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Comparing nonperturbative models of the breakup of neutron-halo nuclei
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Breakup reactions of loosely bound nuclei are often used to extract structure and/or astrophysical information.
Here we compare three nonperturbative reaction theories often used when analyzing breakup experiments, namely
the continuum discretized coupled channel model, the time-dependent approach relying on a semiclassical
approximation, and the dynamical eikonal approximation. Our test case consists of the breakup of 15C on Pb at
68 MeV/nucleon and 20 MeV/nucleon.
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I. INTRODUCTION

Due to the proximity to the particle threshold, loosely
bound nuclei dissociate easily during collisions with nuclear
targets. Consequently, they are often studied through breakup
reactions, in which the loosely bound particle(s) dissociates
from the core of the nucleus through interaction with the
target. In the following, we focus on elastic breakup (i.e.,
a reaction in which the target is left in its ground state
and all projectile fragments are detected in coincidence after
dissociation). The use of breakup reactions for extracting
properties of exotic nuclei is numerous and varied, including
one-neutron halo systems [1–3], configuration-mixed systems
[4,5], two-neutron halo systems [6–8], as well as proton rich
systems [9–11]. While the shape of the energy distribution can
tell us about the separation energy and the angular momentum
of the ground state, the magnitude of the cross section is related
to the asymptotic normalization of the ground state [12]. In
addition, for two-particle halo systems, one also expects to
obtain information on the correlations in the valence pair [13].
More recently, breakup reactions have proven to be a useful
tool in exploring nuclei beyond the dripline and studying decay
modes of resonant states [14–16].

If the reaction is dominated by the electromagnetic inter-
action, it is possible to connect the breakup cross section with
the capture cross section [17,18]. This method, known as the
Coulomb-dissociation method, is of interest to astrophysics be-
cause it can provide radiative-capture cross sections at very low
relative energies where a direct measurement is not feasible. It
also gives access to neutron-capture cross sections by unstable
species, which are impossible to measure in the laboratory. It
has been applied to a number of cases [3,9,18–20]. Providing
confidence that the Coulomb-dissociation method works,
neutron-capture cross sections for 14C(n,γ )15C were extracted
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from the Coulomb-dissociation data [3] using two independent
methods [21,22] and perfect agreement was obtained when
compared to direct measurements [23]. Similar efforts have
been performed for the breakup of 8B [24–27].

The common feature of all the above-mentioned exper-
iments is their need for a reliable reaction model in the
analysis. One needs to be careful with separating nuclear
and Coulomb processes, often nuclear-Coulomb interference
is important and the dynamical effects in the continuum are
crucial [18,24,28–31]. These results imply that, in general,
perturbative approaches are not accurate enough for a reliable
analysis of Coulomb-breakup measurements.

Hand in hand with the experimental advances, a number
of nonperturbative breakup theories have been developed
improving the method by which breakup reactions are studied
(see Ref. [32] for a recent review). The many developments
rely on different approximations, have separate advantages and
shortcomings, and vary also in the level of complexity. We
believe it is timely to compare these theories and understand
the level of accuracy of the approximations made. In this work
we compare the most common nonperturbative approaches
to describe the breakup of a one-neutron halo nucleus that
can be approximated by a two-body cluster. These are:
(i) the continuum discretized coupled channel method (CDCC)
[33,34], which is fully quantal and does not make approxima-
tions in the projectile-target dynamics, (ii) the time-dependent
(TD) approach [35–38], which is based on a semiclassical
approximation [39] that describes the projectile-target relative
motion by a classical trajectory, and (iii) the dynamical eikonal
approximation (DEA) [40,41], which relies on the eikonal
approximation [42].

All three theories are built on the same three-body de-
scription of the reaction: the projectile P , described as a
valence neutron f loosely bound to a core c, impinges
on a target T considered as inert. The effective interaction
between c and f is adjusted to reproduce known properties
of the projectile, while the interactions between the projectile
fragments and the target are simulated by optical potentials
fitted to elastic-scattering data for the c-T and f -T systems.

