Narrowing of the neutron sd-pf shell gap in ²⁹Na^{*}

A. M. Hurst¹, C. Y. Wu¹, J. A. Becker¹, and M. A. Stoyer¹, for the TIGRESS collaboration ¹Lawrence Livermore National Laboratory, Livermore, California 94551, USA

The wave-function composition for the low-lying states in ²⁹Na was explored by measuring their electromagnetic properties using the Coulomb-excitation technique. A beam of ²⁹Na⁵⁺ ions, postaccelerated to 70 MeV using ISAC-II at TRIUMF, bombarded a ¹¹⁰Pd target with a rate of up to 600 particles per second. Six segmented clover detectors of the TIGRESS γ -ray spectrometer were used to detect deexcitation γ rays in coincidence with scattered or recoiling charged particles in the segmented silicon detector, BAMBINO. A reduced transition matrix element $|\langle \frac{5}{21}^+ || E2 || \frac{3}{2} \frac{+}{gs} \rangle| = 0.237(21)$ eb was derived for ²⁹Na from the measured γ -ray yields for both projectile and target, shown in Fig. 1. This first-time measured value is consistent with the most recent Monte Carlo shell-model calculation (MCSM) of Utsuno et al., predicted to be 0.232 eb [1]. This is suggestive of a strongly-mixed first-excited state comprising a 30 ~ 40 % admixture of 2p-2h configurations in the wave function, and also provides evidence for the narrowing of the *sd-pf* shell gap from ~ 6 MeV for stable nuclei to ~ 3 MeV for ²⁹Na.

This result can also be interpreted at the phenomenological level. Within the framework of the rotational model and assuming a prolate deformation, the transition quadrupole moment, $Q_t = 0.524(46) \ eb$, is deduced from the measured transition matrix element for ²⁹Na. This value also bears good agreement with the above MCSM calculation, $Q_t = 0.513 \ eb$ [1]; a calculation utilising an effective interaction based on a shell-model space incorporating the full sd space and the two lower orbits of the pf space, with the inclusion of the cross-shell mixing terms in the effective Hamiltonian. Contrasting behaviour in the static and dynamic-nuclear properties of ²⁹Na, arising from differences in the underlying single-particle configurations of the ground and excited states, may explain the difference between the present measurement and that of an earlier experimental result using β -NMR spectroscopy, $Q_0 = 0.430(15) \ eb$ [2]. This intrinsic quadrupole moment, derived from the ground-state spectroscopic quadrupole moment, $0.086(3) \ eb$, also compares well with the MCSM calculation, $Q_0 = 0.455 \ eb$.

FIG. 1: γ -ray spectrum for ¹¹⁰Pd(²⁹Na,²⁹Na^{*}) at $E_{\text{lab}}(^{29}\text{Na}) = 70$ MeV with a beam intensity of up to ~ 600 pps; the particle angular coverage was between $20.1^{\circ} - 49.4^{\circ}$.

- [1] Y. Utsuno et al., Phys. Rev. C 70, 044307 (2004).
- [2] M. Keim *et al.*, Eur. Phys. J. A 8, 31 (2000).

^{*}This work was supported by the DOE, LLNL Contract DE-AC52-07NA27344, the NSF, the NSERC of Canada, and the STFC of the UK. TRIUMF is funded by the NRC of Canada.