Recent developments in *g*-factor measurements on exotic nuclei and their relation to nuclear structure

Andrew E Stuchbery

THE AUSTRALIAN NATIONAL UNIVERSITY

Department of Nuclear Physics, The Australian National University Canberra, ACT 0200, Australia

Magnetic moment measurements: ps states

g factor / gyromagnetic ratio: $g = \mu/I$

 $\Delta \theta \sim - g (\mu_N / \hbar) B \Delta t$

 $\Delta \theta \sim \text{few degrees}$ B ~ 10³ Tesla $\Delta t \sim \text{few ps}$

Need hyperfine fields

Internal fields in ferromagnets:

- Static IPAC - Transient HVTF

Free ion in vacuum: RIV

Outline

- Fission fragments: A ~ 100 120 "IPAC"
 are these neutron-rich nuclei 'exotic'?
- Fast fragmentation: Z ~ 16 26 "HVTF"
 shell closures in n-rich S, Ar, Fe
- Reaccelerated beams: ~ ¹³²Sn "RIV"
 novel nuclear structure near ¹³²Sn

Measurements on fission fragments

Show 'Exotic' behavior – or do they?

Rare earth region: 50 < Z < 82; 82 < N < 126

$40 < Z <\!\!50$; $50 < N <\!\!82$

Behavior of neutron-rich g factors

Tidal Waves and Boson Condensation in Transitional Nuclei

Stefan Frauendorf Yongquin Gu D. Almehed

Department of Physics University of Notre Dame, USA

Institut fuer Strahlenphysik, Forschungszentrum Rossendorf Dresden, Germany

New cranking model for region

Transient-field g-factor measurements @ ANU

A. Conventional kinematics:

• 110,111,112,113,114,116Cd via 95 MeV ³²S on ^{nat}Cd

Target Layer:	Ag	Cd	Fe	Cu	(+ Cu)
Thickness (mg/cm ²)	0.05	0.98	2.64	5.5	~ 20

Transient-field g-factor measurements @ ANU

B. Inverse kinematics:

- 240 MeV ^{96,98,100,102,104}Ru
- 245 MeV ^{102,104,106,108,110}Pd
- 240 MeV ^{106,108,112,114}Cd *
- 230, 245, 260 MeV ¹⁰⁸Pd

* Partially enriched ^{106,108}CdO in ion source

Target Layer:	С	Cu	Gd	Cu	(+ Cu)
Thickness (mg/cm ²)	0.42	0.04	6.12	5.5	~ 4.5

Hyperfine Spectrometer: Hyperion

HYPERfine Interactions ON line. Low temperature capability

- 1 W cooling power at 4K (~10 W at 10 K) Sumitomo RDK 408D
- No target current reading use particle rate
- Photodiodes as particle detectors (separate electronics channels)
- LakeShore temperature controller and temperature sensors
- Compact electromagnet: polarizing field ~ 0.09 tesla

Conventional kinematics: 95 MeV ³²S on ^{nat}Cd

Inverse kinematics ~ 240 MeV Ru, Pd and Cd beams

Beam energy is ~ 2.3 MeV/nucleon

Beam intensity: from ~ 0.5 pnA for 106 Pd to ~ 0.05 pnA for 102 Pd

Inverse kinematics: coincidence γ -ray spectra

Angular correlations: calculated and measured

Theory from Stefan Frauendorf

Quadrupole Tidal Waves

Yrast states of vibrational and transitional nuclei can be considered as "tidal" waves traveling the nuclear surface.

In the rotating frame they correspond to a static deformation \rightarrow Cranking model

$$\omega = \frac{\Omega}{2} \quad E = \omega L_z$$

$$R(\vartheta, \varphi, t) =$$

$$R_0[1 + 2a_2 \cos(2\varphi - \Omega t)Y_{22}(\vartheta, \varphi = 0)]$$

Comparison of g factors with the 'tidal' wave model

Α

Conclusions & Outlook A ~ 100

- g(2⁺) behavior vs *N* changes with *Z*probably reflects changes in single particle structure
- trends in neutron-rich nuclei continue trends in stable isotopes

We still need stable-beam measurements!