044604-10556-2813/2012/85(4)/044604(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.85.044604


P. CAPEL, H. ESBENSEN, AND F. M. NUNES PHYSICAL REVIEW C 85, 044604 (2012)

For the type of reactions we are interested in here, the CDCC
method is the most accurate method available on the market
but it is also the most computationally intensive and requires
elaborate model-space studies. Developments that go beyond
the inert-core and/or inert-target approaches, or extensions
to N -body projectile clusters (N > 2) are compromised by
computational limitations. On the other hand, TD and DEA are
not computationally intensive and are rather straightforward
to set up. The question is whether these approximations can
do a good job for the reactions of interest. To answer this
question one needs to quantify the level of accuracy of the
approximations introduced.

For a meaningful comparison, it is necessary that all three
methods start from the exact same three-body Hamiltonian.
Typical breakup observables are then compared to quantify the
accuracy of the various approximations. The test case chosen
is 208Pb(15C, 14C n)208Pb, a case where we expect the three-
body description to be adequate. Our study is performed at
two energy regimes, one at a typical energy in fragmentation
facilities (68 MeV/nucleon) [3] and the other at the higher-
energy limit of isotope separation on-line (ISOL) facilities
(20 MeV/nucleon). We ignore for practical reasons the effect
of relativity.

In Sec. II we briefly summarize the three methods under
scrutiny. The model inputs are given in Sec. III. In Sec. IV
the results for breakup are presented, and we conclude in
Sec. V. The details about the calculations in all three models
can be found in the Addendum provided as supplemental
material [43].

II. BRIEF THEORETICAL DESCRIPTION

A. Common framework

To study the breakup of a projectile P into a core c

and a valence neutron f on a target T , we start from the
(nonrelativistic) three-body Hamiltonian

H3b(R, r) = T̂R + H0(r) + UcT (Rc) + Uf T (Rf ), (1)

expressed in the set of coordinates illustrated in Fig. 1. In
Eq. (1), T̂R is the kinetic-energy operator for the P -T relative
motion. The two-body Hamiltonian H0 describes the internal
structure of the projectile

H0(r) = T̂r + Vcf (r), (2)

where T̂r is the c-f kinetic-energy operator and Vcf is an
effective potential, modeling the c-f interaction. This potential
is adjusted to reproduce the bound-state spectrum and low-
energy scattering states of the projectile. The optical potential
UcT (Uf T ) describes the elastic scattering of the core (valence
neutron) by the target and contains a Coulomb part and a
nuclear part.

In all three methods, a partial wave expansion for the
projectile states is used:

φ
ljIM

k (r) = u
ljIM

k (r)

r

{
[Yl(r̂) ⊗ Xs]j ⊗ XIc

}
IM

, (3)

where Y is a spherical harmonic [44] and X s are spinors.
The quantum number l is the orbital angular momentum of f

c

fP

T

R

r

Rc

Rf

b

Z

FIG. 1. Set of coordinates used in the reaction modeling. The
longitudinal Z and transverse b components of R are shown as well.

relative to c, s(Ic) is the spin of the fragment f (c), and the
total angular momentum of the projectile is I with projection
M . We denote by φ0 the projectile bound state of (negative)
energy E0. For simplicity in this formulation we consider
only one bound state. In this manner, all the other eigenstates
of H0 correspond to positive energies E = h̄2/2μcf k2, with
μcf the c-f reduced mass. They describe the c-f continuum.
Of course, the formulation can be easily extended to include
bound excited states and we do include these in the application
presented in Sec. IV.

