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I. INTRODUCTION

An ultimate aim of scattering theory is to
probe the structure of nuclei. Data may be
taken with electrons, mesons, nucleons, and
nuclei as probes, with form factors, cross sec-
tions, spin observables being data. There are
diverse reactions one might consider (elas-
tic and inelastic scattering and particle ex-
change reactions are some). But almost all
theories rely upon elastic scattering infor-
mation and require, as input, specifics of a
model for the nuclear structure. However,
an important requirement in nuclear theory
is the phenomenological construction of an
interaction Hamiltonian for nucleon-nucleus
and/or nucleus-nucleus systems, that is re-
alistic for both bound states and scatter-
ing (including resonances). To do so is im-
portant for many reasons; theoretical consis-
tency, for evaluation of EM transitions, ra-
diative captures, etc., as required input for
cluster-like, three-body calculations of core
nucleus-N-N, core-core-N, and core-core-core
systems, of systems that are important for
current and future experimental researches
using radioactive ion beams (RIBs), in nu-
clear data evaluation for applications such as
of radiation safety, nuclear medicine, nuclear
astrophysics, and nuclear weapon steward-
ship. Such remains a ‘holy grail’ and approx-
imate methods are still the practical means

for studies of nuclear structure and reactions.

The real question then is what structure
model to use and what reaction theory is
appropriate — or what are the ‘horses for
courses’?

Consider first what (light mass) nuclear
spectra are in general. At low excitations,
there are discrete states while at excitations
above any giant resonances, there is a contin-
uum of states. Those aspects of a target ef-
fect the choice of scattering theory to be used.
For low incident energies, discrete states of
the target should play significant roles. This
means one needs to solve a coupled-channels
problem. The MCAS approach [1] was de-
signed to do that. For higher incident ener-
gies, however, the continuum is the impor-
tant feature of the target and there are so
many states of the target to effect a response,
that an average scheme may be relevant. The
g-folding optical potential model (for elastic
scattering) and the DWA for inelastic pro-
cesses works very well in those cases [2].

With low energy situations, the MCAS
method gives spectra of compound nuclei
formed by the amalgamation of two sepa-
rate nuclear clusters. Sub-threshold (bound
states) if they exist, as well as resonance
states (for energies above the two cluster
threshold) can be deduced using it. Those
resonances can be narrow or broad. Some
of the first type can be identified as bound
states embedded in the continuum (BSEC)
while broad resonances are characteristic of
single particle potential resonances. It has
been noted in the literature that
”The BSEC phenomena can lead to a change

in the level density close to the continuum

threshold, so such structures will be highly

important in the astrophysical capture and

knockout reactions contributing to nuclear

synthesis in neutron rich stellar environ-

ments”.

For scattering at energies above a few tens
of MeV per nucleon, the number of target
states to be included in a full MCAS cal-
culation makes evaluation with that scheme
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no longer feasible. However, when the ener-
gies coincide with a region of high density
of states in the target, an alternative ap-
proach that has proved very successful is to
use g-folding optical potentials in an analy-
sis of elastic scattering observables, and to
use the relative motion wave functions they
produce as the distorted waves in a DWA
analysis of inelastic scattering data. The un-
derlying two-nucleon (NN) g-matrices in the
generation of the optical potentials are com-
plex, medium and energy dependent and are
also used as the transition operator effect-
ing the inelastic transitions. It is important
to note that the g-folding optical potentials
are very non-local and that the actual non-
locality must be used in evaluations and not
approximated by a local equivalent form in
these studies. Often, and still to this day,
phenomenological, local optical model poten-
tials are used to determine the distorted wave
functions of relative motion with the argu-
ment that a quality fit to the elastic scatter-
ing data justifies use of the associated relative
motion wave functions. But such fits only re-
quire specification of a suitable set of phase
shifts which are determined from the asymp-
totic properties of the solutions. The cred-
ibility of distorted wave functions through
the volume of the nucleus cannot be assured
thereby. Indeed, it has long been known that
those wave functions are too large through
the nuclear volume due to inadequate repre-
sentation of nonlocal effects.

