-analytic Fourier transform used for the calculations in the
previous Section. For the cases we studied a maximum radius of 14 fm, 300 grid points
are sufficient to obtain matrix elements with a precision of six significant digits.

Extending the EST separable representation to the Coulomb basis involves replac-
ing the neutron-nucleus half-shell t-matrix in Eqs. (6)-(8) by the Coulomb distorted
nuclear half-shell t-matrix. This leads to the separable Coulomb distorted nuclear
t-matrix

τCN
l (Ep0

) =
∑

i,j

us|f c
l,kEi

〉 τcij(Ep0
) 〈f c∗

l,kEj
|us, (26)

with τcij(Ep0
) being constrained by

∑

i

〈f c∗
l,kEn

|us − usgc(Ep0
)us|f c

l,kEi
〉τcij(E) = δnj (27)

∑

j

τCN
ij (Ep0

) 〈f c∗
l,kEj

|us − usgc(Ep0
)us|f c

l,kEk
〉 = δik .

Here |f c
l,kEi

〉 and |f c∗
l,kEi

〉 are the regular radial scattering wave functions correspond-

ing to the short range potentials us and (us)∗ at energy Ei. The separable Coulomb
distorted nuclear t-matrix elements are given by

〈p′|τCN
l (Ep0

)|p〉 ≡
∑

i,j

hcl,i(p
′)τcij(Ep0

)hcl,j(p)

=
∑

i,j

〈Φc
l,p′ |us|f c

l,kEi
〉τcij(Ep0

)〈f c∗
l,kEj

|us|Φc
l,p〉, (28)

where the form factor

hcl,i(p) ≡ 〈Φc
l,p|u

s|f c
l,kEi

〉 (29)

= 〈f c∗
l,kEi

|us|Φc
l,p〉 = 〈p|τCN

l (Ei)|kEi
〉

is the Coulomb distorted short-range half-shell t-matrix satisfying Eq. (22). We want
to point out that the generalization of the EST scheme to complex potentials is not
affected by changing the basis from plane waves to Coulomb scattering states.

For studying the quality of the representation of proton-nucleus optical potentials
we consider p+48Ca and p+208Pb elastic scattering and show the unpolarized differ-
ential cross sections divided by the Rutherford cross section as function of the c.m.
angle θc.m. in Fig. 2. First, we observe very good agreement in both cases of the mo-
mentum space calculations using the separable representation with the corresponding
coordinate space calculations. Second, we want to point out that we used for the
separable representation of the proton-nucleus partial-wave t-matrices the same sup-
port points (Table 1) as in the neutron-nucleus case. This makes the determination
of suitable support points Ei for a given optical potential and nucleus quite efficient.
In Fig. 2 we also show a calculation in which the short-range Coulomb potential of
Eq. (19) is omitted. The differences in the cross sections clearly demonstrate the im-
portance of including this term. A detailed comparison of the partial-wave S-matrix
elements as function of the angular momentum is given in Ref. [16].

In order to illustrate some details of the separable representation of the t-matrix
of Eq. (7) that leads to the cross section given in Fig. 1, we display in the left panels of
Fig. 3 the real parts of the form factors of the n+48Ca t-matrix for l = 0 (a) and l = 6
(c) at support points given in Table 1 for the respective angular momentum. Only
for l = 0 the form factors have a finite value at p = 0, while for the higher angular
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momentum all form factors go to zero for p→ 0 due to the angular momentum barrier.
For comparison, the right panels in Fig. 3 display the form factors of the Coulomb
distorted nuclear t-matrix from Eq. (19) for p+48Ca for the same angular momenta
and support points. Those t-matrix elements enter the calculation of the cross section
in Fig. 2. First we note that for l = 0 the p+48Ca form factors are quite different
from the n+48Ca form factors. In addition, they fall off much slower as function of
p, a property mainly caused by the short range Coulomb potential.

In Fig. 4 we carry out an analogous comparison between the form factors for the
n+208Pb and p+208Pb form factors. Here the energies are chosen slightly higher,
since in the p+208Pb the form factors at the lowest energies given in Table 1 are very
small. The slow decrease of the p+208Pb form factor for the small angular momentum
is even more pronounced in this case.

