Structure Beyond the Neutron Dripline Using Intermediate-Energy Knockout and Breakup

Nigel Orr

LPC-Caen, ENSICAEN, IN2P3-CNRS et Université de Caen, 14050 Caen cedex 04, France

The light nuclei provide a fertile testing ground for our understanding of nuclear structure. From an experimental point of view, this is the only region for which nuclei lying at and beyond the neutron dripline may be accessed at present. Theoretically a range of models, including various shell model approaches and ab initio type models, are now capable of furnishing realistic predictions. In addition, the structure of unbound systems, such as ¹⁰Li and ¹³Be, are key to constructing three-body descriptions of two-neutron halo and related nuclei.

One of the tools particularly well adapted to probing the structure of nuclei far from stability is that of "knockout" or few-nucleon breakup of a high-energy radioactive beam. In the present contribution, the application of the technique to intermediate-energy beams to probe the low-lying level structures of ⁹He, ¹⁰Li and ¹³Be will be described.

As will be seen, the evidence acquired indicates that the well-known ¹¹Be ground-state parity inversion also occurs in the more exotic N=7 isotones ¹⁰Li and ⁹He. In the case of N=9, the $vs_{1/2} - vd_{5/2}$ ground-state inversion observed in neighbouring isotones ¹⁵C and ¹⁴B appears to persists in ¹³Be.