In the next two sections, we present ele-
ments of the MCAS and g-folding methods
along with some results of applications to il-
lustrate the flexibility and use of them. Then
in Section IV we employ both methods in a
study of the spectra of the isotopes of carbon
ranging between the drip lines. Another ap-
plication of the MCAS method, namely to de-
fine a spectrum of Λ hypernuclei, is reported
in Section V, after which brief concluding re-
marks are given.

II. MCAS AND NUCLEON-NUCLEUS

SYSTEMS AT LOW AND NEGATIVE

ENERGIES

In brief, the MCAS approach is based
upon using sturmian functions (Weinberg
states) as a basis set to expand the chosen
interaction potentials. Each interaction ma-
trix then has the form of a sum of separable
interactions. The analytic properties of the S

matrix from a separable Schrödinger poten-
tial gives the means by which a full algebraic
solution of the multichannel scattering prob-
lem can be realized. All details of the MCAS
theory have been published [1] and so only
salient features are repeated herein. Consider
a coupled-channel system for each allowed
scattering spin-parity Jπ. With the MCAS
method, one solves the Lippmann-Schwinger
(LS) integral equations in momentum space,

Tcc′(p, q;E) = Vcc′(p, q) +

2µ

~2

[

open
∑

c′′=1

∫ ∞

0

Vcc′′(p, x) Tc′′c′(x, q;E)

k2
c′′ − x2 + iǫ

x2 dx

−
closed
∑

c′′=1

∫ ∞

0

Vcc′′(p, x) Tc′′c′(x, q;E)

h2
c′′ + x2

x2 dx

]

,

where the index c denotes the quantum
numbers that identify each channel uniquely.
Such requires specification of potential ma-

trices V
(Jπ)
cc′ (p, q). The open and closed chan-

nels have channel wave numbers kc and hc for
E > ǫc and E < ǫc respectively. µ is the re-
duced mass. Solutions of these LS equations
are sought using expansions of the potential
matrix elements in (finite) sums of energy-
independent separable terms,

Vcc′(p, q) ∼
N

∑

n=1

χcn(p) η−1
n χc′n(q).

The key to the method is the choice of the
expansion form factors χcn(q). Optimal ones
have been found from the sturmian functions
that are determined from the actual (coordi-
nate space) model interaction Vcc′(r) initially
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chosen to describe the coupled-channel prob-
lem.

The link between the multichannel T -
and the scattering (S-) matrices involves a
Green’s function matrix,

(G0)nn′ =
2µ

~2

[

open
∑

c=1

∫ ∞

0

χcn(x) χcn′(x)

k2
c − x2 + iǫ

x2 dx

−
closed
∑

c=1

∫ ∞

0

χcn(x) χcn′(x)

h2
c + x2

x2 dx

]

,

where (η)nn′ is a diagonal eigenvalue matrix
(ηn δnn′). The bound states of the compound
system are defined by the zeros of the matrix
determinant for energy E < 0. They link to
the zeros of {|η − G0|} when all channels in
the above are closed.

Elastic scattering observables follow from
the on-shell properties (k1 = k′

1 = k) of the
scattering matrices. For the elastic scattering
of neutrons (spin 1

2
) from spin zero targets

c = c′ = 1, and S11 ≡ SJ
ℓ = S

(±)
ℓ are

S11 = 1 − iπ
2µk

~2

M
∑

nn′=1

χ1n(k)

× 1√
ηn

[

(

1 − η
− 1

2 G0η
− 1

2

)−1
]

nn′

1√
ηn′

χ1n′(k).

Diagonalization of the complex-symmetric
matrix,

N
∑

n′=1

ηn
− 1

2 [G0]nn′ ηn′

− 1

2 Q̃n′r = ζrQ̃nr ,

establishes the evolution of the complex
eigenvalues ζr with respect to energy. Res-
onant behaviour occurs when an eigenvalue
ζr crosses the unit circle in the Gauss plane.
The energy at which such occurs is the res-
onance centroid. It is evident that the elas-
tic channel S matrix has a pole structure at
the corresponding energy where one of these
eigenvalues approach unity, since

[

(

1 − η
− 1

2 G0η
− 1

2

)−1
]

nn′

=
N

∑

r=1

Q̃nr
1

1 − ζr

Q̃n′r .