At this point it is crucial to note that in Figs. 3 and 4 we compare two quite
different form factors. For n+48Ca and n+208Pb scattering the t-matrix elements
leading to the form factors are calculated as described in Section 2 using as basis
states in- and out-going plane-wave scattering states. For p+48Ca and p+208Pb, the
Coulomb distorted nuclear t-matrix elements enter the cross section and lead to the
form factors. Those Coulomb distorted t-matrix elements are evaluated in the basis
of Coulomb scattering states. Thus, one should not be surprised that the form factors
given in the left and right panels of Figs 3 and 4 differ from each other.

4 Coulomb distorted Neutron-Nucleus Form

Factors

In order to treat charged-particle scattering in momentum space without employing a
screening procedure for the Coulomb force, it is necessary to formulate the scattering
problem in a momentum space Coulomb basis. For proton-nucleus scattering, a two-
body problem with a repulsive Coulomb force, the Coulomb distorted nuclear matrix
elements are already derived in this bases, as described in the previous Section and
Refs. [16, 37, 38]. When moving forward to (d, p) reactions, an effective three-body
problem with two charged particles, one needs to solve generalized Faddeev-AGS
equations in Coulomb basis, as was proposed in Ref. [6]. In order for this approach
to be numerically practical, reliable techniques to calculate expectation values in this
basis must exist. Here we evaluate the neutron-nucleus form factors from Section 2
in the Coulomb basis to illustrate the feasibility of the approach.

The starting point is the analytic expression for the Coulomb wave function in mo-
mentum space which, after a partial wave decomposition, can be written as (see [40]
and Ref. [17])

ψC
l,p(q) = −

2π eηπ/2

pq
lim

γ→+0

d

dγ

{

[

q2 − (p+ iγ)2

2pq

]iη

(ζ2 − 1)−i η
2 Qiη

l (ζ)

}

. (30)

Here, p is the magnitude of the fixed asymptotic momentum and ζ = (p2 + q2 +
γ2)/2pq. The Sommerfeld parameter is given as η = Z1Z2e

2µ/p where Z1 = 1 and
Z2 corresponds to the number of protons in the nucleus, and µ is the reduced mass of
the two-body system under consideration. The spherical function Qiη

l (ζ) in Eq. (30)
can be expressed in terms of hypergeometric functions 2F1 [41]. However, care must
be taken in its evaluation, since there are specific limits of validity of the various
expansions. Specific difficulties together with the expressions implemented in this
work are discussed in detail in Refs. [17, 42].

In Fig. 5 we display l = 0 partial wave Coulomb functions for fixed external
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Figure 5: The absolute value of the real part of the l = 0 Coulomb wave function
ψC
l,p,η(p) for the external momentum p = 0.6 fm−1 and η = 0.1, 0.5, 1 (upper panel)

and η = 1, 3, 3 (lower panel), as function of q. The shaded area masks the function
around the singularity at p→ q, where it is highly oscillatory.

momentum q = 0.6 fm −1 as function of p for selected values of η. The functions
exhibit oscillatory singular behavior for p → q. This region is indicated in the figure
by the shaded band. For values of η ≥ 1 oscillatory behavior is already present way
outside the singular region. It is also worthwhile to note that once the momentum p
is larger than the external momentum q, the magnitude of the Coulomb function falls
off by at least an order of magnitude.

For evaluating the neutron-nucleus form factors in the Coulomb basis, we start
from the separable partial-wave t-matrix operator given in Eq. (7). Evaluating its
momentum space matrix elements 〈p|tl(E)|p′〉 in a plane-wave basis gives the nuclear
form factors

〈p|u|fl,kE
〉 = tl(p, kE ;EkE

) ≡ ul(p)

〈f∗
l,kE

|u|p′〉 = tl(p
′, kE ;EkE

) ≡ ul(p
′), (31)

where the tl(p, kE ;EkE
) are the half-shell two-body t-matrices obtained as solution

of a momentum space LS equation with the complex potential u.
The corresponding Coulomb-distorted form factors are obtained by replacing the

plane-wave basis state by a Coulomb basis state |ψC
l,p〉 leading to

〈ψC
l,p|u|fl,kE

〉 =

∫ ∞

0

dq q2

2π2
ul(q)ψ

C
l,p(q)

⋆ ≡ uCl (p) (32)

〈f∗
l,kE

|u|ψC
l,p〉 =

∫ ∞

0

dq q2

2π2
ul(q) ψ

C
l,p(q) ≡ uCl (p)

† (33)

When η → 0, Eqs.(32) and (33) tend to Eq.(31). This expression is a generalization
of the form introduced in Ref. [6] to account for complex interactions.

