

Spectroscopy of unstable nuclei using proton inelastic scattering with in-beam *y*-ray spectroscopy technique

AOI, Nori* (=MOTOBAYASHI, Tohru) RIKEN Nishina Center

at intermediate energies (v/c ~ 0.3) RIPS (+ BigRIPS at RIBF new facility) at RIKEN

Exotic nuclear structure

- β -decay experiments
- Total reaction cross section
- Secondary Reaction
 - Coulomb Excitation
 - (p,p')
 - Nucleon transfer reaction
 - Fragmentation / knockout
 - ...
 - γ-spectroscopy
 - Missing mass
 - Invariant mass

- β -decay experiments
- Total reaction cross section
- Secondary Reaction
 - Coulomb Excitation
 - (p,p')
 - Nucleon transfer reaction
 - Fragmentation / knockout
 - ...
 - γ-spectroscopy
 - Missing mass
 - Invariant mass

- β -decay experiments
- Total reaction cross section
- Secondary Reaction
 - Coulomb Excitation
 - (p,p')
 - Nucleon transfer reaction
 - Fragmentation / knockou ⁵⁸Ti, ⁶⁰Cr, ⁶²Cr(p,p')
 - ...

intermediate-energy (p,p')

³²Mg(p,p') 4⁺, level scheme

Ti, ⁶⁰Cr, ⁶²Cr(p,p') new 2+, 4+, deformation

- γ-spectroscopy
- Missing mass
- Invariant mass

inelastic scattering to 2⁺ state

 $E_x(2^+)$ Collectivity $E_x(4^+) / E_x(2^+)$ Type of collectivity $\delta_{p,p'}(=\beta R)$ Collectivity (proton+neutron)

c.f. Coulomb excitation: collectivity (proton)

(p,p') vs. Coulomb excitation (Coulex) at intermediate E

• High sensitivity

$Y_{2+} \propto \frac{d}{A} \cdot \sigma$	<i>d</i> : areal density of the targe <i>A</i> : target mass number	
Coulex	<i>o</i> (2+)	: huge
(p,p')	<i>o</i> (2+)	: large
d/A	: large	
Y ₂₊ (p,p') 3	> Y ₂₊ (Coulex)	

- (p,p'): less selective than Coulex excitation to higher excited states
 - \rightarrow Variety of states (4⁺, 2₂^{+,} 3⁻,...) to be investigated
- Proton collectivity (Coulex) $\leftarrow \rightarrow$ Neutron collectivity (p,p')
- Angular distribution (scattering angle)
 (p,p') → / angular momentum transfer Coulex → multipolarity

³²Mg(p,p') at 46.5 MeV/nucleon 4⁺ state level scheme

³²Mg *inelastic scattering*

T. Motobayashi et al., PLB346, 9(95)

S. Takeuchi et al.

³²Mg *inelastic scattering*

T. Motobayashi et al., PLB346, 9(95)

S. Takeuchi et al.

Angular distributions of scattered ³²Mg

 \rightarrow Coupled channel calculations

S. Takeuchi et al.

Coupled channel calculations

Calculation CODE :

ECIS97 (J.Raynal, unpublished. e.g. NOTES ON ECIS94) Optical potential parameters : KD02 : A.J.Koning, J.P.Delaroche, Nucl. Phys. A713(2003)231

S. Takeuchi et al.

Coupled channel calculations

the 2321–keV state: $J^{\pi} = 4^+$

$$E(4^+)/E(2^+)$$
 or $R_{4/2}$

vibrator rigid rotor $2.0 < R_{4/2} = 2.6 < 3.3$

transitional ? γ-soft ?

 \rightarrow Theoretical study

S. Takeuchi et al.

 \rightarrow 2nd 2⁺ search?

\mathcal{F} of higher states \leftarrow new constraints

Structure of neutron-rich Ti and Cr* isotopes studied by (p,p') scattering populating their 2⁺ and 4⁺ states

 $E_{x}(2^{+})$ $E_{x}(4^{+})$ $\sigma(0^{+} \rightarrow 2^{+}) \rightarrow \delta(=\beta_{2}R)$

* PRL accepted

Anomalous deformation in neutron-rich nuclei

$E_x(2^+)$ in *pf*-shell nuclei

$E_x(2^+)$ in *pf*-shell nuclei

RIKEN Nishina Center --- K540 Ring Cyclotron

Heavy ion Accelerator (Ring Cyclotron, *K*=540 RRC) Since 1986

E = 63~135 AMeV

RIKEN Projectile-fragment Separator (RIPS) Since 1990

Experimental Setup

RIPS(RIKEN projectile-fragment separator)

T.Kubo *et al.*, NIMB **70** (1992) 309.