While the required starting matrix of po-
tentials within the MCAS method may be
constructed from any model of nuclear struc-
ture, to date we have used just simple col-
lective models to define those potentials with
deformation taken to second order. Also, to
date the only the first few (3 to 5) low lying
states of the target nucleus have been used
to form the channel couplings.

III. g-FOLDING OPTICAL POTEN-

TIALS AND THE DWA

To predict the differential cross sections
for both elastic and inelastic scattering from
the Carbon isotopes we use the microscopic
g-folding model of the Melbourne group [2].
That model begins with the NN g matri-
ces for the interaction of a nucleon with infi-
nite nuclear matter. Starting with the Bonn-
B free NN interaction [3], those g matri-
ces are solutions of BBG (Brueckner-Bethe-
Goldstone) equations in infinite nuclear mat-
ter, viz.

g (q′,q; K) = V (q′,q)

+

∫

V (q′,k′) [P] g (k′,q;K) dk′,

where P =
Q (k′,K; kf)

[E (k,K) − E (k′,K)]
,

in which both Pauli blocking of states and an
average background mean field in which the
nucleons move, leading to g matrices that are
complex, energy dependent, medium (den-
sity) dependent, and nonlocal in that the so-
lutions for different partial waves reflect ten-
sorial character. Such can be, and have been,
used directly in momentum space evaluations
of NA (elastic) scattering [4], but we prefer
to analyze data using a coordinate space rep-
resentation. For this, and to make use of
the program suite DWBA98 [5], the g ma-
trices must be mapped, via a double Bessel
transform to equivalent forms in coordinate
space. Folding those effective interactions,
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geff(0, 1) with the density-matrices of the tar-
get then yields a complex, nonlocal, density-
dependent, nucleon-nucleus (NA) optical po-
tential from which the elastic scattering ob-
servables are obtained. Full details of this
prescription can be found in the review arti-
cle [2].

Inelastic nucleon scattering is calculated
within the Distorted-Wave-Approximation
(DWA) using the effective coordinate space
g-matrices (geff(0, 1)) as the transition opera-
tor. Again full details are to be found in the
review [2]. The transition amplitude is given
by

T
MfMiν

′ν

Jf Ji
(θ) =

〈

χ
(−)
ν′

∣

∣

∣

〈

ΨJfMf

∣

∣AgeffA01

{
∣

∣χ(+)
ν

〉

|ΨJiMi
〉
}

,

where χ(±) are distorted wave functions for
an incident and an emergent nucleon respec-
tively. Those wave functions are generated
from g-folding optical potentials. Coordi-
nates 0 and 1 are those of the projectile and
a chosen struck bound state nucleon, respec-
tively. By using a co-factor expansion of the
target wave function one obtains

T
MfMiν

′ν

JfJi
(θ) =

∑

αk ,mi

∑

JM

(−1)j1−m1

√

2Jf + 1
〈j2 m2 j1 − m1|Jf Mf 〉

〈Ji Mi J M | Jf Mf 〉
〈

Jf

∥

∥

∥

∥

[

a†α2
× ãα1

]J
∥

∥

∥

∥

Ji

〉

〈

χ
(−)
ν′

∣

∣

∣
〈ϕα2

|Ageff A01

{
∣

∣

∣
χ(+)

ν (0)
〉

|ϕα1
(1)〉

}

for an angular momentum transfer J , and
α denotes the set of single-particle quan-
tum numbers {n, l, j, mτ}, where τ is the nu-
cleon isospin. Thus the scattering ampli-
tudes are weighted sums of two nucleon am-
plitudes; the weights being transition one-
body-density-matrix-elements, OBDME,

