Narrowing of the neutron sd-pf shell gap in 29Na*

A. M. Hurst1, C. Y. Wu1, J. A. Becker1, and M. A. Stoyer1, for the TIGRESS collaboration

1Lawrence Livermore National Laboratory, Livermore, California 94551, USA

The wave-function composition for the low-lying states in 29Na was explored by measuring their electromagnetic properties using the Coulomb-excitation technique. A beam of 29Na$^{5+}$ ions, postaccelerated to 70 MeV using ISAC-II at TRIUMF, bombarded a 110Pd target with a rate of up to 600 particles per second. Six segmented clover detectors of the TIGRESS γ-ray spectrometer were used to detect deexcitation γ rays in coincidence with scattered or recoiling charged particles in the segmented silicon detector, BAMBINO. A reduced transition matrix element $|\langle \frac{5}{2}^+ || E2 || \frac{3}{2}^+ \rangle| = 0.237(21)$ eb was derived for 29Na from the measured γ-ray yields for both projectile and target, shown in Fig. 1. This first-time measured value is consistent with the most recent Monte Carlo shell-model calculation (MCSM) of Utsuno et al., predicted to be 0.232 eb [1]. This is suggestive of a strongly-mixed first-excited state comprising a $30 \sim 40$% admixture of 2p-2h configurations in the wave function, and also provides evidence for the narrowing of the sd-pf shell gap from ~ 6 MeV for stable nuclei to ~ 3 MeV for 29Na.

This result can also be interpreted at the phenomenological level. Within the framework of the rotational model and assuming a prolate deformation, the transition quadrupole moment, $Q_1 = 0.524(46)$ eb, is deduced from the measured transition matrix element for 29Na. This value also bears good agreement with the above MCSM calculation, $Q_1 = 0.513$ eb [1]; a calculation utilising an effective interaction based on a shell-model space incorporating the full sd space and the two lower orbits of the pf space, with the inclusion of the cross-shell mixing terms in the effective Hamiltonian. Contrasting behaviour in the static and dynamic-nuclear properties of 29Na, arising from differences in the underlying single-particle configurations of the ground and excited states, may explain the difference between the present measurement and that of an earlier experimental result using β-NMR spectroscopy, $Q_0 = 0.430(15)$ eb [2]. This intrinsic quadrupole moment, derived from the ground-state spectroscopic quadrupole moment, 0.086(3) eb, also compares well with the MCSM calculation, $Q_0 = 0.455$ eb.

FIG. 1: γ-ray spectrum for 110Pd(29Na,29Na*) at $E_{lab}(^{29}$Na) = 70 MeV with a beam intensity of up to ~ 600 pps; the particle angular coverage was between 20.1° – 49.4°.

*This work was supported by the DOE, LLNL Contract DE-AC52-07NA27344, the NSF, the NSERC of Canada, and the STFC of the UK. TRIUMF is funded by the NRC of Canada.