Within this framework, the study of the P -T collision
reduces to solving the Schrödinger equation

H3b�(R, r) = Etot�(R, r) (4)

with initial boundary condition:

�(R, r) −→
Z→−∞

eiK0Zφ0(r), (5)

where the initial P -T momentum h̄K 0 is assumed along
the Z axis. Its norm is related to the total energy Etot =
h̄2K2

0 /2μPT + E0, with μPT the P -T reduced mass. There
are different assumptions used in the treatment of the full
three-body wave function �. We capture the essential features
in the following subsections.

B. Continuum discretized coupled channel method

The full three-body wave function can always be expanded
in terms of the complete set of projectile states φ

ljIM

k as

�(R, r) = φ0(r)ψ0(R) +
∑
ljIM

∫
dk φ

ljIM

k (r)ψljIM

K (R),

(6)

such that the momentum h̄k of the internal motion of c + f

is related to the momentum h̄K between the projectile center
of mass and the target through energy conservation Etot =
h̄2K2/2μPT + h̄2k2/2μcf . An expansion involving an integral
over momentum is not tractable, so in CDCC a discretization
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of the projectile continuum is performed [33,45]. There are
various ways of performing this discretization, and here we
will use the so-called average method whereby φ

ljIM

k is
replaced by its average over a momentum bin [kp−1, kp],
φ̃

ljIM
p [45]. In this method the three-body wave function is

approximated by

�CDCC(R, r) =
∑
ljIM

N∑
p=0

φ̃ljIM
p (r)ψljIM

p (R), (7)

with p = 0 corresponding to the initial ground state and p � 1
corresponding to the bin wave functions. The sum runs up to
N , which is associated to the maximum projectile excitation
energy Emax considered in the model space. In the end, the
method needs to be independent of discretization and model
space, and thus Emax needs to be large enough and the bin
width needs to be small enough to accurately describe the
process of interest [45].

When introducing expansion (7) into the full three-body
equation (4), and after integrating over the angular variables
and r , one arrives at the following coupled-channel equations
in R [45][

− h̄2

2μPT

(
d2

dR2
− L(L+1)

R2

)
+ Ep − Etot

]
χJtot

α (R)

+
∑
α′

iL
′−LV

Jtot
αα′ (R)χJtot

α′ (R) = 0 , (8)

where L is the P -T relative angular momentum, Ep is the
midpoint energy of bin p, and α is the index for the channel
{pljIL}. The coupling potentials V

Jtot
αα′ (R) are defined by,

V
Jtot
αα′ (R)

= 〈
[φ̃ljI

p YL(R̂)]Jtot |UcT (Rc)+Uf T (Rf )|[φ̃l′j ′I ′
p′ YL′(R̂)]Jtot

〉
,

(9)

where Jtot is the total angular momentum resulting from the
coupling of I and L. Equation (8) is solved with scattering
boundary conditions at large distances,

χJtot
α (R) −→

R→∞
i

2

[
H−

α (KR)δααi
− H+

α (KR)SJtot
ααi

]
, (10)

where αi is the entrance channel, and H± are Coulomb Hankel
functions [45]. Breakup observables are then calculated from
the resulting S matrix [34,46]. In the present work, we use
the code FRESCO to numerically solve the set of coupled equa-
tions (8) [46,47]. The parameters of our calculations are given
in the Addendum provided as a supplemental material of this
article [43].

C. Time-dependent model

It can be very demanding to solve the coupled-channel
equations (8) numerically. To reduce the computational cost,
other models have been developed. In the semiclassical
approximation, the P -T relative motion is approximated by a
classical trajectory R(t) [35–38]. Along that trajectory, the pro-
jectile experiences a time-dependent potential that simulates
its interaction with the target. Assuming a quantal description

of the internal structure of the projectile, this approximation
leads to the time-dependent Schrödinger equation,

ih̄
∂

∂t
�TD(t, b, r) = [H0 + VPT (t, r)] �TD(t, b, r), (11)

where b is the impact parameter characterizing the trajectory.
The time-dependent potential VPT appearing in this equation
is the sum of the optical potentials of the three-body
Hamiltonian (1), from which the potential that generates the
trajectory is subtracted [36].