- basis for future measurements: odd-A nuclei; fission products, RIB, RIV, etc
 - towards both $^{100}\mbox{Sn}$ and $^{132}\mbox{Sn}$

Measurements on fast fragments: High Velocity Transient Field

> Nuclear structure near closed shells - neutron rich S, Ar, Fe isotopes

High velocity transient fields

First measurements: NSCL 2004, ^{38,40}S

Experiments in 2008

Nuclide(s)	Lab	Date Run	Spokesperson
72 Zn	GANIL	April 2008	Georgiev, Jungclaus
^{60,62} Fe	NSCL	October 2008	AES
^{42,44,46} Ar	NSCL	October 2008	AES

Aim: probe shell structure in neutron-rich nuclei

Fast beam production of ^{38,40}S, ^{42,44,46}Ar

TF endstation: Segmented Ge Array (SeGA)

Angular correlations and g factors 38,40 S

Two surprises in the g factors of 38,40 S

^{38,40}S Interpretation: Shell model calculations

Prolate deformed ⁴⁰S: why is $g \neq Z/A$?

g th (proton)		g th (neutron)	oth	eexp	
orbital	spin	total	spin = total	gui	genp
0.225	0.051	0.276	-0.241	0.035	-0.01(6)

- spin contributions to g factor do not cancel
- $f_{7/2}$ neutrons still have a distinct contribution to $g(2^+)$
- few particles contribute to the collectivity
- understand quadrupole collectivity in terms of symmetries:
 - quasi SU(3) for v $f_{7/2} p_{3/2}$
 - pseudo SU(3) for $\pi d_{3/2} s_{1/2}$

Retamosa et al. PRC 55, 1266 (1997)

^{42,44,46}Ar measurements NSCL October 2008

Oxbash: *sdpf* space; *sdpf-NR* interaction protons in *sd* shell; neutrons in *pf* shell

Discrepancy between theory and experiment for the N=28 nucleus ^{46}Ar

Preliminary: DBLS from g factor measurement confirms experimental B(E2)

g factors for 2⁺ states in ^{42,44,46}Ar under analysis

H. Scheit *et al.*, Phys Rev Lett **77**, 3967 (1996)
J. Retamosa *et al.*, Phys Rev C **55**, 1266 (1997)
A. Gade *et al.*, Phys Rev C **68**, 014302 (2003)

^{58,60,62,(64)}Fe *g*-factor measurements

^{58,60,62}Fe transient field calibration

• The TF strength at high velocity for Z > 20 is uncertain

• Use ⁵⁸Fe to calibrate

At ANU remeasured *g* factors in ^{56,58}Fe relative to ⁵⁷Fe 5/2⁻

Inverse kinematics with 110 MeV ^{54,56,57,58}Fe beams

Stable Fe isotopes: spectra and angular correlations

g factors in the stable Fe isotopes (PRC, submitted)

Measurements on reaccelerated beams: Recoil in Vacuum

Nuclear structure near ¹³²Sn

RIV g factor measurements with ISOL-type beams

Clarion and Hyball at Holifield RIB Facility

HyBall 95 CsI detectors with photodiodes

CLARION 11 segmented clover Ge detectors

Perturbed azimuthal angular correlations

From attenuation coefficient G_k to g factor

Assume
$$G_k(t) = \alpha_k + (1 - \alpha_k) e^{-(t - t_0)/\tau_k}$$
 with $\tau_k = C_k/g^n$

Static model of the RIV interaction

Analyzing data with weaker beams

Preliminary: ¹³⁶Te

Summary and conclusions

- We need precise stable beam measurements with and for RIB work
- HVTF@NSCL: Analysis of ^{42,44,46}Ar and ^{58,62}Fe in progress

• ¹³⁶Te: RIV has been calibrated to ~ 30 ps

- g factor suggests weakly coupled p and n configurations

The future

HVTF: ³²Mg (?); *N*~40 Ti,Cr,Fe isotopes

RIV: Re accelerated beams – CARIBU; MSU, etc

<u>ANU</u> Michael East Anna Wilson Paul Davidson Tibor Kibedi Sanjay Chamoli

<u>Rutgers</u>

Noemie Koller Gerfried Kumbartzki

<u>MSU (2004)</u>

Andrew Davies Paul Mantica Alex Brown The β/NMR Group The Gamma Group Andreas Stolz A1900 Beam Physicists

Acknowledgments

<u>HRIBF</u>

Nick Stone Miro Danchev John Pavan Irena Stone Claire Timlin Jim Beene Cyrus Baktash Dave Radford Carrol Bingham Alfredo Gallindo-Uribarri Chang-Hong Yu Carl Gross

Participants in the HVTF runs @ NSCL Oct 08: Michael East, Paul Mantica, Heather Crawford, Georgi Georgiev, Radi Lozeva, Andrea Jungclaus, Kei Minamisono, Jill Pinter, Josh Stoker, Alexandra Gade, Dirk Weisshaar, Kris Starosta, Geoff Grinyer, Andrew Ratkiewicz, David Miller, Sean McDaniel, Travis Baugher, Phil Voss.

MSU: NSF support; HRIBF: DOE support ARC Discovery and RIEF schemes AES *et al*. Travel support: ANSTO AMRF Programme