Direct Reaction Studies at RIKEN RI* Beam Factory

* radioactive isotope

Tohru Motobayashi (RIKEN Nishina Center for Accelerator-Based Science)

RI beam by fragmentation (+ fission)

fast RI beams ($c/v \sim 0.3$) direct reaction studies fate of magic number behavior of proton / neutron Coulomb dissociation – inverse capture gamma RI beams at RIBF new facility ($c/v \sim 0.6$)

Nov. 08

Fast RI beams RIBF: Accelerator Complex in RIKEN Nishina Center

High(est)-intensity fast beams of unstable nuclei @ RIKENGANIL
MSUE = 50-100 MeV/nucleon (1990-): light nucleiGANIL
MSU
GSI

E=200-300 MeV/nucleon (RIBF new facility) wide-range of nuclei., more intense beams

Nov. 08

Disadvantages of fast RI beams

poor (intensity) efficient setups 0.1 - 10⁵ pps good reactions (large σ) dirty (emittance) γ-ray measurement $2\text{cm}\phi$, 1~2 deg. Spread invariant mass beam measurement less supported (data) systematics e.g. optical potential theoretical support thick targets high energy forward focusing simple mechanism Nov. 08 Kernz08

High(est)-intensity fast beams of unstable nuclei @ RIKENGANIL
MSUE = 50-100 MeV/nucleon (1990-): light nucleiGANIL
GSI

inverse kinematics, large energy- / momentum-spreads very far from stability => new methods for DR studies development of equipment

E=200-300 MeV/nucleon (RIBF new facility) wide-range of nuclei., more intense beams

Nov. 08

DR studies with particle measurements (unbound states) Coulomb dissociation, nuclear breakup H-burning, n-halo structure, cluster states Kondo (Friday)

E=200-300 MeV/nucleon (RIBF new facility) wide-range of nuclei., more intense beams

Nov. 08

Nuclear excitation is negligible or well controlled in certain cases (*I*=1 and *I*=2 with *Z*>10)

$^{32}Mg(p,p')$ with high statistics \leftarrow DALI2, liq H₂ target, ... nuclear excitation **RIPS**

 \rightarrow yy, yyy / angular distribution

→AOI*

2⁺ of ¹⁶C

- p-n decoupling ?

sensing p/n motion by various methods

Coulomb-nuclear interference Lifetime recoil shadow, Doppler (p,p') (Pb,Pb')

 $M_{\rm n}$ v.s. $M_{\rm p}$

(Q moments of neighboring nuclei)

Nov. 08

Coulomb dissociation Inverse radiative capture

astrophysical (p, γ) reactions ⁷Be(p, γ)⁸B - pp chain (solar fusion) ²³Al(p, γ)²³Mg, ²⁶Si(p, γ)²⁷P - rp structure of loosely bound nuclei ¹¹Li, ¹¹Be, ...

Kernz08

spectroscopy of unstable nuclei / nucl. astrophysics

spectroscopy of unstable nuclei / nucl. astrophysics

Nov. 08

optical potential for ⁸B breakup analysis

RIBF: Accelerator Complex in RIKEN Nishina Center

NN effective interaction

Transparent nucl. Interior single scattering p-elastic => density

large V_{στ}/V₀ spin-isospin modes GT, spin dipole ...

→ Sakai

A/Q

⁸⁶Kr/¹³⁶Xe/²³⁸U 1pµA

Estimated beam intensity at BigRIPS

⁸⁶Kr/¹³⁶Xe/²³⁸U 1pµA

PAC-approved studies

Summary

direct reaction with fast RI beam -- nuclear structure
intense RI beams (← fragmentation (fission))
γ ray measurement / invariant mass measurement
choice of reactions (with large cross section)
development of experimental devices
 γ-array, spectrometers, …

reaction theory

shell closure – collectivity, p/n motions, astro. process RIBF new facility

more intense (higher energy) beams \rightarrow more exotic energy dependence – E2/M1, spin-isospin modes, ...

more (theory) efforts

reaction mechanism with poor experimental information sophisticated (microscopic) theoretical treatments more theoretical control for parameters

e.g. optical pot. (imaginary part)

theory suitable for 200-300 MeV/nucleon (e.g. eikonal CDCC)