For Coulomb-dominated reactions, the potential that gen-
erates the classical trajectory is usually the bare P -T Coulomb
interaction, i.e.,

VPT (t, r) = UcT [Rc(t)] + Uf T [Rf (t)] − ZP ZT e2

R(t)
,

(12)

where ZP and ZT are the atomic numbers of the projectile and
the target, respectively.

The TD equation (11) has to be solved for all possible
trajectories with the boundary condition that the projectile is
initially in its ground state,

�TD(t → −∞, b, r) = φ0(r). (13)

This is performed numerically by applying iteratively an
approximation of the time-evolution operator to the initial
wave function [35–38]. We use the algorithm detailed in
Refs. [22,36]. At the end of the calculation, a breakup
probability can be extracted for each trajectory by projecting
the final wave function on the positive-energy eigenstates of
H0,

dPbu

dk
(b) ∝

∑
ljIM

∣∣〈φljIM

k

∣∣�TD(t → +∞, b)
〉∣∣2

. (14)

Breakup observables can be calculated from these probabilities
by proper integration over b [38]. Since these observables
are obtained by summation over breakup probabilities and
not over breakup amplitudes, the time-dependent technique
cannot account for quantum interferences between different
trajectories. We will see in Sec. IV the effects of such
interferences.

D. Dynamical eikonal approximation

More recently, the DEA has been developed from the
comparison between the time-dependent model and the eikonal
approximation [40,41]. It relies on the eikonal factorization of
the three-body wave function (6) [42]

�DEA(R, r) = eiK0Z�̂(R, r). (15)

At sufficiently high energy, the deviation from the initial plane
wave eiK0Z of the P -T relative motion is expected to be small.
The dependence on R of �̂ is thus expected to be smooth.
This enables us to neglect its second-order derivative in R
with respect to its first-order derivative


R�̂(R, r) � K0∂/∂Z�̂(R, r). (16)
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Therefore, introducing the factorization (15) into the three-
body Schrödinger equation (4), leads to the DEA equation [41]

i
h̄2K0

μPT

∂

∂Z
�̂(Z, b, r) =

[(H0 − E0) + UcT (Rc) + Uf T (Rf )]�̂(Z, b, r), (17)

where the dependence of the wave function on the longitudinal
Z and transverse b parts of the projectile-target coordinate R
has been made explicit (see Fig. 1).

The DEA equation (17) is mathematically equivalent to
a time-dependent Schrödinger equation for a straight-line
trajectory [see Eq. (11)]. It can therefore be solved using
similar numerical techniques as in the time-dependent model
[35–38]. As explained in Ref. [41], we use the algorithm
detailed in Ref. [38]. The solution is obtained for each
transverse component b of the P -T coordinate with the
boundary condition

�̂(Z → −∞, b, r) = φ0(r). (18)

Breakup amplitudes can then be extracted from the wave
function

S
ljIM

bu (k, b) ∝ 〈
φ

ljIM

k

∣∣�̂(Z → +∞, b)
〉
. (19)

Since no semiclassical approximation has been made to derive
Eq. (17), the coordinates Z and b are quantal variables. This
enables us to take into account interferences between trajec-
tories. This is noticeable by the fact that breakup observables
are obtained in the DEA by integrating amplitudes (19) over b
and not breakup probabilities as in the time-dependent method
of Sec. II C. The domain of validity of the approximation
(16) remains to be tested by comparison to the other reaction
models.

III. MODEL INPUTS

In such a comparison, it is important to ensure that the inputs
of all models are consistent. In this section, we summarize
the various parameters that have been considered in the
calculations presented in Sec. IV. More details can be found
in the Addendum given as supplemental material [43].

