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The increasing need for nuclear data far from the valley of stability requires information on
nuclei which cannot be accessed experimentally or for which almost no experimental data is known.
Consequently, the use of microscopic approaches to predict properties of such poorly known nuclei
is necessary as a first step to improve the quality of nuclear data evaluations. Within this context,
large scale mean field calculations from proton to neutron drip-lines have been performed using the
Hartree-Fock-Bogoliubov method based on the D1S Gogny nucleon-nucleon effective interaction.
Thousands of nuclei have been studied under the axial symmetry hypothesis and several properties
are now available for the nuclear scientific community on an Internet web site for every individual
nucleus. However, this extensive study has evidenced a severe deficiency of the D1S interaction
with respect to the description of the nuclear masses. The present work consists in showing how
updated interactions can solve the D1S deficiency while keeping its good properties. In particular,
it is shown that the latest interaction is also well suited for an accurate determination of nuclear
masses. The first mass table based on Gogny HFB calculations including an explicit and coherent
account of all the quadrupole correlation energies is presented.

I. INTRODUCTION

Thanks to the experimental progress achieved in the
last decade (as well as to future facilities), more and
more nuclei or nuclear states of unusual structure (ex-
otic nuclei, large deformations, isomers, high spins, etc
...) have been (or are going to be) produced. The study
of their properties represents a very promising research
domain for nuclear physics as well as a challenging test
for nuclear structure theories which have mainly been
designed to described stable nuclei or at least located
not too far from the valley of stability. An accurate de-
scription of more exotic nuclei properties implies that
nuclear structure theories must be able to treat correctly
the isospin degree of freedom. Such a quest for a theory
having a good predictive power has been a very active
field of modern nuclear structure theory [1–6] for the last
ten years to test and improve the quality of the nuclear
structure predictions, and eventually provide the nuclear
physics community with systematic predictions based on
sound physical bases rather than on extrapolations of
phenomenological approaches [6–8].

In ref. [5], large scale Hartree-Fock-Bogoliubov (HFB)
axial mean field calculations based on the D1S [9] Gogny
interaction have shown that the D1S interaction does not
provide good agreement between theoretical and experi-
mental masses. In particular, a systematic drift has been
observed for the differences between experimental and
theoretical binding energies for almost all isotopic chains.
In fact, the D1S Gogny force underbinds the heavier iso-
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topes as compared to the lighter ones, and this deficiency
remains even when beyond mean field dynamical effects
are accounted for [10]. On the contrary this interaction
displays a rather good predictive power when looking
at different nuclear structure properties such as those of
the lowest 2+ levels [11], the giant resonances [12], the
backbending of moments of inertia [13–15], the charge
and transition charge densities [16], the shape coexis-
tences [17, 18] or shape isomers [19, 20], the superde-
formed bands [21], as well as fission fragment proper-
ties [22].

Our goal in this work is thus to determine a new Gogny
force parameterization which enables to describe simulta-
neously nuclear structure properties and masses. In other
words, we want to improve the nuclear binding energies
predictions without degrading the aforementionned good
properties already obtained with the D1S interaction.

II. THE STARTING POINT

A first step towards our goal has been performed intro-
ducing the D1N interaction [23]. The main improvement
compared to D1S was to improve the fit of the neutron
matter which turned out to be the main reason for the
drift of the binding energy differences δB = Bexp − Bth

(as function of the neutron number for an isotopic chain)
obtained with the D1S parameterization. The result-
ing δB values, as illustrated in Fig. 1(a), do not display
any systematical drift but still show an oscillating struc-
ture with minima located around magic neutron num-
bers. Because the HFB method is based on an Har-
monic Oscillator (HO) basis involving a finite number
N of major shells, it is well established that absolute en-
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ergy predictions are sensitive to the adopted number of
shell N . Therefore, as in [10], it is necessary to estimate

