Breakup reactions of ¹⁴Be

Y. Kondo, ¹ T. Nakamura, ² Y. Satou, ² N. Aoi, ¹ N. Endo, ³ N. Fukuda, ¹ T. Gomi, ¹ Y. Hashimoto,² M. Ishihara,¹ S. Kawai,⁴ M. Kitayama,³ T. Kobayashi,³ Y. Matsuda,³ N. Matsui,² T. Motobayashi,¹ T. Nakabayashi,² T. Okumura,² H. J. Ong,⁵ T. K. Onishi,⁵ H. Otsu,¹ H. Sakurai,¹ S. Shimoura,⁶ M. Shinohara,² T. Sugimoto, S. Takeuchi, M. Tamaki, Y. Togano, and Y. Yanagisawa T. Sugimoto, S. Takeuchi, M. Tamaki, Y. Togano, and Y. Yanagisawa Y. Yanagisawa T. Sugimoto, Y. Takeuchi, M. Tamaki, S. Takeuchi, M. Tamaki, M. Tama ¹RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan ²Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro, Tokyo 152-8551, Japan ³Department of Physics, Tohoku University, Katahira 2-1-1, Aoba, Sendai, Miyagi 980-8577, Japan ⁴Department of Physics, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima, Tokyo 171-8501, Japan ⁵Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan ⁶Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, Hirosawa 2-1, Wako, Saitama 351-0198, Japan

Unbound states of the very neutron-rich nuclei 14 Be and 13 Be are investigated via the breakup reactions of 14 Be on a proton target. The neutron drip-line nucleus 14 Be is known to have two neutron halo structure. No bound excited states of 14 Be have been observed below its neutron decay threshold (S_{2n} =1.26 MeV [1]). The study of its unbound states is thus essential to clarify its nuclear structure. As for the unbound nucleus 13 Be, low-lying states are not clarified because experimental studies are not consistent with each other. Thus, experimental study for 13 Be is strongly desired. The knowledge of low-lying states of 13 Be is also important to understand the structure of the three-body binding system 14 Be. To study these neutron-rich nuclei, we performed the invariant-mass spectroscopy via the proton-induced breakup reaction of 14 Be at 69 MeV/nucleon in inverse kinematics. In the breakup of 14 Be by a proton target, inelastic scattering and one-neutron removal reaction mainly occur. These reactions are useful to investigate the unbound states of 14 Be and 13 Be, respectively. The experiment was carried out at RIKEN Nishina Center using the RIPS beam line. The data analysis and experimental results will be presented.

^[1] G. Audi et al.: Nucl. Phys. A658, 313 (1999).