All masses are calculated as mass number times the nucleon
mass mN = 931.5 MeV/c2. The effective potentials simulat-
ing the interactions between 14C, n, and Pb are chosen identical
in all three models. For the 14C-n potential we take a Woods-
Saxon central form factor (with depth Vws = 63.023 MeV,
radius R0 = 2.651 fm, and diffuseness a = 0.6 fm) plus a
spin-orbit term (with depth Vso = 23.761 MeVfm2, and the
same radius and diffuseness as the central term). This potential
reproduces the two bound states of 15C: the 1/2+ ground
state in the 1s1/2 partial wave at the experimental energy
E1s1/2 = −1.218 MeV and the excited 5/2+ excited state as
a 0d5/2 state at E0d5/2 = −0.478 MeV.

The interactions between the Pb target and the projectile
constituents are simulated by optical potentials chosen from
the literature. The Becchetti and Greenlees parametrization
[48] is used for the n-Pb potential. Since no 14C-Pb potential is
available, we use, at 68 MeV/nucleon, a potential reproducing

the elastic scattering of 16O on Pb at 94 MeV/nucleon [49] and,
at 20 MeV/nucleon, a potential fitted to the elastic scattering
of 16O on Pb at 312.6 MeV (potential I3 of Ref. [50]). At
both energies, the radius of the potential is scaled by (141/3 +
2081/3)/(161/3 + 2081/3) to correct for the difference between
the sizes of 14C and 16O.

Convergence is an important part of the study and therefore
was thoroughly tested for all cases. The parameter sets quoted
in the Addendum provided as supplemental material [43]
ensure an accuracy of at least 4% in the energy and angular
distributions for all three models.

IV. RESULTS

In this section we present the comparison for the breakup
of 15C on 208Pb at two different beam energies: the first
(68 MeV/nucleon) corresponds to an energy typical of
fragmentation facilities for which data already exist [3], and
the second (20 MeV/nucleon) serves as an example of the
energies that will be available in facilities such as SPIRAL2
and FRIB. We present the breakup cross section as a function
of either the 14C-n relative energy E or the scattering angle θ

of the 14C-n center of mass system.
The results for 15C on Pb at 68 MeV/nucleon are presented

in Figs. 2 and 3. All three models predict nearly identical
energy distributions (see Fig. 2): they differ by only 1–3%
at the peak. They are also in excellent agreement with the
RIKEN data [3], validating the reaction theory and the assumed
single-particle nature of 15C. The aim of this analysis being to
compare theories to each other, the theoretical cross sections
have not been folded with the experimental energy resolution.
Such a folding does not affect much the agreement between
theory and experiment in the present case.

The angular distributions are shown in Fig. 3. The two
quantal models, CDCC and DEA, agree very well with each
other. In particular they exhibit similar diffraction patterns.
The TD model does not exhibit any diffractive pattern.
This diffraction pattern is a quantal effect corresponding to
interferences between trajectories, an effect excluded in the
semiclassical approximation. Nevertheless, the TD calculation

Exp.
dea
td
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d
σ

bu
/d

E
(m

b
/M
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)

543210

400
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100

0

FIG. 2. Distribution for the breakup of 15C on Pb at
68 MeV/nucleon as a function of the 14C-n relative energy. Compar-
ison of three models: CDCC (solid), TD (dotted), and DEA (dashed).
Experimental data from Ref. [3].

044604-4



COMPARING NONPERTURBATIVE MODELS OF THE . . . PHYSICAL REVIEW C 85, 044604 (2012)

dea
td

cdcc

θ (deg)

d
σ

bu
/d

Ω
(b

/s
r)

543210

140

120

100

80

60

40

20

0

FIG. 3. Breakup cross section for 15C on Pb at 68 MeV/nucleon
as a function of the scattering angle of the 14C-n center of mass.

reproduces the general trend of the angular distribution at
forward angles. This explains why, once integrated over the
scattering angle, it produces a cross section nearly identical
to the quantal models. Although DEA provides a good
approximation to CDCC, a slight shift of about 3% in θ is
observed between both oscillatory patterns. However, at such
beam energy, this small discrepancy is negligible compared to
the uncertainties in the optical potentials.

