Structure Beyond the Neutron Dripline Using Intermediate-Energy Knockout & Breakup

Collaboration LPC-CHARISSA-DEMON

H Al Falou, JL Lecouey, F Carstoiu, FM Marqués, NAO ...

Structure & Reactions : the beginnings were Ernest ...

"The Nobel Prize in <u>Chemistry</u> for this year (1908) has been awarded by the Royal Academy of Sciences to Ernest Rutherford, Professor of Physics at the Victoria University, Manchester (England), for his researches concerning the disintegration of elements and the chemistry of radioactive substances ... "

1871 (Nelson, NZ) – 1937 (UK)

"It was quite the most incredible event that ever happened to me in my life. It was almost as incredible as if you had fired a 15-inch shell at a piece of tissue paper and it came back and hit you ... " Structure Beyond the Neutron Dripline Using Intermediate-Energy Knockout & Breakup

Introduction

Experimental Approach

"Selection Rules"

Backgrounds

N=7 : ¹⁰Li & ⁹He [N=9 : ¹³Be]

Conclusions & Perspectives

See also Kondo-san ¹³Be, Joe Finck ²⁴O(2⁺)

The Light Neutron-Rich Nuclei ...

... driplines and beyond experimentally accessible, extreme test of models (shell model, shell model in continuum, "ab initio", cluster, etc)

LPC Programme : H Al Falou LPCC 07-03, G Normand LPCC 04-03, JL Lecouey LPCC 02-03

Strategy ...

"Fast" nucleon (proton) removal $\Rightarrow \Delta \ell_{(n)} = 0^*$

IFF proj. structure known \Rightarrow deduce structure of A-1 system (core⁻¹ \otimes valence nucleon)

 \rightarrow Proton removal (S_p~15 MeV) from very neutron-rich beams

⇒ systems beyond dripline – observe frag.+ n FSI

* *M Zinser et al., PRL* **75** (1995) 1719 *L Chen et al. PLB* **505** (2001) 21 *Issues : Reaction ↔ Structure …*

<u>Weakly bound</u> valence neutron

⇒ possible relaxation of $\Delta \ell_n = 0$ → frag. recoil induced by proton removal

 \rightarrow scattering of valence neutron

VALIDATE approach using ¹¹Be beam ($S_n = 0.5 \text{ MeV}$)

 In parallel explore <u>evolution of N=7 g.s. parity inversion</u>
⇒ test of structure models & input for for 3-body modelling of ¹⁰He, ¹¹Li

$N=7 1/2^+ - 1/2^-$ Level Inversion ...

Experimental Approach

Fast nucleon removal from projectile with known structure + inflight decay of unbound system

(Approx.) Selection Rules ...

(i) 1 & 2-proton knockout $\Rightarrow \Delta l_n = 0$ proj. valence neutron config. $C(^{11}Be, ^{10}Li)X, C(^{11}Be, ^{9}He)X \rightarrow VS_{1/2} [^{11}Be C^2S(_{VS_{1/2}}) \approx 0.8]$

 \rightarrow well adapted to probing <u>low-lying s-wave strength</u>

(ii) fragmentation (-xp,-xn) \Rightarrow valence neutron config. + others / population via neutron-decay of N+1 system $C(^{14}B,^{10}Li)X, C(^{14}B,^{9}He)X \rightarrow vs_{1/2} + vp_{1/2} + ...$

→ CAVEAT*: decay of <u>narrow low-lying resonances</u> in N+1,2,... systems

Note - E_d <u>lineshape dependent on initial state</u> (esp. for broad final states)

* See Kondo-san $^{14}Be^* \rightarrow ^{12}Be+n$

BACKGROUND: $C({}^{17}C, {}^{15}B+n)X$ – single-proton knockout

"background" ≡ non-resonant continuum ↔ event-mixed distribution *

* ie., <u>uncorrelated</u> fragment-neutron pairs

JL Lecouey et al, nucl-ex/0802.4225 JL Lecouey, Few-Body Systems 34 (2004) 21

BACKGROUND : $C(^{14}B, ^{6}He+n)X - fragmentation$

"background" ≡ sequential neutron decay/evaporation from PLF + continuum

JL Lecouey, LPCC T 02-03.