FIG. 1: Difference δB between the theoretical and experi-
mental [24] nuclear binding energies as functions of the neu-
tron number N for different isotopic chains using the D1N
interaction. Upper pannel : Axially symmetric HFB calcula-
tions performed with finite Harmonic Oscillator bases D1N.
Lower panel : Full calculations including infinite basis and
quadrupole energy corrections as detailled in the text.

what would be the obtained binding energies Bth(∞) if
HFB calculations were performed with an infinite num-
ber of shells. To estimate this value, we use the pro-
cedure described in [10, 25] to deduce what we call the
infinite basis correction δE∞(N) corresponding to the
difference between the binding energy Bth(N) of a nu-
cleus obtained using N major shells and Bth(∞). On
top of these infinite basis corrections, we also have to
account for beyond-mean-field quadrupole correlations
obtained by solving the collective Schrödinger equation
with the 5-dimensional Bohr Hamiltonian [11, 21]. As
expected [2], it can be observed in Fig. 1(b) that includ-
ing these quadrupole energy corrections δEquad washes
out the arches of Fig. 1(a). Quantitatively speaking,
the overall root mean square (rms) deviation obtained
once all the required corrections are included is of the
order of 1.5 MeV which is certainly not comparable to
the level of accuracy reached by the most sophisticated
mass formulae reaching values of the order of 600 to
800 keV [26–30]. Nevertheless, the D1N parameteriza-
tion is already a step towards our final goal. Indeed, the
systematic drift of the binding energies has been sup-
pressed, and, on top of that, the good properties of D1S
remain approximately unchanged. For instance, we com-
pare in Fig. 2 the pairing properties of D1S and D1N
for the Sn isotopes using the odd-even mass difference
∆(3)B = B (A) − 1

2 [B (A + 1) + B (A− 1)] for odd-A
values, which provides a good measure of the amount
of pairing along isotopic chains [31]. As can be observed,
both parameterizations provide almost equivalent values.
Similar conclusions can be drawn when looking at other
properties [23]. A nice illustration is given the properties
of lowest 2+ levels. Using the same beyond-mean-field
methods that have been used in [11], we show in Fig. 3 a
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FIG. 2: ∆(3)B as a function of the nucleon number A in Sn
isotopes. Experimental data correspond to the full triangles,
D1S to the empty circles and D1N to the full squares.

scatter plot comparing experimental and theoretical ex-
citation energies both for D1S and D1N. In both pannels,
the points follow the diagonal line fairly well showing that
there is no deficiency of the D1N interaction compared
to what was obtained with D1S. Performing similar anal-
ysis as in [11] by examining the statistical properties of
the quantity RE = log(Eth/Eexp), we obtain an average
value R̄E = 0.12 with D1S which is slightly better than
R̄E = 0.19 obtained using D1N and a dispersion which
confirms what appears rather well on the scatter plot, i.e.
the D1S values (σR = 0.33) are significantly less scattered
than the D1N values (σR = 1.10).
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FIG. 3: Scatter plot of the experimental versus theoretical
2+ excitation energies for the 519 even-even nuclei for which
experimental data is available.

III. THE METHODOLOGY TO IMPROVE THE
MASS PREDICTIONS

While the D1N force is found suitable to estimate
most of the nuclear structure properties, the accuracy
of its mass predictions remains unsatisfactory with re-
spect with modern mass formulas reaching a rms devia-
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tion of about 0.7 MeV on all the 2149 measured masses
[24]. For this reason, a new Gogny force has been ob-
tained by fitting its parameters to virtually all nuclear
mass data, keeping as additional constraint the need to
provide a satisfactory description of all the nuclear prop-
erties mentioned in Sect. II.