Next we analyze the breakup of 15C on Pb at
20 MeV/nucleon. The energy distribution is displayed in Fig. 4
and the angular distribution in Fig. 5. If we first focus on the
comparison of TD and CDCC models, excellent agreement
in the energy distribution is found (a mere 1% difference at
the peak). At this energy too, the semiclassical approximation
fails at reproducing the correct diffraction pattern seen in the
CDCC angular distribution, but, as seen at higher energy, the
general trend of the cross section is well approximated by
the TD model at forward angles. These results show that the
TD model provides accurate breakup observables integrated
over the scattering angle even at energies below the range
of validity mentioned by Alder and Winther [39]. Because
of its semiclassical approximation, the TD model cannot
account for quantal interferences in the angular distributions.
Nevertheless, it produces a qualitative estimate of the behavior
of such distributions at forward angles.

The DEA energy distribution does not agree with the other
two models at 20 MeV/nucleon; it is about 10% too high

dea
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543210
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FIG. 4. Distribution for the breakup of 15C on Pb at
20 MeV/nucleon as a function of the 14C-n relative energy.
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FIG. 5. Breakup cross section for 15C on Pb at 20 MeV/nucleon
as a function of the scattering angle of the 14C-n center of mass.
In addition to CDCC, TD, and DEA results, a TD calculation using
straight-line trajectories (dash-dotted) is shown.

at the peak. Due to its quantal nature, DEA does exhibit a
diffraction pattern in the angular distribution, but the small
discrepancy with CDCC found at 68 MeV/nucleon is now
significantly increased as the DEA angular distribution peaks
at more forward angles. The shift reaches here 10% in θ . These
results suggest that the difference observed between DEA and
the other two models at low energy comes primarily from the
lack of Coulomb deflection in DEA: Relying on the eikonal ap-
proximation, the DEA assumes that the incoming plane-wave
motion of the projectile is not much perturbed by its interaction
with the target (16). The DEA thus forces the projectile straight
ahead into the high-field zone of the target, leading to a larger
breakup cross section and a more forward angular distribution.
On the contrary, the usual TD approach, being based on
Coulomb trajectories, naturally includes the Coulomb deflec-
tion and hence reproduces CDCC calculations fairly well.

To test this hypothesis, we first repeat the time-dependent
calculation using straight-line trajectories instead of hyperbo-
las (dash-dotted line in Fig. 5). Of course, this TD calculation
does not exhibit any diffraction pattern. However, it provides
a fair approximation of the general trend of the DEA angular
distribution in the same way the usual TD calculation follows
the CDCC one (compare the dotted and solid lines). This
result was to be expected as the DEA equation (17) is
mathematically equivalent to a time-dependent Schrödinger
equation with straight-line trajectories (see Sec. II D). It
nevertheless confirms the significance of Coulomb deflection
in the reaction process. Second, we compare DEA to CDCC
in a purely nuclear calculation (i.e., setting ZT = 0). The
corresponding angular distributions are shown in Fig. 6. At
large angles, both calculations are nearly identical. At forward
angles, however, DEA underestimates CDCC and exhibits an
oscillatory pattern shifted to larger angles. This difference with
the Coulomb-dominated reaction is not very surprising as the
nuclear interaction, being mostly attractive, tends to deflect
the projectile within the high-field zone of the target. This
very stringent test indicates that Coulomb deflection is not the
only reason for the discrepancies observed in Figs. 4 and 5 and
that other effects, such as nuclear deflection and/or couplings
between various impact parameters b, are also significant.
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FIG. 6. Angular distributions for a hypothetical purely nuclear
collision between 15C on Pb at 20 MeV/nucleon. DEA is compared
to CDCC.

These results confirm that at low energies, the approxima-
tion (16) can no longer be performed as it suppresses part of the
deflection of the projectile by the target, and/or some coupling
effects between different bs. A correction of the DEA that
could account for the Coulomb deflection would most likely
provide a better description of Coulomb-dominated reactions
at low energy.