S
JiJf

α1α2I =
〈

Jf

∥

∥

∥

[

a†
α2

× ãα1

]J
∥

∥

∥
Ji

〉

,

and which are to be defined from whatever
model of nuclear structure is used. With

the g-folding potentials defining the distorted
waves, and the geff being the transition oper-
ator, in the DWA, the problem reduces to one
of specifying the structure of the target. For
this study we have used two different models.
The first is the Skyrme-Hartree-Fock (SHF)
model of Brown [6]. With that model and
using the SKX interaction, ground state den-
sities and single nucleon wave functions have
been defined. However, as the SHF model
cannot provide information on the spectrum
of the target, we have also used a (0 + 2)~ω

shell model (SM) with which we have speci-
fied the transition densities necessary in cal-
culation of inelastic scattering. Note that
for 10,12,14C, this SM is complete while for
16C and 18C the space is truncated, exclud-
ing the 0g1d2s shell required for a complete
evaluation of 1p-1h, 2~ω excitations from the
1s0d shell. Calculations have been made us-
ing the OXBASH shell model program [7]
with the WBP interaction of Warburton and
Brown [8] suitably corrected for center-of-
mass effects. With that model the ground
state wave functions for 10C, 12C and 14C are

∣

∣

10C
〉

= 92.4% |0~ω〉 + 7.6% |2~ω〉
∣

∣

12C
〉

= 87.0% |0~ω〉 + 13.0% |2~ω〉
∣

∣

14C
〉

= 84.9% |0~ω〉 + 15.1% |2~ω〉 ,

while the states in 16C and 18C are purely
2~ω in character.

Table I contains the SM predictions of the
energies, and the B(E2) values for excita-
tion, of the 2+ states in the even mass C iso-
topes. The polarization charge required to
match theory to measured B(E2) values are
also given. Most data were taken from ref. [9]
and they are supplemented with data on 16C
from refs. [10, 11] and on 18C from ref. [12].
The agreement between the results of the SM
calculations with data is quite good. Note
that the energy of the 2+ state in 14C is much
larger than the other isotopes. However, the
2+ assignment for the 1.62 MeV state in 18C
is only tentative [9]. It is notable that the
polarization charges required to match the
observed values of the B(E2), save for the

4



TABLE I: Shell model B(E2; 0+ → 2+) values.

Nucleus Ex (exp) B(E2) B(E2)exp epol

MeV e2fm4 e2fm4 e
12C 4.29 (4.43) 17.90 40 (3) 0.248
14C 6.33 (7.01) 15.90 19 (3) 0.069

7.14 2.90
16C 2.33 (1.77) 1.68 3.1 (6) 0.053

2.39 2.63
18C 2.05 (1.59) 4.40 4.3 (1.0) 0

case of 12C are quite small. In view of past
and recent studies and the correlations found
therein [2, 13], such gives confidence that use
of these structures later will predict proton
cross sections for inelastic excitation of those
2+ states that will be found experimentally.

IV. STUDIES OF THE ISOTOPES OF

CARBON USING NUCLEON-CARBON

INTERACTIONS

There has been much speculation con-
cerning the possible melting or changing of
the shell structure of nuclei as one moves
away from the valley of stability. With light
mass nuclei there are indications of possible
changes in the magic numbers. Around 32Mg
such lead an “island of inversion” [14]. In
structure calculations, such variations are in-
fluenced by three-body forces [15], as well
as by changes in the monopole term of the
Hamiltonian. The latter has been shown to
cause changes to the single particle energies
as one approaches the drip lines. So, in the-
ory, there are reasons to expect new magic
numbers in nuclei off of the stability line [16].

Were there to be such an extreme change
in the shell structure in nuclei as that sys-
tem becomes neutron or proton rich away
from stability, means by which to identify
that is required. For even mass nuclei, one
way is to consider the energy of the first 2+

state systematically about a suspected closed
shell [17]. We suggest that, besides expected

signatures in the spectrum, the cross sections
from inelastic scattering of the (radioactive)
isotopes or isotones, as radioactive ion beams
(RIBs), around the closed shell nucleus from
hydrogen targets will reveal a definite varia-
tion with mass.