The main challenge in computing the integrals of Eq. (32) and (33) is the oscilla-
tory singularity in the integrand for q = p, which is of the form

S(q − p) = lim
γ→+0

1

(q − p+ iγ)1+iη
. (34)
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Figure 6: The real parts of the partial wave Coulomb distorted neutron form factors
for 48Ca as function of the momentum p for l = 0 (a) and l = 6 (c). The form factors
are calculated at the energies indicated in Table 1 for the given angular momentum,
1 ≡ 6 MeV, 2 ≡ 15 MeV, and 3 ≡ 36 MeV. The real parts of the proton form factors
for 48Ca as function of the momentum p are given for l = 0 in (b) and l = 6 in (d)
for the energies given in Table 1.

This type of singularity cannot be numerically evaluated by the familiar principal
value subtractions but rather needs to be treated using the scheme of Gel’fand and
Shilov [43], as proposed by [6, 41]. The generalization to the complex form factors of
our application is given in Ref. [17]. The essence of the Gel’fand and Shilov scheme
is to subtract as many terms as needed of the Laurent expansion in a small region
around the pole so that the oscillations around the pole become small, and the integral
becomes regular. For further details of the calculations as well as numerical tests we
refer to Ref. [17].

In order to illustrate the behavior of Coulomb distorted neutron form factors we
show in Fig. 6 in the left panels the real parts of the Coulomb distorted neutron form
factors of the n+48Ca t-matrix for l = 0 (a) and l = 6 (c) at the same support points
as the plane-wave n+48Ca form factors shown in Fig. 3 and the Coulomb distorted
p+48Ca form factors shown in the right panels. The effect of Coulomb distortions
is clearly visible for l = 0, where the form factor goes to zero as p → 0. The figure
also shows that the Coulomb distorted neutron- and proton form factors are quite
different.

In Fig. 7 a similar comparison is shown but for real parts of the Coulomb distorted
n+208Pb and p+208Pb form factors. Drawing attention to the different scales for the
left and right side panels, we note that the Coulomb distorted p+208Pb form factors do
not only differ in shape, but also in magnitude from the Coulomb distorted n+208Pb
form factors. This may not come as a surprise when having in mind that the Coulomb
force is quite strong in heavy nuclei. The comparisons in Figs. 6 and 7 emphasize the
need for a proper introduction of the Coulomb force in the EST scheme as presented
in Section 3.

The realization that the Coulomb distorted neutron-nucleus form factors differ
from the proton-nucleus ones has been already pointed out in Ref. [44] where separable
t-matrices for proton-proton (pp) scattering were considered. There the authors used a
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Figure 7: The real parts of the partial wave Coulomb distorted neutron form factors
for 208Pb as function of the momentum p for l = 0 (a) and l = 8 (c). The form factors
are calculated at the first three energies indicated in Table 1 for the given angular
momentum, 1 ≡ 21 MeV, 2 ≡ 36 MeV, and 3 ≡ 47 MeV (l = 2) and 45 MeV (l = 8).
The real parts of the proton form factors for 208Pb as function of the momentum p
are given for l = 2 in (b) and l = 8 in (d) for the same energies.

separable representation in terms of Yukawa functions and re-adjusted the parameters
in the two lowest partial wave to describe the experimentally extracted pp phase shifts.
While such an approach may be viable in the pp system, it is not very practical when
heavy nuclei are considered, since here many more partial waves are affected by the
Coulomb force.

