

Kr and Se isotopes near N=Z

(incl. new bonus material)

Andreas Görgen

Service de Physique Nucléaire CEA Saclay

Andreas Görgen

KERNZ08

1.-5.12.2008

1

Coulomb excitation of radioactive beams from SPIRAL / GANIL

Andreas Görgen

Multi-step Coulomb excitation of ^{74,76}Kr on ²⁰⁸Pb

- \succ safe energy \Rightarrow purely electromagnetic excitation
- > transitional matrix element \Rightarrow B(E2)
- \succ diagonal matrix element \Rightarrow Q_s

lrfu

saclay

- \succ reorientation effect \Rightarrow sensitive to nuclear shape
- > ~20 matrix elements involved in multi-step excitation
- \blacktriangleright de-excitation γ -ray yields $\Rightarrow d\sigma/d\theta$
- χ² minimization of matrix elements to reproduce experimental γ-ray yields (code GOSIA)
- spectroscopic data (lifetimes, branching ratios) as additional data points for χ² fit
- lifetimes: B(E2) independent of Q_s
 RDDS measurement at Legnaro for ^{74,76}Kr
 A. Görgen et al. Eur. Phys. J. A 26, 153 (2005)

Experimental results and comparison with theory

First reorientation measurement with radioactive beam

> quantitative understanding of shape coexistence and configuration mixing

Andreas Görgen

KERNZ08

1.-5.12.2008

Experimental results and comparison with theory

- First reorientation measurement with radioactive beam
- > quantitative understanding of shape coexistence and configuration mixing

Andreas Görgen

Shape coexistence in light Selenium isotopes lrfu ⁷⁰Se $\begin{array}{l} \pi(g_{9/2})^2 \\ \otimes \nu(g_{9/2})^2 \end{array}$ 30 (42) -10 Se (42) ⁷⁰Se -11 0 (40) (^-12 -13 -13 -14 saclay $J^{(I)} (\hbar^2 M eV^{-I})$ 3 38 36 34 34 -15 -16 (28) 10 -17 -0.2 -0.4 0.0 $\beta_2^{0.2}$ 0.4 0.6 12+ 0.2 0.4 0.8 1.2 1.4 0.6 1.6 14* $\hbar\omega$ (MeV) 1492 12+similar $J^{(1)}$ in ⁶⁸Se and ⁷⁰Se: 1373 (10^+) ➢ ⁷⁰Se oblate near ground state 101 6+ 1733 prolate at higher spin 81 1567 1449 627 61 1630 1163 1768 2220 640 951 2433 2* 1088 ⁶⁸Se 853 S.M. Fischer et al., G. Rainovski et al., PRC 67, 064318 (2003) J.Phys.G 28, 2617 (2002) Andreas Görgen **KERNZ08** 1.-5.12.2008 9

Coulomb excitation of ⁷⁰Se at CERN / ISOLDE

Shape evolution in the light Selenium isotopes

Development of deformation for N=28 below ⁴⁸Ca

Andreas Görgen

KERNZ08

1.-5.12.2008

RDDS lifetimes in ⁶²Fe et ⁶⁴Fe

œ

- saclay
- beam: ²³⁸U at 1547 MeV
- \succ target: ⁶⁴Ni, 1.5 mg/cm²
- degrader: ^{nat}Mg, 5 mg/cm²
- ➢ 6 distances 40 − 750 µm
- new technique to measure picosecond lifetimes in neutron-rich nuclei
- many more neutron-rich nuclides produced
- many more lifetimes to be measured

Andreas Görgen

Conclusions and Perspectives

- \succ shape coexistence and evolution in Kr and Se near N=Z
- onset of deformation and shape coexistence near N=28
- > nuclear shapes very sensitive to underlying nuclear structure
- \succ quadrupole moments and transition rates as benchmarks for theory
- importance of triaxiality for GCM calculations
- complementary techniques
 - Iow-energy Coulomb excitation with RIB
 - RDDS lifetime measurements (fusion evaporation, multi-nucleon transfer)

AGATA + EXOGAM + VAMOS

Collaboration

lrfu	Coulomb excitation ⁷⁴ Kr and ⁷⁶ Kr					
	Saclay:	E. Clément, A. Görgen, W. Korten,				
\sim		E. Bouchez, A. Chatillon, A. Hürstel,				
E		Y. Le Coz, A. Obertelli, Ch. Theisen,				
		J.N. Wilson, M. Zielińska				
saclay	Liverpool:	C. Andreoiu, P.A. Butler, RD. Herzberg,				
		D.G. Jenkins, G.D. Jones				
	GSI:	F. Becker, J. Gerl				
	GANIL:	J. M. Casandjian, G. de France				
	Surrey:	W. N. Catford, C.N. Timis				
	Warsaw:	T. Czosnyka, J. Iwanicki,				
		P. Napiorkowski				
	NBI:	G. Sletten				

Lifetime measurement ⁷⁴Kr and ⁷⁶Kr

Saclay:	A. Görgen, E. Clément, A. Chatillon,
	W. Korten, Y. Le Coz, Ch. Theisen
IKP Köln:	A. Dewald, B. Melon, O. Möller, K.O. Zell
Legnaro:	N. Marginean, R. Menegazzo,
-	D. Tonev, C.A. Ur

Lifetime measurement ⁷⁰Se and ⁷²Se

Saclay:	J. Ljungvall, A. Görgen, C. Dossat, W. Korten,
	A. Obertelli, Ch. Theisen, M. Zielińska
IKP Köln:	A. Dewald, B. Melon, T. Pissulla, K.O. Zell
Legnaro:	R. Menegazzo, R. Orlandi, R.P. Singh,
	C.A. Ur, J.J. Valiente-Dobón
Oslo:	S. Siem
Warsaw:	J. Srebrny

Coulomb excitation ⁴⁴Ar

Saclay:	M. Zielińska, A. Görgen, E. Clément,
	W. Korten, A. Bürger, C. Dossat,
	J. Ljungvall, A. Obertelli, Ch. Theisen
Surrey:	W. N. Catford
Warsaw:	J. Iwanicki, P. J. Napiorkowski,
	D. Pietak, J. Srebrny, K. Wrzosek
NBI:	G. Sletten

Lifetime measurement ⁶²Fe and ⁶⁴Fe

Saclay:	J. Ljungvall, A. Obertelli,
	A. Görgen, W. Korten
GANIL:	E. Clément, G. de France, A. Navin,
	M. Rejmund, S. Aradhana
CEA/DIF	L. Gaudefroy
IKP Köln:	A. Dewald, M. Hackstein,
	T. Pissulla, W. Rother, K.O. Zell
Legnaro:	D. Mengoni, F. Recchia, E. Sahin,
	J.J. Valiente-Dobón
Valencia:	A. Gadea
Oslo:	A. Bürger
Warsaw:	M. Zielińska

Theory:

CEA/DIF:	M. Girod,	JP.	Delaroche