The even mass Carbon isotopes provide a
set of nuclei with which one may observe a
trend from the proton (10C) to the neutron
(18C) drip lines. They also span a known neu-
tron shell closure 14C as evident from their
low lying spectra. In the spectra of 10,12,16,18C
the first excited state has spin-parity 2+ and
excitation energies of 3.35, 4.43, 1.77, and
1.62 MeV respectively. In contrast, in the
spectrum of 14C, the first excited state, with
spin-parity 1− is associated with a cluster of
states in the range 6 to 7 MeV. Spin-parities
of those states are in sequence 1−, 0+, 3−, 0−

and then 2+. Thus these nuclei are an excel-
lent set with which to show any signature of
shell closure with scattering data. Of course
there are other properties one can consider
to note shell closures, for example the B(E2)
value [18].

Herein, we look to scattering to investi-
gate a means by which shell closures and
crossing may be identified. In particular,
we consider proton scattering at intermedi-
ate energies (E) which, by inverse kinemat-
ics, equates to RIB scattering (E per nucleon)
from hydrogen targets. At these energies,
the nucleon-nucleon (NN) potential is dom-
inated by the Vpn component interaction [2]
and so proton scattering primarily, though
not exclusively, probes the neutron density in
a nucleus. By symmetry, neutron scattering
primarily is a probe of the proton distribution
in the nucleus.

As noted, the neutron shell closure in the
Carbon isotopes occurs at 14C, with a closed
0p-shell. There is closure of the 0p 3

2

shell in
12C, but that is not a purely closed sub-shell
as there are significant 2p-2h terms in the
wave function. We consider inelastic scat-
tering leading to the first 2+ state in each
isotope, as there may be a significant change
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in the cross section shape at the shell closure
consistent with the change in the spectrum.
Changes are expected to occur in both the
elastic and the inelastic scattering around the
14C results. However, to establish such re-
quires a scattering theory that is predictive,
i.e. not subject to parameter adjustment.

A. Using MCAS and the spectra of

odd-mass isotopes

The first application of the MCAS method
was to find the spectrum of 13C from calcula-
tions of the n+12C system. Details are given
in Ref. [1]. We simply note here that, treating
the problem as a three target state coupling
one, using a collective rotor model specifica-
tion of the interaction matrix of potentials,
accounting for the Pauli blocking of the oc-
cupied nucleon orbits in the target, and us-
ing the resonance finding methodology, gave
a very credible spectrum for 13C with one to
one matching of all known states to ∼ 10
MeV excitation.

More recently [19], the spectrum of 15C
treating it from the n+14C system was de-
termined. The result is shown on the left of
Fig. 1. The energy scale is that for a neu-
tron on 14C and the states of 14C shown were
used in the MCAS evaluations. An interac-
tion matrix was found that gave the spec-
trum of 15C labelled by ‘MCAS’ which is
compared with the known spectrum (‘EXP.’).
The states identified by twice their spin and
their parity match very well especially given
that the calculated width of the 3

2

+
resonance

is indicated by the dashed lines is quite large.
That nuclear interaction then was used to

study the p+14O system given that such is
the mirror isospin of n+14C. Only a Coulomb
interaction was added. The resulting spec-
trum made 15F particle unstable, as it is,
with a 1

2

+
resonant ground state. Low en-

ergy scattering experiments of 14O ions from
hydrogen targets gave cross sections as shown
in the right side of Fig. 1. The cross section
displayed by the solid curve is that obtained

from the MCAS evaluation. It is of note that
the theory also expects resonance behaviour
at slightly higher incident energies than used
to date.
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o

FIG. 1: (Color online.) The low excitation spec-

trum of 15C relative to the the n+14C threshold

and a cross section from 14O ions scattering from

hydrogen.
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FIG. 2: (Color online.) The low excitation spec-

trum of 19C. The data are compared with the

results of a 2~ω SM calculation (SM) and with a

spectrum found using the MCAS approach. The

dashed line indicates the n+18C threshold, while

the numeral identifying each state is 2J .