To make sure that the qualitative features of our anal-
ysis do not depend on the particular choice of the core-
target interaction, we have repeated the Coulomb-breakup
calculations at 20 MeV/nucleon using the optical potentials
used at 68 MeV/nucleon. As expected, the cross sections
are sensitive to the parametrization of these potentials. The
68 MeV/nucleon potentials changes the energy distribution
by 2–5% and reduces the amplitude of the oscillations of the
diffraction pattern of the angular distribution. It also shifts that
pattern by about 3% to larger angles. Nevertheless, the qualita-
tive differences between the three models remain very similar.

The difference between CDCC and DEA seems to
evolve smoothly when reducing the beam energy. At
40 MeV/nucleon, the energy distributions differ by a mere
5% at the maximum and the shift in the angular distributions
is also about 5% in θ .

V. CONCLUSION

In this study, we perform a comparison of nonperturbative
models of reactions involving loosely bound nuclei. We
compare the continuum discretized coupled channel method
(CDCC), the time-dependent (TD) approach, and the dynam-
ical eikonal approximation (DEA) for the dissociation of a
one-neutron halo nucleus on a heavy target. Starting from
exactly the same three-body Hamiltonian, we calculate the
energy distribution and angular distribution following the
breakup of 15C on Pb at 68 MeV/nucleon and 20 MeV/nucleon
in all three frameworks.

Our results show that for angle-integrated observables, TD
works well and can be safely used in the analysis of data
obtained at both intermediate-energy and low-energy facilities
(i.e., on an energy range much larger than suggested in the
original semiclassical approximation of Alder and Wither
[39]). However, due to its classical treatment of trajectories,

TD cannot account for the diffraction pattern seen in the
angular distributions. It provides only the general trend of
these cross sections at forward angles.

The DEA approach is able to accurately reproduce the
CDCC angular and energy distributions at 68 MeV/nucleon
and therefore provides a computationally efficient alternative
to CDCC without sacrificing accuracy. In contrast, at the lower
beam energy, both energy and angular distributions in DEA
cannot reproduce the CDCC results. DEA overestimates the
energy distribution by 10% and, although the DEA angular
distribution exhibits a diffraction pattern similar to that of
CDCC, this pattern is shifted to more forward angles by
about 10%. The primary cause of these discrepancies is the
approximation (16) made in DEA. For Coulomb-dominated
reactions, it amounts mostly to the absence of Coulomb
deflection in that model. Thanks to the present analysis we now
understand how to remedy the problem so that the domain of
validity of DEA can be partially extended to the lower energies.

Although valid at all energies, CDCC is a reaction model
that requires significant computational power. Our analy-
sis shows that, depending on the beam energy and/or the
observable considered, it can be reliably replaced by the
TD model or the DEA. Since the DEA and TD techniques
are computationally less expensive, these could allow for
improving the description of the projectile in reaction models
at a reasonable cost.

The present study corresponds to the first comparison of
nonperturbative breakup models at intermediate energies. It
quantitatively shows for which observables and energies the
models agree and in which conditions their predictions should
be considered with caution. This provides for the first time the
range of validity of the three models. The projectile description
being quite general, these results can be extended to other
neutral loosely bound systems with confidence. Note that
they cannot be readily extended to charged systems as the
mechanism of the Coulomb dissociation of proton-halo nuclei
differs from that of neutron halos: The former involves more
significant E2 transitions and stronger higher-order dynamical
effects than the latter [24–26,30,31].

Being focused on the comparison between three reaction
models, the present study has been performed within the
framework of nonrelativistic quantum mechanics. However,
relativistic effects may start to play a role at energies around
100 MeV/nucleon [51]. Our conclusions should therefore not
readily be extended to such energies. A detailed analysis of
the effect of relativity in breakup reactions is planned in the
near future.
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