In the previous section, we have seen two correction
terms had to be determined to produce a theoretical
nuclear binding energy that can be compared with ex-
perimental masses. If the binding energy Bth(N) ob-
tained using N major shells can be determined within
a reasonable computation time, this is not the case for
both δE∞(N) and δEquad. Therefore, in order to avoid
untractable calculations, the adjustement of the Gogny
force parameters to reproduce at best the experimen-
tal masses, is not performed by systematically calculat-
ing these correction terms. Instead, the computational
scheme illustrated by Fig. 4 is followed. The construc-
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FIG. 4: Computational scheme followed to adjust the Gogny
force parameters on nuclear masses, radii as well as selected
nuclear matter properties. Among the 14 parameters of the
Gogny force, 2 are kept unchanged and 12 parameters are
adjusted during the first two steps of the procedure. Iterations
back to the initial step occur when the green criteria are not
fullfilled. The indicated computation times are given for a
single CPU.

tion of the new interaction follows several steps. The
first step consists in determining some of the Gogny force
parameters reproducing at best selected nuclear matter
properties known to play a key role with respect to the
good properties of the D1S/D1N Gogny force. The re-
maining parameters are then automatically fitted on a
subset of 650 measured nuclear masses. To determine
the rms with this reduced set, it is necessary to include
the two corrections δE∞(N) and δEquad. To avoid per-
forming the aforementionned time consuming calculation
of these corrections, we assume that δE∞(N and δEquad,
are not modified during the first three steps of our proce-
dure and we accordingly take for these correction terms
the values that have been tabulated with a previous force.
At the begining of our fit, these corrections correspond to
the values obtained with D1N. When we consider the rms
obtained using this set of 650 masses to be acceptable, we
then extend our calculation to the 2149 measured masses
compiled in [24] (Note that we also consider the quality
of the force with respect to the rms deviation on the mea-
sured radii as well as nuclear matter properties). If these
new constraints are fullfilled, the δE∞, and then δEquad

corrections are re-estimated with the new force to obtain
one unique coherent calculation of the nuclear masses.
This procedure is re-iterated until the rms deviation on
nuclear masses and radii as well as nuclear matter prop-
erties are found satisfactory.

IV. RESULTS

Using the previously described methodology, we have
obtained a new Gogny force, called D1M. This force pre-
dicts nuclear masses with an rms deviation of 0.798 MeV
with respects to all the 2149 measured masses. The rms
and mean deviations are summarized in Table I. The
mass comparison is shown in Fig. 5. As can be seen, no
deviation exceeds 3.2 MeV. The accuracy reached with
D1M is comparable to the best available nuclear mass
formulas and by far better than the one obtained with
the D1N or D1S forces. It should be noted that in the
present calculation, no Wigner correction has been in-
cluded. If we only consider the 2000 nuclei away from
the |N − Z| ≤ 2 line, the rms deviation amounts to
0.771 MeV. However, like in all Skyrme-HFB mass for-
mulas, the theoretical masses in the N ' 126 region
remain significantly overbound. The low effective mass
(m∗/m = 0.75) or the missing particle-vibration coupling
effects can be held responsible for this trend.
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FIG. 5: Differences between measured [24] and theoretical
masses as a function of N .

In Fig. 6, we show the neutron matter equation of
state obtained with our new D1M parameterization. As
canbe observed, the results are in close agreement, both
with the D1N predictions and the realistic calculation of
Friedman-Phandharipande (FP) [33] considered here as
the reference curve. Such an agreement is an important
constraint since, as explained in Ref. [23], the approxi-
mate description of the neutron matter equation of state
by the D1S Gogny force was the main reason for the
systematic drift observed for the differences between ex-
perimental and theoretical binding energies for almost all
isotopic chains with D1S Gogny force.
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TABLE I: Rms (σ) and mean (ε̄) deviations between data
[24] and our predictions. The first line refers to all the 2149
measured masses M , the second to the 2000 masses for nuclei
with |N − Z| > 2, the third to the 1988 measured neutron
separation energies Sn and the fourth to 1868 measured beta-
decay energies Qβ . The fifth line finally shows the comparison
with the 707 measured charge radii [32]