In Fig. 2 the currently known states [20]
in the spectrum of 19C are compared with
the low excitation spectra for this nucleus
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determined from a SM calculation and with
that found from the coupled-channel solu-
tions (MCAS) based upon a two-state, col-
lective, model for the n+18C system. The
prolate deformation required was quite im-
portant to get the three low lying states. The
variation of the spectrum found by varying
the deformation parameter β2 is displayed
in Fig. 3. The excitation energies of the
states all vary regularly as the deformation
increases, either for prolate (positive β2) or
oblate (negative β2) character. Two states
stand out as being dominantly the coupling
of a single neutron to the ground state of 18C.
They are denoted by the filled circles (low-
est set) being the ground state of 19C formed
(when β2 = 0) with a 1s 1

2

–neutron, and

by the filled triangles being a state formed
(when β2 = 0) with a 5

2

+
–neutron. These

states vary with deformation noticeably more
slowly than the others. That is so especially
for the ground state reflecting that the prime

admixing component (the
[

0d 5

2

⊗ 2+
]
∣

∣

∣

1

2

) lies

above 4 MeV in the unperturbed spectrum.
But it is important to note that the deforma-
tion coupling mixes all basic states of given
spin-parity to form the resultant ones in the
spectrum of 19C. From this plot it is also
clear that our coupled-channel calculations
require a strong deformation ∼ 0.4 to obtain
three states of the appropriate spin-parity ly-
ing below the neutron-18C threshold and still
retaining a one-neutron separation energy of
∼ 0.53 MeV.

The spectrum of 17C has been studied in
the same way and similar results found to
those for 19C.

B. Using g-folding optical potentials

The differential cross sections for the elas-
tic scattering of 100 MeV protons from 10−18C
using the shell occupancies and single parti-
cle wave functions obtained by using the shell
model, are displayed in Fig. 4. For the shell
model, an oscillator parameter of 1.65 fm

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
β

2

-1

0

1

2

3

4

E
(19

C
) 

 (
M

eV
)

1

3

5

5

3

7

9

FIG. 3: (Color online.) The low excitation spec-

trum of 19C calculated with variation of the de-

formation β2.

was used to specify the single-particle wave
functions. There is a steady increase in the
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10
4

dσ
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Ω
 (

m
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)
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14
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FIG. 4: (Color online.) The differential cross

sections for the elastic scattering of 100 MeV

protons from the even isotopes of Carbon when

their structure was obtained from the shell

model.

cross section with angle indicating an increas-
ing rms radius with mass. Beyond the first
diffraction minimum the cross sections from
10C and 12C are significantly reduced com-
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pared to the other isotopes. That indicates
the lack of 0p-shell strength in the density, as
14,16,18C all have a closed 0p neutron shell.

Consider next, the inelastic scattering to
the first 2+ state in each nucleus. Using the
shell model structures to define the transi-
tion OBDME, the differential cross sections
for the inelastic scattering of 100 MeV pro-
tons to the 2+

1 state in each nucleus are dis-
played in Fig. 5. Here, the differential cross
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10
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Ω
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14
C

16
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FIG. 5: (Color online.) The differential cross

sections for the inelastic scattering of 100 MeV

protons to the 2+
1 states in 10−18C, as obtained

from the shell model calculations.

sections from 10,12C and 16,18C while compa-
rable in magnitude are most distinctly dif-
ferent in shape. That indicates the change
in the density with the introduction of the
sd-shell neutrons in 16,18C. Most striking is
the reduction in strength of the differential
cross section from scattering to the 2+ state
in 14C. This reduction is an order of magni-
tude at 0◦ decreasing to a factor of 6 at 20◦.
As the neutron shell is closed in 14C, for this
nucleus, there is very little neutron strength
in the transition density. That translates into
a reduction in the inelastic cross section com-
pared to those from excitations of the 2+

states in the other isotopes.
In a recent paper, Satou et al. [20] report

data from the inelastic scattering of 17,19C
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FIG. 6: (Color online.) The differential cross

sections for the inelastic scattering of 70 MeV

protons from 19C leading to the state at 1.46

MeV excitation.