Experiment - y-ray detection array -

DALI2 (Detector Array for Low Intensity radiation)

Detector size	: 4 x 8 x 16 cm ³
Number of Det.	: 160
Angular resolution	: ~ 8 degrees (ave.)
Energy resolution	: 10% @ 1MeV (v/c = 0.3)
Efficiency	: 24% @ 1MeV (v/c = 0.3)

Ref. S.Takeuchi et al., RIKEN Accel. Prog. Rep. 36(2003)148

Experiment - Particle identification device -

TOMBEE (TOf Mass analyzer for exotic Beam Experiment)

TOF	: Plastic scintillators (0.3, 0.5mm)
	$\delta TOF/TOF \sim 140 \text{ps}/40 \text{ns} = 0.4\%$
ΔΕ	: Si detectors (320mm)
	$\delta \Delta E / \Delta E \sim 1.6\%$
Ε	: Nal(Tl) detectors (6x6)
	$\delta F/F \sim 1.3\%$

$Z \propto \sqrt{\Delta E} / TOF$	
$A \propto E \times (TOF)^2$	

γ -ray spectrum for ⁵⁸Ti(*p*,*p*')

Systematics of $E_x(2^+)$ in Ti

$E_{x}(2^{+})$ in *pf*-shell nuclei

γ -ray spectra for ⁶⁰Cr(*p*,*p*') and ⁶²Cr(*p*,*p*')

•
$$\delta_{\rho\rho'}(\beta_{\rho\rho'}) \leftarrow (\mathsf{DWBA}) \leftarrow \sigma_{\rho,\rho'}(2^+)$$

⁵⁰Cr:
$$\delta_{\rho\rho'} = 1.12(16)$$
 ($\beta_{\rho\rho'} = 0.23$ (3))
⁵²Cr: $\delta_{\rho\rho'} = 1.36(14)$ ($\beta_{\rho\rho'} = 0.27$ (3))

 Optical potential Global optical potential

 R.L. Varner *et al.*, Phys. Rep. **201** (1991) 57.
 A.J. Koning *et al.*, Nucl. Phys. A **713** (2003) 231.
 F.D. Becchetti *et al.*, Phys. Rev. **182** (1969) 1190.

 Elastic proton scattering of ^{50,52,54}Cr

 E.Fabrici *et al.*, Phys. Rev. C **21** (1980) 844.

 Difference from the optical potential → ~10%
 Vibrational model

Systematics of $E_x(2^+)$, $\delta (\delta_{c_1} \delta_{pp'})$

• $E_x(2^+)$ decreases $\sim N = 40$.

• Large
$$\delta_{p,p'}$$
 in ^{60,62}Cr

Systematics of $E_x(2^+)$, $\delta (\delta_{c_1} \delta_{pp'})$

E_x(2⁺) decreases ~N = 40.
Large $\delta_{p,p'}$ in ^{60,62}Cr
SM-pf 60,62Cr 60,6

Large collectivity in the Cr isotopes. $v g_{9/2} \& v d_{5/2}$ contribution is large.

Systematics of $E_x(2^+)$, $E_x(4^+)$, $R_{4/2}$

• $R_{4/2} = E_x(4^+) / E_x(2^+)$ ${}^{60}Cr : 2.3$ Vibrational ${}^{62}Cr : 2.7$ Rotational

> Large static deformation in ⁶²Cr

[N. Marginean *et al.*, PLB **633** (2006) 696.] [S. Zhu *et al.*, PRC **74** (2006) 064315.]

Large deformation at the edge of shell

Large deformation at the edge of shell

 γ detector

Day One Experiment

from the next week!!

N. Aoi^a, <u>S. Takeuchi^a(³²Mg),</u> H. Suzuki^c(⁵⁸Ti),

E. Takeshita^b (^{60,62}Cr),

S. Ota^e, H. Baba^f, S. Bishop^a, T. Fukui^e, Y. Hashimoto^d, H.J. Ong^c, E. Ideguchi^f, K. Ieki^b, N. Imai^g, H. Iwasaki^c, S. Kanno^b, Y. Kondo^d, T. Kubo^a, K. Kurita^b, K. Kusaka^a, T. Minemura^g, T. Motobayashi^a, T. Nakabayashi^d, T. Nakamura^d, T. Nakao^c, M. Niikura^f, T. Okumura^d, T.K. Ohnishi^c, H. Sakurai^c, S. Shimoura^f, R. Sugo^b, D. Suzuki^c, M. Suzuki^c, M.Tamaki^f, K. Tanaka^a, Y. Togano^b and K. Yamada^a

a RIKEN, b Rikkyo, c Univ. of Tokyo, d: TITech, e: Kyoto, f: CNS, g: KEK