σ ε̄

2149 M [MeV] 0.798 0.126

2000 M|N−Z|>2 [MeV] 0.771 0.155

1988 Sn [MeV] 0.538 0.004

1868 Qβ [MeV] 0.657 0.015

707 Rch [fm] 0.031 -0.008
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FIG. 6: Energy per neutron (MeV) as a function of density
(fm−3) of neutron matter for D1N (dashed line), the New
interaction (solid line) and for the calculations of Ref. [33]
(FP; symbols)

Figure 7 compares the D1M potential energy per parti-
cle for symmetric nuclear matter in each of the four two-
body spin-isospin (S, T ) channels with the Brueckner-
Hartree-Fock calculation obtained with realistic two- and
three-nucleon forces [34]. A fair agreement between our
new force and the realistic calculations can be seen in
all states, except in the even-singlet channel which is
constrained by the pairing. In this respect, the pairing
properties of our new interaction are relatively similar to
those of D1S and D1N. In contrast to D1N predictions,
we obtain the correct sign for the isovector splitting of
the effective mass, i.e a higher neutron than proton effec-
tive mass m∗

n > m∗
p at all asymmetries. Such an isovector

splitting of the effective mass is consistent with measure-
ments of isovector giant resonances [35], and has been
confirmed in several many-body calculations with realis-
tic forces [36].

Our new D1M force has also been tested with respect
to various additional observables, such as the kinetic mo-
ment of inertia in Er or Pu nuclei, the giant monopole,
dipole and quadrupole energy in 208Pb derived within
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FIG. 7: Potential energy per particle in each (S, T ) channel
as a function of the density for symmetric infinite nuclear
matter. The full symbols (connected with the dashed lines)
correspond to Brueckner-Hartree-Fock calculations [34] and
the solid lines to D1M.

the ramdom-phase approximation, and the energy of the
lowest 2+ levels for the 519 even-even nuclei for which
experimental data is available. For all these observables,
the new force gives results very similar to those obtained

FIG. 8: Comparisons between experimental kinetic moments
of inertia with the cranking HFB predicitions based on D1S,
D1N and D1M forces for 164Er (upper panel) and 244Pu (lower
panel). The moments of inertia are plotted as a function of
the rotational frequency.

with D1S. An illustration is given in Fig. 8 where the
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164Er and 244Pu kinetic moment of inertias, known to
be rather well reproduced in superfluid nuclei [37], are
plotted using the D1S, D1N and D1M parameterizations.
As can be seen, the experimentally observed backbend-
ing occurs with the three parameterizations. For 244Pu,
the D1N interaction gives predictions in closer agreement
with experimental data.
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FIG. 9: Differences between a) Our New force and HFB-17
masses [38] and b) Our New force and FRDM masses [39].

On the basis of the new D1M force, we have con-
structed a complete mass table going from one drip line
to the other over the range Z and N ≥ 8 and Z ≤ 110.

In Fig.9, we compare these predictions with those of the
”best-fit” Skyrme-HFB model (HFB-17) [38] and with
those of the FRDM [39]. In both cases we see that de-
spite the close similarity in the quality of the fits to the
data, large differences emerge, especially for heavy nuclei
when the neutron-drip line is approached. The triaxi-
ally deformed calculation also enable us to estimate the
energy correction related to the nuclear triaxial deforma-
tion. The Z ' 62 and N ' 74 region is found to be
the most deformed one with a triaxial correction energy
reaching about 0.4 MeV.

V. CONCLUSIONS

We have described the first Gogny-HFB nuclear mass
model. The rms deviation with respect to essentially
all the available mass data has been reduced from typi-
cally a few MeV with previous interactions to less than
0.8 MeV. Furthemore, for the first time, the mass for-
mula takes an explicit and self-consistent account of all
the quadrupole correlations affecting the binding energy.
The quadrupole corrections are estimated microscopi-
cally on the basis of a 5-dimensional Bohr Hamiltonian.
Given also the constraint imposed on the Gogny force
by microscopic calculations of neutron matter and sym-
metric nuclear matter, this new model is particularly
well adapted to astrophysical applications such as the
r-process of nucleosynthesis.
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