ions from a hydrogen target. Differential
cross sections from the scattering of 70A MeV
ions leading to states at excitation energies
of 2.2 and 3.05 MeV in 17C and to the 1.46
MeV excited state in 19C were presented. For
illustration only the data from the excita-
tion of the 1.46 MeV state in 19C are con-
sidered herein. They are shown in Fig. 6.
There are three evaluations with which these
data are compared. Those depicted by the
solid and long-dashed curves were made as-
suming that the ground state had a spin-
parity of 1

2

+
. Both results are dominated by

L = 2 angular momentum transfer. The solid
(dashed) curve is the result found using oscil-
lator (Woods-Saxon) functions for the single-
nucleon bound-state wave functions that re-
flect a neutron skin (halo-like) property to
the density. The result depicted by the dot-
dashed curve, was found using the oscilla-
tor wave functions but on assuming that the
ground state had a spin-parity of 5

2

+
. These

results indicate that the ground state of 19C
has indeed the 1

2

+
assignment as has been

suggested [20], but that it may have a neu-
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tron skin rather than a neutron halo.

V. MCAS AND HYPERNUCLEI
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FIG. 7: (Color online.) The spectra of 13
Λ C and

of 9
ΛBe evaluated using MCAS compared with

known states.

Recently the MCAS scheme has been used
to study the spectra of hypernuclei. Since
the Λ0 particle is a baryon with spin 1

2
and

a rest mass 1115.6 MeV/c2 (c/f the neutron
rest mass is 940 MeV/c2), MCAS evalua-
tions of Λ-Nucleus systems is very similar to
those of neutron-nucleus systems but with-
out any problem of the Pauli principle block-
ing states. Hypernuclear systems are of some
interest in that fine splittings in the hypernu-
clear spectra link closely to characteristics in
the Λ-nucleon interaction. Also, since the hy-
peron is not restricted by the Pauli principle
in the nuclear medium, it can act as a ’tag’
to study systems that have excess neutrons,
e.g. 48Ca. With the current MCAS, one can
analyse both bound and resonant spectra for
(light mass) λ-hypernuclei, to support and in-
terpret experimental investigations.

To illustrate, using nucleon-nucleus inter-
actions scaled as has been done in past stud-
ies, viz. the central strengths by 2

3
, the spin-

orbit strengths by an order of magnitude, and

the radii 15 - 20 % smaller, the spectra of 13
Λ C

and 9
ΛBe were found that are compared with

known states of those systems in Fig. 7.

VI. CONCLUSIONS

The spectra of light mass nuclei show
bound and resonant states that are dis-
tinct. Likewise low energy cross sections
from the collision of nucleons with a (light
mass) nucleus shows sharp, as well as broad,
resonances lying upon a smooth, energy-
dependent background. Those resonances
correlate to states in the discrete spectrum
of the target. To interpret spectra and such
low energy scattering data, the MCAS ap-
proach has proved a most effective means
to find solutions of the coupled Lippmann-
Schwinger equations that define the prob-
lems. With isospin symmetry assumed, the
method gives spectra for nuclei that are at
or beyond the proton drip line. A new appli-
cation of MCAS, to specify the spectra of Λ
hypernuclei was shown as well.

For higher energy nucleon-nucleus scatter-
ing data, the g-folding and DWA approaches
are pertinent. Using them, we have found
that the cross sections from inelastic scatter-
ing may be used to identify shell closure. For
the nucleus in which that shell closure oc-
curs, the transition density can be markedly
reduced from similar transition cross sec-
tions in neighbouring isotopes. Beyond the
shell closure the change in the density ef-
fected by the introduction of higher-order
shells is also significant. These two points
together are indicative of the major shell clo-
sure. While the transition may be investi-
gated with zero-momentum transfer observ-
ables, such as B(El) values, one may only
ascertain the change in the density with data
from scattering experiments that probe the
density at finite momentum transfer values.
But experimental investigation of inelastic
scattering must also take elastic scattering
data to interpret correctly the underlying op-
tical potentials involved [21].
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