Scattering/Virtual s-wave States

 $a_s = 0 \text{ fm no FSI}$; $a_s << 0 \text{ fm stronger FSI}$

Note - final lineshape $E_d(frag+n)$ depends on projectile

¹⁰Li : Low-Lying Level Scheme *

* "Partial" – also d(⁹Li,p); new LAND-GSI etc ------ s-virtual $E_r \sim \hbar^2 / 2a_s$

¹⁰Li : C(¹¹Be,⁹Li+n) @ 35 MeV/nucleon [-1p]

uncorrelated / event-mixed distribution *

* normalised for comparison at high E_d

¹⁰Li : C(¹¹Be,⁹Li+n) @ 35 MeV/nucleon [-1p]

¹⁰Li: $C({}^{14}B, {}^{9}Li+n) @ 35 MeV/nucleon [-2p,-2n]$

s-wave $[a_s << -14 \text{ fm}] + p$ -wave $[E_r = 0.51, \Gamma_0 = 0.50 \text{ MeV}] + background$

[Decay of ¹¹Li* & ¹²Li ... ?]

⁹He : Low-Lying Level Scheme *

* Also IAS expts (see Wolfi's talk); GANIL-MUST (d,p) under analysis; LAND-GSI

⁹He : C(¹¹Be,⁸He+n) @ 35 MeV/nucleon [-1p]

uncorrelated distribution/event mixed distribution

⁹He : C(¹¹Be,⁸He+n) @ 35 MeV/nucleon [-1p]

s-wave $[a_s = -3 \sim 0 \text{ fm } (3\sigma)] + \text{non-resonant continuum}$

⁹He : C(¹⁴B,⁸He+n) @ 35 MeV/nucleon [-3p,-2n]

uncorrelated distribution/event mixed distribution

⁹He : C(¹⁴B,⁸He+n) @ 35 MeV/nucleon [-3p,-2n]

[Decay of ¹⁰He & ¹¹He ... ?]

Conclusions & Perspectives

• ¹¹Be proton knockout suggests that selection rule valid

⇒ spectroscopy possible beyond the dripline using knockout from RNB ...

 $→ {}^{10}Li: low-lying s-wave strength (a_{s} = -14\pm 2 fm)$ $low-lying p-wave resonance (E_{r} = 0.5 MeV)$ $\Rightarrow N= 7 inversion confirmed$ $[but ... <math>\pi p_{3/2} \otimes vs_{1/2}, vp_{1/2}, vd_{5/2}$] → ${}^{9}He: low-lying s-wave strength (a_{s} \approx 0 fm) + E_{x} \approx 1.2 MeV$ (l>0) ⇒ N= 7 inversion ... ?? [FSI << ${}^{9}Li+n$? *]

• EXPT: higher resolution & statistics improved neutron detection & I_B

* confirmed by recent LAND-GSI work

Conclusions & Perspectives

• validity of s-wave virtual states ??

```
eg., deformed <sup>9</sup>Li & <sup>12</sup>Be cores
```

- [MCAS ??]
- realistic <u>structure</u> + <u>reaction modelling</u> needed (lineshape and cross section) including non-resonant continuum + other backgrounds ...

- first step estimate frag. recoil effects
- valence neutron scattering (approx. free neutron scattering ?)

Mea Culpa* ...

... the true antipode of Queenstown

* on behalf of WNC

¹⁰Li,⁹He : Be(¹¹Be,⁹Li+n) & Be(¹¹Be,⁸He+n)

MSU L Chen et al., Phys. Lett. B (2001)

LAND-GSI: Aksyutina et al. PLB (2008)

⁹He : d(⁸He,p) @ 25 MeV/nucleon

MS Golovkov et al., PRC76 (2007)