Finally, we want to inspect the Coulomb distorted form factor of Eq. (32) and
consider an alternative way for its calculation in order to verify the quite involved
integration procedure outlined in this Section and given in detail in Ref. [17]. The
quantity u|fl,kE

〉 satisfies an operator LS equation,

u|fl,kE
〉 = u|kE〉+ ug0(E)u|fl,kE

〉, (35)

where |kE〉 is the radial part of the solution of the free Hamiltonian at energy E with
angular momentum l, and g0(E) is the free Green’s function. Multiplying from the
left with the Coulomb scattering wave function ψc

l,p gives

〈ψc
l,p|u|fl,kE

〉 = 〈ψc
l,p|u|kE〉+

∫

dp′p′2〈ψc
l,p|u|p

′〉
1

E − Ep′ + iǫ
〈p′|u|fl,kE

〉. (36)

The term 〈p′|u|fl,kE
〉 = tl(p

′, kE ;EkE
) is the half-shell t-matrix at a support point EkE

already calculated when obtaining the form factors for the separable representation
(see Eq. (31)). It remains to calculate the driving term, which now is given as

〈Φc
l,p′ |u|p〉 =

2

π

∞
∫

0

〈Φc
l,p′ |r′〉 r′2dr′ 〈r′|u|r〉 r2dr 〈r|p〉

=
2

πp′

∞
∫

0

drr2dr′r′Fl(η
′, p′r′) 〈r′|u|r〉 jl(pr), (37)
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Figure 8: The absolute value of the real part of the partial-wave Coulomb distorted
n+48Ca for l = 0 (E=6 MeV) and l = 6 (E=16 MeV) as function of the momentum
p. The dotted lines (i) represent the integration over the Coulomb wave functions,
while the solid lines (ii) stands for the calculations according to right-hand side of
Eq. (36). The absolute difference between the two calculation is shown as dashed line
(iii).

which turns for the phenomenological Woods-Saxon potential into

〈Φc
l,p′ |u|p〉 =

2

πp′

∞
∫

0

drr Fl(η
′, p′r) us(r) jl(pr). (38)

We now can evaluate the left-hand side (LHS) and the right-hand side (RHS) of
Eq. (36) independently with two completely different algorithms. This comparison
is shown for two different form factors for 48Ca. For the l = 0 the form factor at
E = 6 MeV is shown, for l = 6 the one at E = 16 MeV. The results of both indepen-
dent calculations indistinguishable in the graph. Thus we show the absolute difference
between the two calculations as dashed line. This shows that our numerical integra-
tion over the momentum-space Coulomb functions together with the Gel’fand-Shilov
regularization is very accurate and can be used without any problem in Faddeev-AGS
equations formulated in the Coulomb basis when matrix elements in this basis may
only be obtained in this fashion.

5 Summary and Outlook

In a series of steps we developed the input that will serve as a basis for Faddeev-AGS
three-body calculations of (d, p) reactions, which will not rely on the screening of the
Coulomb force. To achieve this, Ref. [6] formulated the Faddeev-AGS equations in
the Coulomb basis using separable interactions in the two-body subsystems. For this
ambitious program to have a chance of being successful, the interactions in the two-
body subsystems, namely the NN and the neutron- and proton-nucleus systems, need
to developed so that they separately describe the observables of the subsystems. While
for the NN interaction separable representations are available, this is was not the case
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for the optical potentials describing the nucleon-nucleus interactions. Furthermore,
those interactions in the subsystems need to be available in the Coulomb basis.

We developed separable representations of phenomenological optical potentials
of Woods-Saxon type for neutrons and protons. First we concentrated on neutron-
nucleus optical potentials and generalized the Ernst-Shakin-Thaler (EST) scheme [32]
so that it can be applied to complex potentials [15]. In order to consider proton-
nucleus optical potentials, we further extended the EST scheme so that it can be
applied to the scattering of charged particles with a repulsive Coulomb force [16].
While the extension of the EST scheme to charged particles led to a separable proton-
nucleus t-matrix in the Coulomb basis, we had to develop methods to reliably com-
pute Coulomb distorted neutron-nucleus t-matrix elements [17]. Here we also show
explicitly that those calculations can be carried out numerically very accurately by
calculating them within two independent schemes.

Our results demonstrate, that our separable representations reproduce standard
coordinate space calculations of neutron and proton scattering cross sections very well,
and that we are able to accurately compute the integrals leading to the Coulomb dis-
torted form factors. Now that these challenging form factors have been obtained, they
can be introduced into the Faddeev-AGS equations to solve the three-body problem
without resorting to screening. Our expectation is that solutions to the Faddeev-AGS
equations written in the Coulomb-distorted basis can be obtained for a large variety
of n + p + A systems, without a limitation on the charge of the target. From those
solutions, observables for (d, p) transfer reactions should be readily calculated. Work
along these lines is in progress.
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